| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/ganesh/vk/GrVkCaps.h" |
| |
| #include <memory> |
| |
| #include "include/core/SkTextureCompressionType.h" |
| #include "include/gpu/GrBackendSurface.h" |
| #include "include/gpu/GrContextOptions.h" |
| #include "include/gpu/ganesh/vk/GrVkBackendSurface.h" |
| #include "include/gpu/vk/GrVkBackendContext.h" |
| #include "include/gpu/vk/VulkanExtensions.h" |
| #include "src/core/SkCompressedDataUtils.h" |
| #include "src/gpu/KeyBuilder.h" |
| #include "src/gpu/ganesh/GrBackendUtils.h" |
| #include "src/gpu/ganesh/GrProgramDesc.h" |
| #include "src/gpu/ganesh/GrRenderTarget.h" |
| #include "src/gpu/ganesh/GrRenderTargetProxy.h" |
| #include "src/gpu/ganesh/GrShaderCaps.h" |
| #include "src/gpu/ganesh/GrStencilSettings.h" |
| #include "src/gpu/ganesh/GrUtil.h" |
| #include "src/gpu/ganesh/SkGr.h" |
| #include "src/gpu/ganesh/TestFormatColorTypeCombination.h" |
| #include "src/gpu/ganesh/vk/GrVkGpu.h" |
| #include "src/gpu/ganesh/vk/GrVkImage.h" |
| #include "src/gpu/ganesh/vk/GrVkRenderTarget.h" |
| #include "src/gpu/ganesh/vk/GrVkTexture.h" |
| #include "src/gpu/ganesh/vk/GrVkUniformHandler.h" |
| #include "src/gpu/ganesh/vk/GrVkUtil.h" |
| #include "src/gpu/vk/VulkanInterface.h" |
| #include "src/gpu/vk/VulkanUtilsPriv.h" |
| |
| #ifdef SK_BUILD_FOR_ANDROID |
| #include <sys/system_properties.h> |
| #endif |
| |
| GrVkCaps::GrVkCaps(const GrContextOptions& contextOptions, |
| const skgpu::VulkanInterface* vkInterface, |
| VkPhysicalDevice physDev, |
| const VkPhysicalDeviceFeatures2& features, |
| uint32_t instanceVersion, |
| uint32_t physicalDeviceVersion, |
| const skgpu::VulkanExtensions& extensions, |
| GrProtected isProtected) |
| : INHERITED(contextOptions) { |
| /************************************************************************** |
| * GrCaps fields |
| **************************************************************************/ |
| fMipmapSupport = true; // always available in Vulkan |
| fAnisoSupport = true; // always available in Vulkan |
| fNPOTTextureTileSupport = true; // always available in Vulkan |
| fReuseScratchTextures = true; //TODO: figure this out |
| fGpuTracingSupport = false; //TODO: figure this out |
| fOversizedStencilSupport = false; //TODO: figure this out |
| fDrawInstancedSupport = true; |
| |
| fSemaphoreSupport = true; // always available in Vulkan |
| fBackendSemaphoreSupport = true; |
| fFinishedProcAsyncCallbackSupport = true; |
| fCrossContextTextureSupport = true; |
| fHalfFloatVertexAttributeSupport = true; |
| |
| // We always copy in/out of a transfer buffer so it's trivial to support row bytes. |
| fReadPixelsRowBytesSupport = true; |
| fWritePixelsRowBytesSupport = true; |
| |
| fTransferFromBufferToTextureSupport = true; |
| fTransferFromSurfaceToBufferSupport = true; |
| fTransferFromBufferToBufferSupport = true; |
| |
| fMaxRenderTargetSize = 4096; // minimum required by spec |
| fMaxTextureSize = 4096; // minimum required by spec |
| |
| fDynamicStateArrayGeometryProcessorTextureSupport = true; |
| |
| fTextureBarrierSupport = true; |
| |
| fShaderCaps = std::make_unique<GrShaderCaps>(); |
| |
| this->init(contextOptions, vkInterface, physDev, features, physicalDeviceVersion, extensions, |
| isProtected); |
| } |
| |
| namespace { |
| /** |
| * This comes from section 37.1.6 of the Vulkan spec. Format is |
| * (<bits>|<tag>)_<block_size>_<texels_per_block>. |
| */ |
| enum class FormatCompatibilityClass { |
| k8_1_1, |
| k16_2_1, |
| k24_3_1, |
| k32_4_1, |
| k64_8_1, |
| k10x6_64_6_1, |
| kBC1_RGB_8_16_1, |
| kBC1_RGBA_8_16, |
| kETC2_RGB_8_16, |
| }; |
| } // anonymous namespace |
| |
| static FormatCompatibilityClass format_compatibility_class(VkFormat format) { |
| switch (format) { |
| case VK_FORMAT_B8G8R8A8_UNORM: |
| case VK_FORMAT_R8G8B8A8_UNORM: |
| case VK_FORMAT_A2B10G10R10_UNORM_PACK32: |
| case VK_FORMAT_A2R10G10B10_UNORM_PACK32: |
| case VK_FORMAT_R8G8B8A8_SRGB: |
| case VK_FORMAT_R16G16_UNORM: |
| case VK_FORMAT_R16G16_SFLOAT: |
| return FormatCompatibilityClass::k32_4_1; |
| |
| case VK_FORMAT_R8_UNORM: |
| return FormatCompatibilityClass::k8_1_1; |
| |
| case VK_FORMAT_R5G6B5_UNORM_PACK16: |
| case VK_FORMAT_B5G6R5_UNORM_PACK16: |
| case VK_FORMAT_R16_SFLOAT: |
| case VK_FORMAT_R8G8_UNORM: |
| case VK_FORMAT_B4G4R4A4_UNORM_PACK16: |
| case VK_FORMAT_R4G4B4A4_UNORM_PACK16: |
| case VK_FORMAT_R16_UNORM: |
| return FormatCompatibilityClass::k16_2_1; |
| |
| case VK_FORMAT_R16G16B16A16_SFLOAT: |
