blob: 39e2eb83b097d18a97d3237bec3f5a4f715ff4ef [file] [log] [blame]
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkJumper.h"
#include "SkJumper_misc.h" // SI, unaligned_load(), bit_cast()
#include "SkJumper_vectors.h" // F, I32, U32, U16, U8, cast(), expand()
// Our fundamental vector depth is our pixel stride.
static const size_t kStride = sizeof(F) / sizeof(float);
// A reminder:
// Code guarded by defined(JUMPER) can assume that it will be compiled by Clang
// and that F, I32, etc. are kStride-deep ext_vector_types of the appropriate type.
// Otherwise, F, I32, etc. just alias the basic scalar types (and so kStride == 1).
// You can use most constants in this file, but in a few rare exceptions we read from this struct.
using K = const SkJumper_constants;
// Let's start first with the mechanisms we use to build Stages.
// Our program is an array of void*, either
// - 1 void* per stage with no context pointer, the next stage;
// - 2 void* per stage with a context pointer, first the context pointer, then the next stage.
// load_and_inc() steps the program forward by 1 void*, returning that pointer.
SI void* load_and_inc(void**& program) {
#if defined(__GNUC__) && defined(__x86_64__)
// If program is in %rsi (we try to make this likely) then this is a single instruction.
void* rax;
asm("lodsq" : "=a"(rax), "+S"(program)); // Write-only %rax, read-write %rsi.
return rax;
#else
// On ARM *program++ compiles into pretty ideal code without any handholding.
return *program++;
#endif
}
// LazyCtx doesn't do anything unless you call operator T*(), encapsulating the logic
// from above that stages without a context pointer are represented by just 1 void*.
struct LazyCtx {
void* ptr;
void**& program;
explicit LazyCtx(void**& p) : ptr(nullptr), program(p) {}
template <typename T>
operator T*() {
if (!ptr) { ptr = load_and_inc(program); }
return (T*)ptr;
}
};
// A little wrapper macro to name Stages differently depending on the instruction set.
// That lets us link together several options.
#if !defined(JUMPER)
#define WRAP(name) sk_##name
#elif defined(__aarch64__)
#define WRAP(name) sk_##name##_aarch64
#elif defined(__arm__)
#define WRAP(name) sk_##name##_vfp4
#elif defined(__AVX2__)
#define WRAP(name) sk_##name##_hsw
#elif defined(__AVX__)
#define WRAP(name) sk_##name##_avx
#elif defined(__SSE4_1__)
#define WRAP(name) sk_##name##_sse41
#elif defined(__SSE2__)
#define WRAP(name) sk_##name##_sse2
#endif
// We're finally going to get to what a Stage function looks like!
// It's best to jump down to the #else case first, then to come back up here for AVX.
#if defined(JUMPER) && defined(__AVX__)
// There's a big cost to switch between SSE and AVX, so we do a little
// extra work to handle even the jagged <kStride tail in AVX mode.
// Compared to normal stages, we maintain an extra tail register:
// tail == 0 ~~> work on a full kStride pixels
// tail != 0 ~~> work on only the first tail pixels
// tail is always < kStride.
using Stage = void(size_t x, void** program, K* k, size_t tail, F,F,F,F, F,F,F,F);
MAYBE_MSABI
extern "C" size_t WRAP(start_pipeline)(size_t x, void** program, K* k, size_t limit) {
F v{};
auto start = (Stage*)load_and_inc(program);
while (x + kStride <= limit) {
start(x,program,k,0, v,v,v,v, v,v,v,v);
x += kStride;
}
if (size_t tail = limit - x) {
start(x,program,k,tail, v,v,v,v, v,v,v,v);
}
return limit;
}
#define STAGE(name) \
SI void name##_k(size_t x, LazyCtx ctx, K* k, size_t tail, \
F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \
extern "C" void WRAP(name)(size_t x, void** program, K* k, size_t tail, \
F r, F g, F b, F a, F dr, F dg, F db, F da) { \
LazyCtx ctx(program); \
name##_k(x,ctx,k,tail, r,g,b,a, dr,dg,db,da); \
auto next = (Stage*)load_and_inc(program); \
next(x,program,k,tail, r,g,b,a, dr,dg,db,da); \
} \
SI void name##_k(size_t x, LazyCtx ctx, K* k, size_t tail, \
F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)
#else
// Other instruction sets (SSE, NEON, portable) can fall back on narrower
// pipelines cheaply, which frees us to always assume tail==0.
// Stages tail call between each other by following program as described above.
// x is our induction variable, stepping forward kStride at a time.
using Stage = void(size_t x, void** program, K* k, F,F,F,F, F,F,F,F);
// On Windows, start_pipeline() has a normal Windows ABI, and then the rest is System V.
MAYBE_MSABI
extern "C" size_t WRAP(start_pipeline)(size_t x, void** program, K* k, size_t limit) {
F v{};
auto start = (Stage*)load_and_inc(program);
while (x + kStride <= limit) {
start(x,program,k, v,v,v,v, v,v,v,v);
x += kStride;
}
return x;
}
// This STAGE macro makes it easier to write stages, handling all the Stage chaining for you.
#define STAGE(name) \
SI void name##_k(size_t x, LazyCtx ctx, K* k, size_t tail, \
F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \
extern "C" void WRAP(name)(size_t x, void** program, K* k, \
F r, F g, F b, F a, F dr, F dg, F db, F da) { \
LazyCtx ctx(program); \
name##_k(x,ctx,k,0, r,g,b,a, dr,dg,db,da); \
auto next = (Stage*)load_and_inc(program); \
next(x,program,k, r,g,b,a, dr,dg,db,da); \
} \
SI void name##_k(size_t x, LazyCtx ctx, K* k, size_t tail, \
F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)
#endif
// just_return() is a simple no-op stage that only exists to end the chain,
// returning back up to start_pipeline(), and from there to the caller.
extern "C" void WRAP(just_return)(size_t, void**, K*, F,F,F,F, F,F,F,F) {}
// We could start defining normal Stages now. But first, some helper functions.
// These load() and store() methods are tail-aware,
// but focus mainly on keeping the at-stride tail==0 case fast.
template <typename V, typename T>
SI V load(const T* src, size_t tail) {
#if defined(JUMPER)
__builtin_assume(tail < kStride);
if (__builtin_expect(tail, 0)) {
V v{}; // Any inactive lanes are zeroed.
switch (tail-1) {
case 6: v[6] = src[6];
case 5: v[5] = src[5];
case 4: v[4] = src[4];
case 3: v[3] = src[3];
case 2: v[2] = src[2];
case 1: v[1] = src[1];
case 0: v[0] = src[0];
}
return v;
}
#endif
return unaligned_load<V>(src);
}
template <typename V, typename T>
SI void store(T* dst, V v, size_t tail) {
#if defined(JUMPER)
__builtin_assume(tail < kStride);
if (__builtin_expect(tail, 0)) {
switch (tail-1) {
case 6: dst[6] = v[6];
case 5: dst[5] = v[5];
case 4: dst[4] = v[4];
case 3: dst[3] = v[3];
case 2: dst[2] = v[2];
case 1: dst[1] = v[1];
case 0: dst[0] = v[0];
}
return;
}
#endif
unaligned_store(dst, v);
}
// This doesn't look strictly necessary, but without it Clang would generate load() using
// compiler-generated constants that we can't support. This version doesn't need constants.
#if defined(JUMPER) && defined(__AVX__)
template <>
inline U8 load(const uint8_t* src, size_t tail) {
if (__builtin_expect(tail, 0)) {
uint64_t v = 0;
size_t shift = 0;
#pragma nounroll
while (tail --> 0) {
v |= (uint64_t)*src++ << shift;
shift += 8;
}
return unaligned_load<U8>(&v);
}
return unaligned_load<U8>(src);
}
#endif
// AVX2 adds some mask loads and stores that make for shorter, faster code.
#if defined(JUMPER) && defined(__AVX2__)
SI U32 mask(size_t tail) {
// We go a little out of our way to avoid needing large constant values here.
// It's easiest to build the mask as 8 8-bit values, either 0x00 or 0xff.
// Start fully on, then shift away lanes from the top until we've got our mask.
uint64_t mask = 0xffffffffffffffff >> 8*(kStride-tail);
// Sign-extend each mask lane to its full width, 0x00000000 or 0xffffffff.
return _mm256_cvtepi8_epi32(_mm_cvtsi64_si128((int64_t)mask));
}
template <>
inline U32 load(const uint32_t* src, size_t tail) {
__builtin_assume(tail < kStride);
if (__builtin_expect(tail, 0)) {
return _mm256_maskload_epi32((const int*)src, mask(tail));
}
return unaligned_load<U32>(src);
}
template <>
inline void store(uint32_t* dst, U32 v, size_t tail) {
__builtin_assume(tail < kStride);
if (__builtin_expect(tail, 0)) {
return _mm256_maskstore_epi32((int*)dst, mask(tail), v);
}
unaligned_store(dst, v);
}
#endif
SI F from_byte(U8 b) {
return cast(expand(b)) * (1/255.0f);
}
SI void from_565(U16 _565, F* r, F* g, F* b) {
U32 wide = expand(_565);
*r = cast(wide & (31<<11)) * (1.0f / (31<<11));
*g = cast(wide & (63<< 5)) * (1.0f / (63<< 5));
*b = cast(wide & (31<< 0)) * (1.0f / (31<< 0));
}
SI void from_4444(U16 _4444, F* r, F* g, F* b, F* a) {
U32 wide = expand(_4444);
*r = cast(wide & (15<<12)) * (1.0f / (15<<12));
*g = cast(wide & (15<< 8)) * (1.0f / (15<< 8));
*b = cast(wide & (15<< 4)) * (1.0f / (15<< 4));
*a = cast(wide & (15<< 0)) * (1.0f / (15<< 0));
}
SI void from_8888(U32 _8888, F* r, F* g, F* b, F* a) {
*r = cast((_8888 ) & 0xff) * (1/255.0f);
*g = cast((_8888 >> 8) & 0xff) * (1/255.0f);
*b = cast((_8888 >> 16) & 0xff) * (1/255.0f);
*a = cast((_8888 >> 24) ) * (1/255.0f);
}
template <typename T>
SI U32 ix_and_ptr(T** ptr, const SkJumper_GatherCtx* ctx, F x, F y) {
*ptr = (const T*)ctx->pixels;
return trunc_(y)*ctx->stride + trunc_(x);
}
// Now finally, normal Stages!
STAGE(seed_shader) {
auto y = *(const int*)ctx;
// It's important for speed to explicitly cast(x) and cast(y),
// which has the effect of splatting them to vectors before converting to floats.
// On Intel this breaks a data dependency on previous loop iterations' registers.
r = cast(x) + 0.5f + unaligned_load<F>(k->iota_F);
g = cast(y) + 0.5f;
b = 1.0f;
a = 0;
dr = dg = db = da = 0;
}
STAGE(dither) {
auto c = (const SkJumper_DitherCtx*)ctx;
// Get [(x,y), (x+1,y), (x+2,y), ...] loaded up in integer vectors.
U32 X = x + unaligned_load<U32>(k->iota_U32),
Y = (uint32_t)*c->y;
// We're doing 8x8 ordered dithering, see https://en.wikipedia.org/wiki/Ordered_dithering.
// In this case n=8 and we're using the matrix that looks like 1/64 x [ 0 48 12 60 ... ].
// We only need X and X^Y from here on, so it's easier to just think of that as "Y".
Y ^= X;
// We'll mix the bottom 3 bits of each of X and Y to make 6 bits,
// for 2^6 == 64 == 8x8 matrix values. If X=abc and Y=def, we make fcebda.