| case VK_FORMAT_R16G16B16A16_UNORM: |
| return FormatCompatibilityClass::k64_8_1; |
| |
| case VK_FORMAT_R8G8B8_UNORM: |
| return FormatCompatibilityClass::k24_3_1; |
| |
| case VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16: |
| return FormatCompatibilityClass::k10x6_64_6_1; |
| |
| case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK: |
| return FormatCompatibilityClass::kETC2_RGB_8_16; |
| |
| case VK_FORMAT_BC1_RGB_UNORM_BLOCK: |
| return FormatCompatibilityClass::kBC1_RGB_8_16_1; |
| |
| case VK_FORMAT_BC1_RGBA_UNORM_BLOCK: |
| return FormatCompatibilityClass::kBC1_RGBA_8_16; |
| |
| default: |
| SK_ABORT("Unsupported VkFormat"); |
| } |
| } |
| |
| bool GrVkCaps::canCopyImage(VkFormat dstFormat, int dstSampleCnt, bool dstHasYcbcr, |
| VkFormat srcFormat, int srcSampleCnt, bool srcHasYcbcr) const { |
| if ((dstSampleCnt > 1 || srcSampleCnt > 1) && dstSampleCnt != srcSampleCnt) { |
| return false; |
| } |
| |
| if (dstHasYcbcr || srcHasYcbcr) { |
| return false; |
| } |
| |
| // We require that all Vulkan GrSurfaces have been created with transfer_dst and transfer_src |
| // as image usage flags. |
| return format_compatibility_class(srcFormat) == format_compatibility_class(dstFormat); |
| } |
| |
| bool GrVkCaps::canCopyAsBlit(VkFormat dstFormat, int dstSampleCnt, bool dstIsLinear, |
| bool dstHasYcbcr, VkFormat srcFormat, int srcSampleCnt, |
| bool srcIsLinear, bool srcHasYcbcr) const { |
| // We require that all vulkan GrSurfaces have been created with transfer_dst and transfer_src |
| // as image usage flags. |
| if (!this->formatCanBeDstofBlit(dstFormat, dstIsLinear) || |
| !this->formatCanBeSrcofBlit(srcFormat, srcIsLinear)) { |
| return false; |
| } |
| |
| // We cannot blit images that are multisampled. Will need to figure out if we can blit the |
| // resolved msaa though. |
| if (dstSampleCnt > 1 || srcSampleCnt > 1) { |
| return false; |
| } |
| |
| if (dstHasYcbcr || srcHasYcbcr) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool GrVkCaps::canCopyAsResolve(VkFormat dstFormat, int dstSampleCnt, bool dstHasYcbcr, |
| VkFormat srcFormat, int srcSampleCnt, bool srcHasYcbcr) const { |
| // The src surface must be multisampled. |
| if (srcSampleCnt <= 1) { |
| return false; |
| } |
| |
| // The dst must not be multisampled. |
| if (dstSampleCnt > 1) { |
| return false; |
| } |
| |
| // Surfaces must have the same format. |
| if (srcFormat != dstFormat) { |
| return false; |
| } |
| |
| if (dstHasYcbcr || srcHasYcbcr) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool GrVkCaps::onCanCopySurface(const GrSurfaceProxy* dst, const SkIRect& dstRect, |
| const GrSurfaceProxy* src, const SkIRect& srcRect) const { |
| if (src->isProtected() == GrProtected::kYes && dst->isProtected() != GrProtected::kYes) { |
| return false; |
| } |
| |
| // TODO: Figure out a way to track if we've wrapped a linear texture in a proxy (e.g. |
| // PromiseImage which won't get instantiated right away. Does this need a similar thing like the |
| // tracking of external or rectangle textures in GL? For now we don't create linear textures |
| // internally, and I don't believe anyone is wrapping them. |
| bool srcIsLinear = false; |
| bool dstIsLinear = false; |
| |
| int dstSampleCnt = 0; |
| int srcSampleCnt = 0; |
| if (const GrRenderTargetProxy* rtProxy = dst->asRenderTargetProxy()) { |
| // Copying to or from render targets that wrap a secondary command buffer is not allowed |
| // since they would require us to know the VkImage, which we don't have, as well as need us |
| // to stop and start the VkRenderPass which we don't have access to. |
| if (rtProxy->wrapsVkSecondaryCB()) { |
| return false; |
| } |
| if (this->preferDiscardableMSAAAttachment() && dst->asTextureProxy() && |
| rtProxy->supportsVkInputAttachment()) { |
| dstSampleCnt = 1; |
| } else { |
| dstSampleCnt = rtProxy->numSamples(); |
| } |
| } |
| if (const GrRenderTargetProxy* rtProxy = src->asRenderTargetProxy()) { |
| // Copying to or from render targets that wrap a secondary command buffer is not allowed |
| // since they would require us to know the VkImage, which we don't have, as well as need us |
| // to stop and start the VkRenderPass which we don't have access to. |
| if (rtProxy->wrapsVkSecondaryCB()) { |
| return false; |
| } |
| if (this->preferDiscardableMSAAAttachment() && src->asTextureProxy() && |
| rtProxy->supportsVkInputAttachment()) { |
| srcSampleCnt = 1; |
| } else { |