U32 M = (Y & 1) << 5 | (X & 1) << 4
| (Y & 2) << 2 | (X & 2) << 1
| (Y & 4) >> 1 | (X & 4) >> 2;
// Scale that dither to [0,1), then (-0.5,+0.5), here using 63/128 = 0.4921875 as 0.5-epsilon.
// We want to make sure our dither is less than 0.5 in either direction to keep exact values
// like 0 and 1 unchanged after rounding.
F dither = cast(M) * (2/128.0f) - (63/128.0f);
r += c->rate*dither;
g += c->rate*dither;
b += c->rate*dither;
r = max(0, min(r, a));
g = max(0, min(g, a));
b = max(0, min(b, a));
}
// load 4 floats from memory, and splat them into r,g,b,a
STAGE(constant_color) {
auto rgba = (const float*)ctx;
r = rgba[0];
g = rgba[1];
b = rgba[2];
a = rgba[3];
}
// load registers r,g,b,a from context (mirrors store_rgba)
STAGE(load_rgba) {
auto ptr = (const float*)ctx;
r = unaligned_load<F>(ptr + 0*kStride);
g = unaligned_load<F>(ptr + 1*kStride);
b = unaligned_load<F>(ptr + 2*kStride);
a = unaligned_load<F>(ptr + 3*kStride);
}
// store registers r,g,b,a into context (mirrors load_rgba)
STAGE(store_rgba) {
auto ptr = (float*)ctx;
unaligned_store(ptr + 0*kStride, r);
unaligned_store(ptr + 1*kStride, g);
unaligned_store(ptr + 2*kStride, b);
unaligned_store(ptr + 3*kStride, a);
}
// Most blend modes apply the same logic to each channel.
#define BLEND_MODE(name) \
SI F name##_channel(F s, F d, F sa, F da); \
STAGE(name) { \
r = name##_channel(r,dr,a,da); \
g = name##_channel(g,dg,a,da); \
b = name##_channel(b,db,a,da); \
a = name##_channel(a,da,a,da); \
} \
SI F name##_channel(F s, F d, F sa, F da)
SI F inv(F x) { return 1.0f - x; }
SI F two(F x) { return x + x; }
BLEND_MODE(clear) { return 0; }
BLEND_MODE(srcatop) { return s*da + d*inv(sa); }
BLEND_MODE(dstatop) { return d*sa + s*inv(da); }
BLEND_MODE(srcin) { return s * da; }
BLEND_MODE(dstin) { return d * sa; }
BLEND_MODE(srcout) { return s * inv(da); }
BLEND_MODE(dstout) { return d * inv(sa); }
BLEND_MODE(srcover) { return mad(d, inv(sa), s); }
BLEND_MODE(dstover) { return mad(s, inv(da), d); }
BLEND_MODE(modulate) { return s*d; }
BLEND_MODE(multiply) { return s*inv(da) + d*inv(sa) + s*d; }
BLEND_MODE(plus_) { return s + d; }
BLEND_MODE(screen) { return s + d - s*d; }
BLEND_MODE(xor_) { return s*inv(da) + d*inv(sa); }
#undef BLEND_MODE
// Most other blend modes apply the same logic to colors, and srcover to alpha.
#define BLEND_MODE(name) \
SI F name##_channel(F s, F d, F sa, F da); \
STAGE(name) { \
r = name##_channel(r,dr,a,da); \
g = name##_channel(g,dg,a,da); \
b = name##_channel(b,db,a,da); \
a = mad(da, inv(a), a); \
} \
SI F name##_channel(F s, F d, F sa, F da)
BLEND_MODE(darken) { return s + d - max(s*da, d*sa) ; }
BLEND_MODE(lighten) { return s + d - min(s*da, d*sa) ; }
BLEND_MODE(difference) { return s + d - two(min(s*da, d*sa)); }
BLEND_MODE(exclusion) { return s + d - two(s*d); }
BLEND_MODE(colorburn) {
return if_then_else(d == da, d + s*inv(da),
if_then_else(s == 0, s + d*inv(sa),
sa*(da - min(da, (da-d)*sa/s)) + s*inv(da) + d*inv(sa)));
}
BLEND_MODE(colordodge) {
return if_then_else(d == 0, d + s*inv(da),
if_then_else(s == sa, s + d*inv(sa),
sa*min(da, (d*sa)/(sa - s)) + s*inv(da) + d*inv(sa)));
}
BLEND_MODE(hardlight) {
return s*inv(da) + d*inv(sa)
+ if_then_else(two(s) <= sa, two(s*d), sa*da - two((da-d)*(sa-s)));
}
BLEND_MODE(overlay) {
return s*inv(da) + d*inv(sa)
+ if_then_else(two(d) <= da, two(s*d), sa*da - two((da-d)*(sa-s)));
}
BLEND_MODE(softlight) {
F m = if_then_else(da > 0, d / da, 0),
s2 = two(s),
m4 = two(two(m));
// The logic forks three ways:
// 1. dark src?
// 2. light src, dark dst?
// 3. light src, light dst?
F darkSrc = d*(sa + (s2 - sa)*(1.0f - m)), // Used in case 1.
darkDst = (m4*m4 + m4)*(m - 1.0f) + 7.0f*m, // Used in case 2.
liteDst = rcp(rsqrt(m)) - m, // Used in case 3.
liteSrc = d*sa + da*(s2 - sa) * if_then_else(two(two(d)) <= da, darkDst, liteDst); // 2 or 3?
return s*inv(da) + d*inv(sa) + if_then_else(s2 <= sa, darkSrc, liteSrc); // 1 or (2 or 3)?
}
#undef BLEND_MODE
// We're basing our implemenation of non-separable blend modes on
// https://www.w3.org/TR/compositing-1/#blendingnonseparable.
// and
// https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf
// They're equivalent, but ES' math has been better simplified.
//
// Anything extra we add beyond that is to make the math work with premul inputs.