| srcSampleCnt = rtProxy->numSamples(); |
| } |
| } |
| SkASSERT((dstSampleCnt > 0) == SkToBool(dst->asRenderTargetProxy())); |
| SkASSERT((srcSampleCnt > 0) == SkToBool(src->asRenderTargetProxy())); |
| |
| bool dstHasYcbcr = false; |
| if (auto ycbcr = GrBackendFormats::GetVkYcbcrConversionInfo(dst->backendFormat())) { |
| if (ycbcr->isValid()) { |
| dstHasYcbcr = true; |
| } |
| } |
| |
| bool srcHasYcbcr = false; |
| if (auto ycbcr = GrBackendFormats::GetVkYcbcrConversionInfo(src->backendFormat())) { |
| if (ycbcr->isValid()) { |
| srcHasYcbcr = true; |
| } |
| } |
| |
| VkFormat dstFormat, srcFormat; |
| SkAssertResult(GrBackendFormats::AsVkFormat(dst->backendFormat(), &dstFormat)); |
| SkAssertResult(GrBackendFormats::AsVkFormat(src->backendFormat(), &srcFormat)); |
| |
| // Only blits support scaling, but since we've already clamped the src and dst rects, |
| // the dimensions of the scaled blit aren't important to know if it's allowed. |
| const bool copyScales = srcRect.size() != dstRect.size(); |
| if (!copyScales && (this->canCopyImage(dstFormat, dstSampleCnt, dstHasYcbcr, |
| srcFormat, srcSampleCnt, srcHasYcbcr) || |
| this->canCopyAsResolve(dstFormat, dstSampleCnt, dstHasYcbcr, |
| srcFormat, srcSampleCnt, srcHasYcbcr))) { |
| return true; |
| } |
| return this->canCopyAsBlit(dstFormat, dstSampleCnt, dstIsLinear, dstHasYcbcr, |
| srcFormat, srcSampleCnt, srcIsLinear, srcHasYcbcr); |
| |
| } |
| |
| void GrVkCaps::init(const GrContextOptions& contextOptions, |
| const skgpu::VulkanInterface* vkInterface, |
| VkPhysicalDevice physDev, |
| const VkPhysicalDeviceFeatures2& features, |
| uint32_t physicalDeviceVersion, |
| const skgpu::VulkanExtensions& extensions, |
| GrProtected isProtected) { |
| VkPhysicalDeviceProperties properties; |
| GR_VK_CALL(vkInterface, GetPhysicalDeviceProperties(physDev, &properties)); |
| |
| #if defined(GR_TEST_UTILS) |
| this->setDeviceName(properties.deviceName); |
| #endif |
| |
| VkPhysicalDeviceMemoryProperties memoryProperties; |
| GR_VK_CALL(vkInterface, GetPhysicalDeviceMemoryProperties(physDev, &memoryProperties)); |
| |
| SkASSERT(physicalDeviceVersion <= properties.apiVersion); |
| |
| if (extensions.hasExtension(VK_KHR_SWAPCHAIN_EXTENSION_NAME, 1)) { |
| fSupportsSwapchain = true; |
| } |
| |
| if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) || |
| extensions.hasExtension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 1)) { |
| fSupportsPhysicalDeviceProperties2 = true; |
| } |
| |
| if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) || |
| extensions.hasExtension(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME, 1)) { |
| fSupportsMemoryRequirements2 = true; |
| } |
| |
| if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) || |
| extensions.hasExtension(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME, 1)) { |
| fSupportsBindMemory2 = true; |
| } |
| |
| if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) || |
| extensions.hasExtension(VK_KHR_MAINTENANCE1_EXTENSION_NAME, 1)) { |
| fSupportsMaintenance1 = true; |
| } |
| |
| if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) || |
| extensions.hasExtension(VK_KHR_MAINTENANCE2_EXTENSION_NAME, 1)) { |
| fSupportsMaintenance2 = true; |
| } |
| |
| if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) || |
| extensions.hasExtension(VK_KHR_MAINTENANCE3_EXTENSION_NAME, 1)) { |
| fSupportsMaintenance3 = true; |
| } |
| |
| if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) || |
| (extensions.hasExtension(VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME, 1) && |
| this->supportsMemoryRequirements2())) { |
| fSupportsDedicatedAllocation = true; |
| } |
| |
| if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) || |
| (extensions.hasExtension(VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME, 1) && |
| this->supportsPhysicalDeviceProperties2() && |
| extensions.hasExtension(VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME, 1) && |
| this->supportsDedicatedAllocation())) { |
| fSupportsExternalMemory = true; |
| } |
| |
| #ifdef SK_BUILD_FOR_ANDROID |
| // Currently Adreno devices are not supporting the QUEUE_FAMILY_FOREIGN_EXTENSION, so until they |
| // do we don't explicitly require it here even the spec says it is required. |
| if (extensions.hasExtension( |
| VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME, 2) && |
| /* extensions.hasExtension(VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME, 1) &&*/ |