SI F max(F r, F g, F b) { return max(r, max(g, b)); }
SI F min(F r, F g, F b) { return min(r, min(g, b)); }
SI F sat(F r, F g, F b) { return max(r,g,b) - min(r,g,b); }
SI F lum(F r, F g, F b) { return r*0.30f + g*0.59f + b*0.11f; }
SI void set_sat(F* r, F* g, F* b, F s) {
F mn = min(*r,*g,*b),
mx = max(*r,*g,*b),
sat = mx - mn;
// Map min channel to 0, max channel to s, and scale the middle proportionally.
auto scale = [=](F c) {
return if_then_else(sat == 0, 0, (c - mn) * s / sat);
};
*r = scale(*r);
*g = scale(*g);
*b = scale(*b);
}
SI void set_lum(F* r, F* g, F* b, F l) {
F diff = l - lum(*r, *g, *b);
*r += diff;
*g += diff;
*b += diff;
}
SI void clip_color(F* r, F* g, F* b, F a) {
F mn = min(*r, *g, *b),
mx = max(*r, *g, *b),
l = lum(*r, *g, *b);
auto clip = [=](F c) {
c = if_then_else(mn >= 0, c, l + (c - l) * ( l) / (l - mn) );
c = if_then_else(mx > a, l + (c - l) * (a - l) / (mx - l), c);
c = max(c, 0); // Sometimes without this we may dip just a little negative.
return c;
};
*r = clip(*r);
*g = clip(*g);
*b = clip(*b);
}
STAGE(hue) {
F R = r*a,
G = g*a,
B = b*a;
set_sat(&R, &G, &B, sat(dr,dg,db)*a);
set_lum(&R, &G, &B, lum(dr,dg,db)*a);
clip_color(&R,&G,&B, a*da);
r = r*inv(da) + dr*inv(a) + R;
g = g*inv(da) + dg*inv(a) + G;
b = b*inv(da) + db*inv(a) + B;
a = a + da - a*da;
}
STAGE(saturation) {
F R = dr*a,
G = dg*a,
B = db*a;
set_sat(&R, &G, &B, sat( r, g, b)*da);
set_lum(&R, &G, &B, lum(dr,dg,db)* a); // (This is not redundant.)
clip_color(&R,&G,&B, a*da);
r = r*inv(da) + dr*inv(a) + R;
g = g*inv(da) + dg*inv(a) + G;
b = b*inv(da) + db*inv(a) + B;
a = a + da - a*da;
}
STAGE(color) {
F R = r*da,
G = g*da,
B = b*da;
set_lum(&R, &G, &B, lum(dr,dg,db)*a);
clip_color(&R,&G,&B, a*da);
r = r*inv(da) + dr*inv(a) + R;
g = g*inv(da) + dg*inv(a) + G;
b = b*inv(da) + db*inv(a) + B;
a = a + da - a*da;
}
STAGE(luminosity) {
F R = dr*a,
G = dg*a,
B = db*a;
set_lum(&R, &G, &B, lum(r,g,b)*da);
clip_color(&R,&G,&B, a*da);
r = r*inv(da) + dr*inv(a) + R;
g = g*inv(da) + dg*inv(a) + G;
b = b*inv(da) + db*inv(a) + B;
a = a + da - a*da;
}
STAGE(clamp_0) {
r = max(r, 0);
g = max(g, 0);
b = max(b, 0);
a = max(a, 0);
}
STAGE(clamp_1) {
r = min(r, 1.0f);
g = min(g, 1.0f);
b = min(b, 1.0f);
a = min(a, 1.0f);
}
STAGE(clamp_a) {
a = min(a, 1.0f);
r = min(r, a);
g = min(g, a);
b = min(b, a);
}
STAGE(set_rgb) {
auto rgb = (const float*)ctx;
r = rgb[0];
g = rgb[1];
b = rgb[2];
}
STAGE(swap_rb) {
auto tmp = r;
r = b;
b = tmp;
}
STAGE(swap) {
auto swap = [](F& v, F& dv) {
auto tmp = v;
v = dv;
dv = tmp;
};
swap(r, dr);
swap(g, dg);
swap(b, db);
swap(a, da);
}
STAGE(move_src_dst) {
dr = r;
dg = g;
db = b;
da = a;
}
STAGE(move_dst_src) {
r = dr;
g = dg;
b = db;
a = da;
}
STAGE(premul) {
r = r * a;
g = g * a;
b = b * a;
}
STAGE(unpremul) {
auto scale = if_then_else(a == 0, 0, 1.0f / a);
r *= scale;
g *= scale;
b *= scale;
}
STAGE(from_srgb) {
auto fn = [&](F s) {
auto lo = s * (1/12.92f);
auto hi = mad(s*s, mad(s, 0.3000f, 0.6975f), 0.0025f);
return if_then_else(s < 0.055f, lo, hi);
};
r = fn(r);
g = fn(g);
b = fn(b);
}
STAGE(to_srgb) {
auto fn = [&](F l) {
F t = rsqrt(l);
auto lo = l * 12.92f;
auto hi = mad(t, mad(t, -0.0024542345f, 0.013832027f), 1.1334244f)
* rcp(0.14513608f + t);
return if_then_else(l < 0.00465985f, lo, hi);
};
r = fn(r);
g = fn(g);
b = fn(b);
}
STAGE(rgb_to_hsl) {
F mx = max(max(r,g), b),
mn = min(min(r,g), b),
d = mx - mn,
d_rcp = 1.0f / d;
F h = (1/6.0f) *
if_then_else(mx == mn, 0,
if_then_else(mx == r, (g-b)*d_rcp + if_then_else(g < b, 6.0f, 0),
if_then_else(mx == g, (b-r)*d_rcp + 2.0f,
(r-g)*d_rcp + 4.0f)));
F l = (mx + mn) * 0.5f;