| this->supportsExternalMemory() && |
| this->supportsBindMemory2()) { |
| fSupportsAndroidHWBExternalMemory = true; |
| fSupportsAHardwareBufferImages = true; |
| } |
| #endif |
| |
| auto ycbcrFeatures = skgpu::GetExtensionFeatureStruct< |
| VkPhysicalDeviceSamplerYcbcrConversionFeatures>( |
| features, |
| VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES); |
| if (ycbcrFeatures && ycbcrFeatures->samplerYcbcrConversion && |
| (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) || |
| (extensions.hasExtension(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME, 1) && |
| this->supportsMaintenance1() && this->supportsBindMemory2() && |
| this->supportsMemoryRequirements2() && this->supportsPhysicalDeviceProperties2()))) { |
| fSupportsYcbcrConversion = true; |
| } |
| |
| // We always push back the default GrVkYcbcrConversionInfo so that the case of no conversion |
| // will return a key of 0. |
| fYcbcrInfos.push_back(GrVkYcbcrConversionInfo()); |
| |
| if ((isProtected == GrProtected::kYes) && |
| (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0))) { |
| fSupportsProtectedContent = true; |
| fAvoidUpdateBuffers = true; |
| fShouldAlwaysUseDedicatedImageMemory = true; |
| } |
| |
| if (extensions.hasExtension(VK_EXT_IMAGE_DRM_FORMAT_MODIFIER_EXTENSION_NAME, 1)) { |
| fSupportsDRMFormatModifiers = true; |
| } |
| |
| if (extensions.hasExtension(VK_EXT_DEVICE_FAULT_EXTENSION_NAME, 1)) { |
| fSupportsDeviceFaultInfo = true; |
| } |
| |
| fMaxInputAttachmentDescriptors = properties.limits.maxDescriptorSetInputAttachments; |
| |
| fMaxSamplerAnisotropy = properties.limits.maxSamplerAnisotropy; |
| |
| // On desktop GPUs we have found that this does not provide much benefit. The perf results show |
| // a mix of regressions, some improvements, and lots of no changes. Thus it is not worth |
| // enabling this (especially with the rendering artifacts) on desktop. |
| // |
| // On Adreno devices we were expecting to see perf gains. But instead there were actually a lot |
| // of perf regressions and only a few perf wins. This needs some follow up with qualcomm since |
| // we do expect this to be a big win on tilers. |
| // |
| // On ARM devices we are seeing an average perf win of around 50%-60% across the board. |
| if (kARM_VkVendor == properties.vendorID) { |
| // We currently don't see any Vulkan devices that expose a memory type that supports |
| // both lazy allocated and protected memory. So for simplicity we just disable the |
| // use of memoryless attachments when using protected memory. In the future, if we ever |
| // do see devices that support both, we can look through the device's memory types here |
| // and see if any support both flags. |
| fPreferDiscardableMSAAAttachment = !fSupportsProtectedContent; |
| fSupportsMemorylessAttachments = !fSupportsProtectedContent; |
| } |
| |
| this->initGrCaps(vkInterface, physDev, properties, memoryProperties, features, extensions); |
| this->initShaderCaps(properties, features); |
| |
| if (kQualcomm_VkVendor == properties.vendorID) { |
| // A "clear" load for atlases runs faster on QC than a "discard" load followed by a |
| // scissored clear. |
| // On NVIDIA and Intel, the discard load followed by clear is faster. |
| // TODO: Evaluate on ARM, Imagination, and ATI. |
| fPreferFullscreenClears = true; |
| } |
| |
| if (properties.vendorID == kNvidia_VkVendor || properties.vendorID == kAMD_VkVendor) { |
| // On discrete GPUs it can be faster to read gpu only memory compared to memory that is also |
| // mappable on the host. |
| fGpuOnlyBuffersMorePerformant = true; |
| |
| // On discrete GPUs we try to use special DEVICE_LOCAL and HOST_VISIBLE memory for our |
| // cpu write, gpu read buffers. This memory is not ideal to be kept persistently mapped. |
| // Some discrete GPUs do not expose this special memory, however we still disable |
| // persistently mapped buffers for all of them since most GPUs with updated drivers do |
| // expose it. If this becomes an issue we can try to be more fine grained. |
| fShouldPersistentlyMapCpuToGpuBuffers = false; |
| } |
| |
| if (kQualcomm_VkVendor == properties.vendorID) { |
| // On Qualcomm it looks like using vkCmdUpdateBuffer is slower than using a transfer buffer |
| // even for small sizes. |
| fAvoidUpdateBuffers = true; |
| } |
| |
| fNativeDrawIndirectSupport = features.features.drawIndirectFirstInstance; |
| if (properties.vendorID == kQualcomm_VkVendor) { |