F s = if_then_else(mx == mn, 0,
d / if_then_else(l > 0.5f, 2.0f-mx-mn, mx+mn));
r = h;
g = s;
b = l;
}
STAGE(hsl_to_rgb) {
F h = r,
s = g,
l = b;
F q = l + if_then_else(l >= 0.5f, s - l*s, l*s),
p = 2.0f*l - q;
auto hue_to_rgb = [&](F t) {
t = fract(t);
F r = p;
r = if_then_else(t >= 4/6.0f, r, p + (q-p)*(4.0f - 6.0f*t));
r = if_then_else(t >= 3/6.0f, r, q);
r = if_then_else(t >= 1/6.0f, r, p + (q-p)*( 6.0f*t));
return r;
};
r = if_then_else(s == 0, l, hue_to_rgb(h + (1/3.0f)));
g = if_then_else(s == 0, l, hue_to_rgb(h ));
b = if_then_else(s == 0, l, hue_to_rgb(h - (1/3.0f)));
}
STAGE(scale_1_float) {
auto c = *(const float*)ctx;
r = r * c;
g = g * c;
b = b * c;
a = a * c;
}
STAGE(scale_u8) {
auto ptr = *(const uint8_t**)ctx + x;
auto scales = load<U8>(ptr, tail);
auto c = from_byte(scales);
r = r * c;
g = g * c;
b = b * c;
a = a * c;
}
SI F lerp(F from, F to, F t) {
return mad(to-from, t, from);
}
STAGE(lerp_1_float) {
auto c = *(const float*)ctx;
r = lerp(dr, r, c);
g = lerp(dg, g, c);
b = lerp(db, b, c);
a = lerp(da, a, c);
}
STAGE(lerp_u8) {
auto ptr = *(const uint8_t**)ctx + x;
auto scales = load<U8>(ptr, tail);
auto c = from_byte(scales);
r = lerp(dr, r, c);
g = lerp(dg, g, c);
b = lerp(db, b, c);
a = lerp(da, a, c);
}
STAGE(lerp_565) {
auto ptr = *(const uint16_t**)ctx + x;
F cr,cg,cb;
from_565(load<U16>(ptr, tail), &cr, &cg, &cb);
r = lerp(dr, r, cr);
g = lerp(dg, g, cg);
b = lerp(db, b, cb);
a = max(lerp(da, a, cr), lerp(da, a, cg), lerp(da, a, cb));
}
STAGE(load_tables) {
auto c = (const SkJumper_LoadTablesCtx*)ctx;
auto px = load<U32>((const uint32_t*)c->src + x, tail);
r = gather(c->r, (px ) & 0xff);
g = gather(c->g, (px >> 8) & 0xff);
b = gather(c->b, (px >> 16) & 0xff);
a = cast( (px >> 24)) * (1/255.0f);
}
STAGE(load_tables_u16_be) {
auto c = (const SkJumper_LoadTablesCtx*)ctx;
auto ptr = (const uint16_t*)c->src + 4*x;
U16 R,G,B,A;
load4(ptr, tail, &R,&G,&B,&A);
// c->src is big-endian, so & 0xff grabs the 8 most signficant bits.
r = gather(c->r, expand(R) & 0xff);
g = gather(c->g, expand(G) & 0xff);
b = gather(c->b, expand(B) & 0xff);
a = (1/65535.0f) * cast(expand(bswap(A)));
}
STAGE(load_tables_rgb_u16_be) {
auto c = (const SkJumper_LoadTablesCtx*)ctx;
auto ptr = (const uint16_t*)c->src + 3*x;
U16 R,G,B;
load3(ptr, tail, &R,&G,&B);
// c->src is big-endian, so & 0xff grabs the 8 most signficant bits.
r = gather(c->r, expand(R) & 0xff);
g = gather(c->g, expand(G) & 0xff);
b = gather(c->b, expand(B) & 0xff);
a = 1.0f;
}
STAGE(byte_tables) {
struct Tables { const uint8_t *r, *g, *b, *a; };
auto tables = (const Tables*)ctx;
r = from_byte(gather(tables->r, round(r, 255.0f)));
g = from_byte(gather(tables->g, round(g, 255.0f)));
b = from_byte(gather(tables->b, round(b, 255.0f)));
a = from_byte(gather(tables->a, round(a, 255.0f)));
}
STAGE(byte_tables_rgb) {
struct Tables { const uint8_t *r, *g, *b; int n; };
auto tables = (const Tables*)ctx;
F scale = tables->n - 1;
r = from_byte(gather(tables->r, round(r, scale)));
g = from_byte(gather(tables->g, round(g, scale)));
b = from_byte(gather(tables->b, round(b, scale)));
}
SI F table(F v, const SkJumper_TableCtx* ctx) {
return gather(ctx->table, round(v, ctx->size - 1));
}
STAGE(table_r) { r = table(r, ctx); }
STAGE(table_g) { g = table(g, ctx); }
STAGE(table_b) { b = table(b, ctx); }
STAGE(table_a) { a = table(a, ctx); }
SI F parametric(F v, const SkJumper_ParametricTransferFunction* ctx) {
F r = if_then_else(v <= ctx->D, mad(ctx->C, v, ctx->F)
, approx_powf(mad(ctx->A, v, ctx->B), ctx->G) + ctx->E);
return min(max(r, 0), 1.0f); // Clamp to [0,1], with argument order mattering to handle NaN.
}
STAGE(parametric_r) { r = parametric(r, ctx); }
STAGE(parametric_g) { g = parametric(g, ctx); }
STAGE(parametric_b) { b = parametric(b, ctx); }
STAGE(parametric_a) { a = parametric(a, ctx); }
STAGE(lab_to_xyz) {
F L = r * 100.0f,
A = g * 255.0f - 128.0f,
B = b * 255.0f - 128.0f;
F Y = (L + 16.0f) * (1/116.0f),
X = Y + A*(1/500.0f),
Z = Y - B*(1/200.0f);
X = if_then_else(X*X*X > 0.008856f, X*X*X, (X - (16/116.0f)) * (1/7.787f));
Y = if_then_else(Y*Y*Y > 0.008856f, Y*Y*Y, (Y - (16/116.0f)) * (1/7.787f));
Z = if_then_else(Z*Z*Z > 0.008856f, Z*Z*Z, (Z - (16/116.0f)) * (1/7.787f));
// Adjust to D50 illuminant.
r = X * 0.96422f;
g = Y ;
b = Z * 0.82521f;
}
STAGE(load_a8) {
auto ptr = *(const uint8_t**)ctx + x;
r = g = b = 0.0f;
a = from_byte(load<U8>(ptr, tail));
}
STAGE(gather_a8) {
const uint8_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r,g);
r = g = b = 0.0f;
a = from_byte(gather(ptr, ix));
}
STAGE(store_a8) {
auto ptr = *(uint8_t**)ctx + x;
U8 packed = pack(pack(round(a, 255.0f)));
store(ptr, packed, tail);
}
STAGE(load_g8) {
auto ptr = *(const uint8_t**)ctx + x;
r = g = b = from_byte(load<U8>(ptr, tail));
a = 1.0f;
}
STAGE(gather_g8) {
const uint8_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r,g);
r = g = b = from_byte(gather(ptr, ix));
a = 1.0f;
}
STAGE(gather_i8) {
auto c = (const SkJumper_GatherCtx*)ctx;
const uint8_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r,g);
ix = expand(gather(ptr, ix));
from_8888(gather(c->ctable, ix), &r,&g,&b,&a);
}
STAGE(load_565) {
auto ptr = *(const uint16_t**)ctx + x;
from_565(load<U16>(ptr, tail), &r,&g,&b);
a = 1.0f;
}
STAGE(gather_565) {
const uint16_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r,g);
from_565(gather(ptr, ix), &r,&g,&b);
a = 1.0f;
}
STAGE(store_565) {
auto ptr = *(uint16_t**)ctx + x;
U16 px = pack( round(r, 31.0f) << 11
| round(g, 63.0f) << 5
| round(b, 31.0f) );
store(ptr, px, tail);
}
STAGE(load_4444) {
auto ptr = *(const uint16_t**)ctx + x;
from_4444(load<U16>(ptr, tail), &r,&g,&b,&a);
}
STAGE(gather_4444) {
const uint16_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r,g);
from_4444(gather(ptr, ix), &r,&g,&b,&a);
}
STAGE(store_4444) {
auto ptr = *(uint16_t**)ctx + x;
U16 px = pack( round(r, 15.0f) << 12
| round(g, 15.0f) << 8
| round(b, 15.0f) << 4
| round(a, 15.0f) );
store(ptr, px, tail);
}
STAGE(load_8888) {
auto ptr = *(const uint32_t**)ctx + x;
from_8888(load<U32>(ptr, tail), &r,&g,&b,&a);
}
STAGE(gather_8888) {
const uint32_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r,g);
from_8888(gather(ptr, ix), &r,&g,&b,&a);
}
STAGE(store_8888) {
auto ptr = *(uint32_t**)ctx + x;
U32 px = round(r, 255.0f)
| round(g, 255.0f) << 8
| round(b, 255.0f) << 16
| round(a, 255.0f) << 24;
store(ptr, px, tail);
}
STAGE(load_f16) {
auto ptr = *(const uint64_t**)ctx + x;
U16 R,G,B,A;
load4((const uint16_t*)ptr,tail, &R,&G,&B,&A);
r = from_half(R);
g = from_half(G);
b = from_half(B);
a = from_half(A);
}
STAGE(gather_f16) {
const uint64_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r,g);
auto px = gather(ptr, ix);
U16 R,G,B,A;
load4((const uint16_t*)&px,0, &R,&G,&B,&A);
r = from_half(R);
g = from_half(G);
b = from_half(B);
a = from_half(A);
}
STAGE(store_f16) {
auto ptr = *(uint64_t**)ctx + x;
store4((uint16_t*)ptr,tail, to_half(r)
, to_half(g)
, to_half(b)
, to_half(a));
}
STAGE(load_u16_be) {
auto ptr = *(const uint16_t**)ctx + 4*x;
U16 R,G,B,A;
load4(ptr,tail, &R,&G,&B,&A);
r = (1/65535.0f) * cast(expand(bswap(R)));
g = (1/65535.0f) * cast(expand(bswap(G)));
b = (1/65535.0f) * cast(expand(bswap(B)));
a = (1/65535.0f) * cast(expand(bswap(A)));
}
STAGE(load_rgb_u16_be) {
auto ptr = *(const uint16_t**)ctx + 3*x;
U16 R,G,B;
load3(ptr,tail, &R,&G,&B);
r = (1/65535.0f) * cast(expand(bswap(R)));
g = (1/65535.0f) * cast(expand(bswap(G)));
b = (1/65535.0f) * cast(expand(bswap(B)));
a = 1.0f;
}
STAGE(store_u16_be) {
auto ptr = *(uint16_t**)ctx + 4*x;
U16 R = bswap(pack(round(r, 65535.0f))),
G = bswap(pack(round(g, 65535.0f))),
B = bswap(pack(round(b, 65535.0f))),
A = bswap(pack(round(a, 65535.0f)));
store4(ptr,tail, R,G,B,A);
}
STAGE(load_f32) {
auto ptr = *(const float**)ctx + 4*x;
load4(ptr,tail, &r,&g,&b,&a);
}
STAGE(store_f32) {
auto ptr = *(float**)ctx + 4*x;
store4(ptr,tail, r,g,b,a);
}
SI F clamp(F v, float limit) {
return min(max(0, v), limit);
}
SI F repeat(F v, float limit) {
return v - floor_(v/limit)*limit;