| // Indirect draws seem slow on QC. Disable until we can investigate. http://skbug.com/11139 |
| fNativeDrawIndirectSupport = false; |
| } |
| |
| if (fNativeDrawIndirectSupport) { |
| fMaxDrawIndirectDrawCount = properties.limits.maxDrawIndirectCount; |
| SkASSERT(fMaxDrawIndirectDrawCount == 1 || features.features.multiDrawIndirect); |
| } |
| |
| #ifdef SK_BUILD_FOR_UNIX |
| if (kNvidia_VkVendor == properties.vendorID) { |
| // On nvidia linux we see a big perf regression when not using dedicated image allocations. |
| fShouldAlwaysUseDedicatedImageMemory = true; |
| } |
| #endif |
| |
| this->initFormatTable(contextOptions, vkInterface, physDev, properties, features, extensions); |
| this->initStencilFormat(vkInterface, physDev); |
| |
| if (contextOptions.fMaxCachedVulkanSecondaryCommandBuffers >= 0) { |
| fMaxPerPoolCachedSecondaryCommandBuffers = |
| contextOptions.fMaxCachedVulkanSecondaryCommandBuffers; |
| } |
| |
| if (!contextOptions.fDisableDriverCorrectnessWorkarounds) { |
| this->applyDriverCorrectnessWorkarounds(properties); |
| } |
| |
| this->finishInitialization(contextOptions); |
| } |
| |
| void GrVkCaps::applyDriverCorrectnessWorkarounds(const VkPhysicalDeviceProperties& properties) { |
| #if defined(SK_BUILD_FOR_WIN) |
| if (kNvidia_VkVendor == properties.vendorID || kIntel_VkVendor == properties.vendorID) { |
| fMustSyncCommandBuffersWithQueue = true; |
| } |
| #elif defined(SK_BUILD_FOR_ANDROID) |
| if (kImagination_VkVendor == properties.vendorID) { |
| fMustSyncCommandBuffersWithQueue = true; |
| } |
| #endif |
| |
| // Defaults to zero since all our workaround checks that use this consider things "fixed" once |
| // above a certain api level. So this will just default to it being less which will enable |
| // workarounds. |
| int androidAPIVersion = 0; |
| #if defined(SK_BUILD_FOR_ANDROID) |
| char androidAPIVersionStr[PROP_VALUE_MAX]; |
| int strLength = __system_property_get("ro.build.version.sdk", androidAPIVersionStr); |
| // Defaults to zero since most checks care if it is greater than a specific value. So this will |
| // just default to it being less. |
| androidAPIVersion = (strLength == 0) ? 0 : atoi(androidAPIVersionStr); |
| #endif |
| |
| // Protected memory features have problems in Android P and earlier. |
| if (fSupportsProtectedContent && (kQualcomm_VkVendor == properties.vendorID)) { |
| if (androidAPIVersion <= 28) { |
| fSupportsProtectedContent = false; |
| } |
| } |
| |
| // On Mali galaxy s7 we see lots of rendering issues when we suballocate VkImages. |
| if (kARM_VkVendor == properties.vendorID && androidAPIVersion <= 28) { |
| fShouldAlwaysUseDedicatedImageMemory = true; |
| } |
| |
| // On Mali galaxy s7 and s9 we see lots of rendering issues with image filters dropping out when |
| // using only primary command buffers. We also see issues on the P30 running android 28. |
| if (kARM_VkVendor == properties.vendorID && androidAPIVersion <= 28) { |
| fPreferPrimaryOverSecondaryCommandBuffers = false; |
| // If we are using secondary command buffers our code isn't setup to insert barriers into |
| // the secondary cb so we need to disable support for them. |
| fTextureBarrierSupport = false; |
| fBlendEquationSupport = kBasic_BlendEquationSupport; |
| } |
| |
| // We've seen numerous driver bugs on qualcomm devices running on android P (api 28) or earlier |
| // when trying to using discardable msaa attachments and loading from resolve. So we disable the |
| // feature for those devices. |
| if (properties.vendorID == kQualcomm_VkVendor && androidAPIVersion <= 28) { |
| fPreferDiscardableMSAAAttachment = false; |
| fSupportsDiscardableMSAAForDMSAA = false; |
| } |
| |
| // On the Mali G76 and T880, the Perlin noise code needs to aggressively snap to multiples |
| // of 1/255 to avoid artifacts in the double table lookup. |
| if (kARM_VkVendor == properties.vendorID) { |
| fShaderCaps->fPerlinNoiseRoundingFix = true; |
| } |
| |
| // On various devices, when calling vkCmdClearAttachments on a primary command buffer, it |
| // corrupts the bound buffers on the command buffer. As a workaround we invalidate our knowledge |
| // of bound buffers so that we will rebind them on the next draw. |
| if (kQualcomm_VkVendor == properties.vendorID || kAMD_VkVendor == properties.vendorID) { |
| fMustInvalidatePrimaryCmdBufferStateAfterClearAttachments = true; |
| } |
| |
| // On Qualcomm and Arm the gpu resolves an area larger than the render pass bounds when using |