}
SI F mirror(F v, float limit) {
return abs_( (v-limit) - (limit+limit)*floor_((v-limit)/(limit+limit)) - limit );
}
STAGE(clamp_x) { r = clamp (r, *(const float*)ctx); }
STAGE(clamp_y) { g = clamp (g, *(const float*)ctx); }
STAGE(repeat_x) { r = repeat(r, *(const float*)ctx); }
STAGE(repeat_y) { g = repeat(g, *(const float*)ctx); }
STAGE(mirror_x) { r = mirror(r, *(const float*)ctx); }
STAGE(mirror_y) { g = mirror(g, *(const float*)ctx); }
STAGE( clamp_x_1) { r = clamp (r, 1.0f); }
STAGE(repeat_x_1) { r = repeat(r, 1.0f); }
STAGE(mirror_x_1) { r = abs_( (r-1.0f) - two(floor_((r-1.0f)*0.5f)) - 1.0f ); }
STAGE(luminance_to_alpha) {
a = r*0.2126f + g*0.7152f + b*0.0722f;
r = g = b = 0;
}
STAGE(matrix_2x3) {
auto m = (const float*)ctx;
auto R = mad(r,m[0], mad(g,m[2], m[4])),
G = mad(r,m[1], mad(g,m[3], m[5]));
r = R;
g = G;
}
STAGE(matrix_3x4) {
auto m = (const float*)ctx;
auto R = mad(r,m[0], mad(g,m[3], mad(b,m[6], m[ 9]))),
G = mad(r,m[1], mad(g,m[4], mad(b,m[7], m[10]))),
B = mad(r,m[2], mad(g,m[5], mad(b,m[8], m[11])));
r = R;
g = G;
b = B;
}
STAGE(matrix_4x5) {
auto m = (const float*)ctx;
auto R = mad(r,m[0], mad(g,m[4], mad(b,m[ 8], mad(a,m[12], m[16])))),
G = mad(r,m[1], mad(g,m[5], mad(b,m[ 9], mad(a,m[13], m[17])))),
B = mad(r,m[2], mad(g,m[6], mad(b,m[10], mad(a,m[14], m[18])))),
A = mad(r,m[3], mad(g,m[7], mad(b,m[11], mad(a,m[15], m[19]))));
r = R;
g = G;
b = B;
a = A;
}
STAGE(matrix_4x3) {
auto m = (const float*)ctx;
auto X = r,
Y = g;
r = mad(X, m[0], mad(Y, m[4], m[ 8]));
g = mad(X, m[1], mad(Y, m[5], m[ 9]));
b = mad(X, m[2], mad(Y, m[6], m[10]));
a = mad(X, m[3], mad(Y, m[7], m[11]));
}
STAGE(matrix_perspective) {
// N.B. Unlike the other matrix_ stages, this matrix is row-major.
auto m = (const float*)ctx;
auto R = mad(r,m[0], mad(g,m[1], m[2])),
G = mad(r,m[3], mad(g,m[4], m[5])),
Z = mad(r,m[6], mad(g,m[7], m[8]));
r = R * rcp(Z);
g = G * rcp(Z);
}
SI void gradient_lookup(const SkJumper_GradientCtx* c, U32 idx, F t,
F* r, F* g, F* b, F* a) {
F fr, br, fg, bg, fb, bb, fa, ba;
#if defined(JUMPER) && defined(__AVX2__)
if (c->stopCount <=8) {
fr = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), idx);
br = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), idx);
fg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), idx);
bg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), idx);
fb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), idx);
bb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), idx);
fa = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), idx);
ba = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), idx);
} else
#endif
{
fr = gather(c->fs[0], idx);
br = gather(c->bs[0], idx);
fg = gather(c->fs[1], idx);
bg = gather(c->bs[1], idx);
fb = gather(c->fs[2], idx);
bb = gather(c->bs[2], idx);
fa = gather(c->fs[3], idx);
ba = gather(c->bs[3], idx);
}
*r = mad(t, fr, br);
*g = mad(t, fg, bg);
*b = mad(t, fb, bb);
*a = mad(t, fa, ba);
}
STAGE(evenly_spaced_gradient) {
auto c = (const SkJumper_GradientCtx*)ctx;
auto t = r;
auto idx = trunc_(t * (c->stopCount-1));
gradient_lookup(c, idx, t, &r, &g, &b, &a);
}
STAGE(gauss_a_to_rgba) {
// x = 1 - x;
// exp(-x * x * 4) - 0.018f;
// ... now approximate with quartic
//
const float c4 = -2.26661229133605957031f;
const float c3 = 2.89795351028442382812f;
const float c2 = 0.21345567703247070312f;
const float c1 = 0.15489584207534790039f;
const float c0 = 0.00030726194381713867f;
a = mad(a, mad(a, mad(a, mad(a, c4, c3), c2), c1), c0);
r = a;
g = a;
b = a;
}
STAGE(gradient) {
auto c = (const SkJumper_GradientCtx*)ctx;
auto t = r;
U32 idx = 0;
// N.B. The loop starts at 1 because idx 0 is the color to use before the first stop.
for (size_t i = 1; i < c->stopCount; i++) {
idx += if_then_else(t >= c->ts[i], U32(1), U32(0));
}
gradient_lookup(c, idx, t, &r, &g, &b, &a);
}
STAGE(evenly_spaced_2_stop_gradient) {
struct Ctx { float f[4], b[4]; };
auto c = (const Ctx*)ctx;
auto t = r;
r = mad(t, c->f[0], c->b[0]);
g = mad(t, c->f[1], c->b[1]);
b = mad(t, c->f[2], c->b[2]);
a = mad(t, c->f[3], c->b[3]);
}
STAGE(xy_to_unit_angle) {
F X = r,
Y = g;
F xabs = abs_(X),
yabs = abs_(Y);
F slope = min(xabs, yabs)/max(xabs, yabs);
F s = slope * slope;
// Use a 7th degree polynomial to approximate atan.
// This was generated using sollya.gforge.inria.fr.
// A float optimized polynomial was generated using the following command.