| // discardable msaa attachments. This causes the resolve to resolve uninitialized data from the |
| // msaa image into the resolve image. |
| // This also occurs on swiftshader: b/303705884 |
| if (properties.vendorID == kQualcomm_VkVendor || |
| properties.vendorID == kARM_VkVendor || |
| (properties.vendorID == kGoogle_VkVendor && |
| properties.deviceID == kSwiftshader_DeviceID)) { |
| fMustLoadFullImageWithDiscardableMSAA = true; |
| } |
| |
| // There seems to be bug in swiftshader when we reuse scratch buffers for uploads. We end up |
| // with very slight pixel diffs. For example: |
| // (https://ci.chromium.org/ui/p/chromium/builders/try/linux-rel/1585128/overview). |
| // Since swiftshader is only really used for testing, to try and make things more stable we |
| // disable the reuse of buffers. |
| if (properties.vendorID == kGoogle_VkVendor && properties.deviceID == kSwiftshader_DeviceID) { |
| fReuseScratchBuffers = false; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////// |
| // GrCaps workarounds |
| //////////////////////////////////////////////////////////////////////////// |
| |
| if (kARM_VkVendor == properties.vendorID) { |
| fAvoidWritePixelsFastPath = true; // bugs.skia.org/8064 |
| } |
| |
| // AMD advertises support for MAX_UINT vertex input attributes, but in reality only supports 32. |
| if (kAMD_VkVendor == properties.vendorID) { |
| fMaxVertexAttributes = std::min(fMaxVertexAttributes, 32); |
| } |
| |
| // Adreno devices fail when trying to read the dest using an input attachment and texture |
| // barriers. |
| if (kQualcomm_VkVendor == properties.vendorID) { |
| fTextureBarrierSupport = false; |
| } |
| |
| #ifdef SK_BUILD_FOR_WIN |
| // Gen 12 Intel devices running on windows has issues using barriers for dst reads. This is seen |
| // when running the unit tests SkRuntimeEffect_Blender_GPU and DMSAA_aa_dst_read_after_dmsaa. |
| // |
| // Additionally, as of 2023-01-19 the latest driver compatible with Intel Iris Graphics 540 |
| // (9th gen Skylake microarchitecture) produce SkRuntimeEffect_Blender and DMSAA deltas that |
| // are unacceptable and break our tests. The drivers in question are version 31.0.101.2115 and |
| // can be downloaded from |
| // https://www.intel.com/content/www/us/en/download/762755/intel-6th-10th-gen-processor-graphics-windows.html. |
| // This is likely due to bugs in the driver. As a temporary workaround, we disable texture |
| // barrier support in Skylake and newer generations (i.e. 9th gen or newer). |
| if (kIntel_VkVendor == properties.vendorID && |
| GetIntelGen(GetIntelGPUType(properties.deviceID)) >= 9) { |
| fTextureBarrierSupport = false; |
| } |
| #endif |
| |
| // On ARM indirect draws are broken on Android 9 and earlier. This was tested on a P30 and |
| // Mate 20x running android 9. |
| if (properties.vendorID == kARM_VkVendor && androidAPIVersion <= 28) { |
| fNativeDrawIndirectSupport = false; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////// |
| // GrShaderCaps workarounds |
| //////////////////////////////////////////////////////////////////////////// |
| |
| if (kImagination_VkVendor == properties.vendorID) { |
| fShaderCaps->fAtan2ImplementedAsAtanYOverX = true; |
| } |
| |
| // ARM GPUs calculate `matrix * vector` in SPIR-V at full precision, even when the inputs are |
| // RelaxedPrecision. Rewriting the multiply as a sum of vector*scalar fixes this. (skia:11769) |
| if (kARM_VkVendor == properties.vendorID) { |
| fShaderCaps->fRewriteMatrixVectorMultiply = true; |
| } |
| } |
| |
| void GrVkCaps::initGrCaps(const skgpu::VulkanInterface* vkInterface, |
| VkPhysicalDevice physDev, |
| const VkPhysicalDeviceProperties& properties, |
| const VkPhysicalDeviceMemoryProperties& memoryProperties, |
| const VkPhysicalDeviceFeatures2& features, |
| const skgpu::VulkanExtensions& extensions) { |
| // So GPUs, like AMD, are reporting MAX_INT support vertex attributes. In general, there is no |
| // need for us ever to support that amount, and it makes tests which tests all the vertex |
| // attribs timeout looping over that many. For now, we'll cap this at 64 max and can raise it if |
| // we ever find that need. |
| static const uint32_t kMaxVertexAttributes = 64; |
| fMaxVertexAttributes = std::min(properties.limits.maxVertexInputAttributes, |
| kMaxVertexAttributes); |
| |
| // GrCaps::fSampleLocationsSupport refers to the ability to *query* the sample locations (not |