// P1 = fpminimax((1/(2*Pi))*atan(x),[|1,3,5,7|],[|24...|],[2^(-40),1],relative);
F phi = slope
* (0.15912117063999176025390625f + s
* (-5.185396969318389892578125e-2f + s
* (2.476101927459239959716796875e-2f + s
* (-7.0547382347285747528076171875e-3f))));
phi = if_then_else(xabs < yabs, 1.0f/4.0f - phi, phi);
phi = if_then_else(X < 0.0f , 1.0f/2.0f - phi, phi);
phi = if_then_else(Y < 0.0f , 1.0f - phi , phi);
phi = if_then_else(phi != phi , 0 , phi); // Check for NaN.
r = phi;
}
STAGE(xy_to_radius) {
F X2 = r * r,
Y2 = g * g;
r = sqrt_(X2 + Y2);
}
STAGE(save_xy) {
auto c = (SkJumper_SamplerCtx*)ctx;
// Whether bilinear or bicubic, all sample points are at the same fractional offset (fx,fy).
// They're either the 4 corners of a logical 1x1 pixel or the 16 corners of a 3x3 grid
// surrounding (x,y) at (0.5,0.5) off-center.
F fx = fract(r + 0.5f),
fy = fract(g + 0.5f);
// Samplers will need to load x and fx, or y and fy.
unaligned_store(c->x, r);
unaligned_store(c->y, g);
unaligned_store(c->fx, fx);
unaligned_store(c->fy, fy);
}
STAGE(accumulate) {
auto c = (const SkJumper_SamplerCtx*)ctx;
// Bilinear and bicubic filters are both separable, so we produce independent contributions
// from x and y, multiplying them together here to get each pixel's total scale factor.
auto scale = unaligned_load<F>(c->scalex)
* unaligned_load<F>(c->scaley);
dr = mad(scale, r, dr);
dg = mad(scale, g, dg);
db = mad(scale, b, db);
da = mad(scale, a, da);
}
// In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center
// are combined in direct proportion to their area overlapping that logical query pixel.
// At positive offsets, the x-axis contribution to that rectangle is fx, or (1-fx) at negative x.
// The y-axis is symmetric.
template <int kScale>
SI void bilinear_x(SkJumper_SamplerCtx* ctx, F* x) {
*x = unaligned_load<F>(ctx->x) + (kScale * 0.5f);
F fx = unaligned_load<F>(ctx->fx);
F scalex;
if (kScale == -1) { scalex = 1.0f - fx; }
if (kScale == +1) { scalex = fx; }
unaligned_store(ctx->scalex, scalex);
}
template <int kScale>
SI void bilinear_y(SkJumper_SamplerCtx* ctx, F* y) {
*y = unaligned_load<F>(ctx->y) + (kScale * 0.5f);
F fy = unaligned_load<F>(ctx->fy);
F scaley;
if (kScale == -1) { scaley = 1.0f - fy; }
if (kScale == +1) { scaley = fy; }
unaligned_store(ctx->scaley, scaley);
}
STAGE(bilinear_nx) { bilinear_x<-1>(ctx, &r); }
STAGE(bilinear_px) { bilinear_x<+1>(ctx, &r); }
STAGE(bilinear_ny) { bilinear_y<-1>(ctx, &g); }
STAGE(bilinear_py) { bilinear_y<+1>(ctx, &g); }
// In bicubic interpolation, the 16 pixels and +/- 0.5 and +/- 1.5 offsets from the sample
// pixel center are combined with a non-uniform cubic filter, with higher values near the center.
//
// We break this function into two parts, one for near 0.5 offsets and one for far 1.5 offsets.
// See GrCubicEffect for details of this particular filter.
SI F bicubic_near(F t) {
// 1/18 + 9/18t + 27/18t^2 - 21/18t^3 == t ( t ( -21/18t + 27/18) + 9/18) + 1/18
return mad(t, mad(t, mad((-21/18.0f), t, (27/18.0f)), (9/18.0f)), (1/18.0f));
}
SI F bicubic_far(F t) {
// 0/18 + 0/18*t - 6/18t^2 + 7/18t^3 == t^2 (7/18t - 6/18)
return (t*t)*mad((7/18.0f), t, (-6/18.0f));
}
template <int kScale>
SI void bicubic_x(SkJumper_SamplerCtx* ctx, F* x) {
*x = unaligned_load<F>(ctx->x) + (kScale * 0.5f);
F fx = unaligned_load<F>(ctx->fx);
F scalex;
if (kScale == -3) { scalex = bicubic_far (1.0f - fx); }
if (kScale == -1) { scalex = bicubic_near(1.0f - fx); }
if (kScale == +1) { scalex = bicubic_near( fx); }
if (kScale == +3) { scalex = bicubic_far ( fx); }
unaligned_store(ctx->scalex, scalex);
}
template <int kScale>
SI void bicubic_y(SkJumper_SamplerCtx* ctx, F* y) {
*y = unaligned_load<F>(ctx->y) + (kScale * 0.5f);
F fy = unaligned_load<F>(ctx->fy);
F scaley;
if (kScale == -3) { scaley = bicubic_far (1.0f - fy); }
if (kScale == -1) { scaley = bicubic_near(1.0f - fy); }
if (kScale == +1) { scaley = bicubic_near( fy); }
if (kScale == +3) { scaley = bicubic_far ( fy); }
unaligned_store(ctx->scaley, scaley);
}
STAGE(bicubic_n3x) { bicubic_x<-3>(ctx, &r); }
STAGE(bicubic_n1x) { bicubic_x<-1>(ctx, &r); }
STAGE(bicubic_p1x) { bicubic_x<+1>(ctx, &r); }
STAGE(bicubic_p3x) { bicubic_x<+3>(ctx, &r); }
STAGE(bicubic_n3y) { bicubic_y<-3>(ctx, &g); }
STAGE(bicubic_n1y) { bicubic_y<-1>(ctx, &g); }
STAGE(bicubic_p1y) { bicubic_y<+1>(ctx, &g); }
STAGE(bicubic_p3y) { bicubic_y<+3>(ctx, &g); }
STAGE(callback) {
auto c = (SkJumper_CallbackCtx*)ctx;
store4(c->rgba,0, r,g,b,a);
c->fn(c, tail ? tail : kStride);
load4(c->read_from,0, &r,&g,&b,&a);
}