| // program them). For now we just set this to true if the device uses standard locations, and |
| // return the standard locations back when queried. |
| if (properties.limits.standardSampleLocations) { |
| fSampleLocationsSupport = true; |
| } |
| |
| if (extensions.hasExtension(VK_EXT_CONSERVATIVE_RASTERIZATION_EXTENSION_NAME, 1)) { |
| fConservativeRasterSupport = true; |
| } |
| |
| fWireframeSupport = true; |
| |
| // We could actually query and get a max size for each config, however maxImageDimension2D will |
| // give the minimum max size across all configs. So for simplicity we will use that for now. |
| fMaxRenderTargetSize = std::min(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX); |
| fMaxTextureSize = std::min(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX); |
| |
| // TODO: check if RT's larger than 4k incur a performance cost on ARM. |
| fMaxPreferredRenderTargetSize = fMaxRenderTargetSize; |
| |
| fMaxPushConstantsSize = std::min(properties.limits.maxPushConstantsSize, (uint32_t)INT_MAX); |
| |
| // Assuming since we will always map in the end to upload the data we might as well just map |
| // from the get go. There is no hard data to suggest this is faster or slower. |
| fBufferMapThreshold = 0; |
| |
| fMapBufferFlags = kCanMap_MapFlag | kSubset_MapFlag | kAsyncRead_MapFlag; |
| |
| fOversizedStencilSupport = true; |
| |
| if (extensions.hasExtension(VK_EXT_BLEND_OPERATION_ADVANCED_EXTENSION_NAME, 2) && |
| this->supportsPhysicalDeviceProperties2()) { |
| |
| VkPhysicalDeviceBlendOperationAdvancedPropertiesEXT blendProps; |
| blendProps.sType = |
| VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_PROPERTIES_EXT; |
| blendProps.pNext = nullptr; |
| |
| VkPhysicalDeviceProperties2 props; |
| props.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2; |
| props.pNext = &blendProps; |
| |
| GR_VK_CALL(vkInterface, GetPhysicalDeviceProperties2(physDev, &props)); |
| |
| if (blendProps.advancedBlendAllOperations == VK_TRUE) { |
| fShaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kAutomatic_AdvBlendEqInteraction; |
| |
| auto blendFeatures = skgpu::GetExtensionFeatureStruct< |
| VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT>( |
| features, |
| VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_FEATURES_EXT |
| ); |
| if (blendFeatures && blendFeatures->advancedBlendCoherentOperations == VK_TRUE) { |
| fBlendEquationSupport = kAdvancedCoherent_BlendEquationSupport; |
| } else { |
| fBlendEquationSupport = kAdvanced_BlendEquationSupport; |
| } |
| } |
| } |
| |
| if (kARM_VkVendor == properties.vendorID) { |
| fShouldCollapseSrcOverToSrcWhenAble = true; |
| } |
| } |
| |
| void GrVkCaps::initShaderCaps(const VkPhysicalDeviceProperties& properties, |
| const VkPhysicalDeviceFeatures2& features) { |
| GrShaderCaps* shaderCaps = fShaderCaps.get(); |
| shaderCaps->fVersionDeclString = "#version 330\n"; |
| |
| // Ganesh + Vulkan always emits `sk_Clockwise` to avoid some Adreno rendering errors. |
| shaderCaps->fMustDeclareFragmentFrontFacing = true; |
| |
| // Vulkan is based off ES 3.0 so the following should all be supported |
| shaderCaps->fUsesPrecisionModifiers = true; |
| shaderCaps->fFlatInterpolationSupport = true; |
| // Flat interpolation appears to be slow on Qualcomm GPUs. This was tested in GL and is assumed |
| // to be true with Vulkan as well. |
| shaderCaps->fPreferFlatInterpolation = kQualcomm_VkVendor != properties.vendorID; |
| |
| shaderCaps->fSampleMaskSupport = true; |
| |
| shaderCaps->fShaderDerivativeSupport = true; |
| shaderCaps->fExplicitTextureLodSupport = true; |
| |
| shaderCaps->fDualSourceBlendingSupport = features.features.dualSrcBlend; |
| |
| shaderCaps->fIntegerSupport = true; |
| shaderCaps->fNonsquareMatrixSupport = true; |
| shaderCaps->fInverseHyperbolicSupport = true; |
| shaderCaps->fVertexIDSupport = true; |
| shaderCaps->fInfinitySupport = true; |
| shaderCaps->fNonconstantArrayIndexSupport = true; |
| shaderCaps->fBitManipulationSupport = true; |
| |
| // Assume the minimum precisions mandated by the SPIR-V spec. |
| shaderCaps->fFloatIs32Bits = true; |
| shaderCaps->fHalfIs32Bits = false; |
| |
| shaderCaps->fMaxFragmentSamplers = std::min( |
| std::min(properties.limits.maxPerStageDescriptorSampledImages, |
| properties.limits.maxPerStageDescriptorSamplers), |
| (uint32_t)INT_MAX); |
| } |
| |
| bool stencil_format_supported(const skgpu::VulkanInterface* interface, |
| VkPhysicalDevice physDev, |
| VkFormat format) { |
| VkFormatProperties props; |
| memset(&props, 0, sizeof(VkFormatProperties)); |
| GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props)); |
| return SkToBool(VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT & props.optimalTilingFeatures); |
| } |
| |
| void GrVkCaps::initStencilFormat(const skgpu::VulkanInterface* interface, |
| VkPhysicalDevice physDev) { |
| if (stencil_format_supported(interface, physDev, VK_FORMAT_S8_UINT)) { |
| fPreferredStencilFormat = VK_FORMAT_S8_UINT; |
| } else if (stencil_format_supported(interface, physDev, VK_FORMAT_D24_UNORM_S8_UINT)) { |
| fPreferredStencilFormat = VK_FORMAT_D24_UNORM_S8_UINT; |
| } else { |
| SkASSERT(stencil_format_supported(interface, physDev, VK_FORMAT_D32_SFLOAT_S8_UINT)); |
| fPreferredStencilFormat = VK_FORMAT_D32_SFLOAT_S8_UINT; |
| } |
| } |
| |
| static bool format_is_srgb(VkFormat format) { |
| SkASSERT(GrVkFormatIsSupported(format)); |
| |
| switch (format) { |
| case VK_FORMAT_R8G8B8A8_SRGB: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| // These are all the valid VkFormats that we support in Skia. They are roughly ordered from most |
| // frequently used to least to improve look up times in arrays. |
| static constexpr VkFormat kVkFormats[] = { |
| VK_FORMAT_R8G8B8A8_UNORM, |
| VK_FORMAT_R8_UNORM, |
| VK_FORMAT_B8G8R8A8_UNORM, |
| VK_FORMAT_R5G6B5_UNORM_PACK16, |
| VK_FORMAT_B5G6R5_UNORM_PACK16, |
| VK_FORMAT_R16G16B16A16_SFLOAT, |
| VK_FORMAT_R16_SFLOAT, |
| VK_FORMAT_R8G8B8_UNORM, |
| VK_FORMAT_R8G8_UNORM, |
| VK_FORMAT_A2B10G10R10_UNORM_PACK32, |
| VK_FORMAT_A2R10G10B10_UNORM_PACK32, |
| VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16, |
| VK_FORMAT_B4G4R4A4_UNORM_PACK16, |
| VK_FORMAT_R4G4B4A4_UNORM_PACK16, |
| VK_FORMAT_R8G8B8A8_SRGB, |
| VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK, |
| VK_FORMAT_BC1_RGB_UNORM_BLOCK, |
| VK_FORMAT_BC1_RGBA_UNORM_BLOCK, |
| VK_FORMAT_R16_UNORM, |
| VK_FORMAT_R16G16_UNORM, |
| VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM, |
| VK_FORMAT_G8_B8R8_2PLANE_420_UNORM, |
| VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16, |
| VK_FORMAT_R16G16B16A16_UNORM, |
| VK_FORMAT_R16G16_SFLOAT, |
| }; |
| |
| void GrVkCaps::setColorType(GrColorType colorType, std::initializer_list<VkFormat> formats) { |
| #ifdef SK_DEBUG |
| for (size_t i = 0; i < kNumVkFormats; ++i) { |
| const auto& formatInfo = fFormatTable[i]; |
| for (int j = 0; j < formatInfo.fColorTypeInfoCount; ++j) { |
| const auto& ctInfo = formatInfo.fColorTypeInfos[j]; |
| if (ctInfo.fColorType == colorType && |
| !SkToBool(ctInfo.fFlags & ColorTypeInfo::kWrappedOnly_Flag)) { |
| bool found = false; |
| for (auto it = formats.begin(); it != formats.end(); ++it) { |
| if (kVkFormats[i] == *it) { |
| found = true; |
| } |
| } |
| SkASSERT(found); |
| } |
| } |
| } |
| #endif |
| int idx = static_cast<int>(colorType); |
| for (auto it = formats.begin(); it != formats.end(); ++it) { |
| const auto& info = this->getFormatInfo(*it); |
| for (int i = 0; i < info.fColorTypeInfoCount; ++i) { |
| if (info.fColorTypeInfos[i].fColorType == colorType) { |
| fColorTypeToFormatTable[idx] = *it; |
| return; |
| } |
| } |
| } |
| } |
| |
| const GrVkCaps::FormatInfo& GrVkCaps::getFormatInfo(VkFormat format) const { |
| GrVkCaps* nonConstThis = const_cast<GrVkCaps*>(this); |
| return nonConstThis->getFormatInfo(format); |
| } |
| |
| GrVkCaps::FormatInfo& GrVkCaps::getFormatInfo(VkFormat format) { |
| static_assert(std::size(kVkFormats) == GrVkCaps::kNumVkFormats, |
| "Size of VkFormats array must match static value in header"); |
| for (size_t i = 0; i < std::size(kVkFormats); ++i) { |
| if (kVkFormats[i] == format) { |
| return fFormatTable[i]; |
| } |
| } |
| static FormatInfo kInvalidFormat; |
| return kInvalidFormat; |
| } |
| |
| void GrVkCaps::initFormatTable(const GrContextOptions& contextOptions, |
| const skgpu::VulkanInterface* interface, |
| VkPhysicalDevice physDev, |
| const VkPhysicalDeviceProperties& properties, |
| const VkPhysicalDeviceFeatures2& features, |
| const skgpu::VulkanExtensions& extensions) { |
| static_assert(std::size(kVkFormats) == GrVkCaps::kNumVkFormats, |
| "Size of VkFormats array must match static value in header"); |
| |
| std::fill_n(fColorTypeToFormatTable, kGrColorTypeCnt, VK_FORMAT_UNDEFINED); |
| |
| // Go through all the formats and init their support surface and data GrColorTypes. |
| // Format: VK_FORMAT_R8G8B8A8_UNORM |
| { |
| constexpr VkFormat format = VK_FORMAT_R8G8B8A8_UNORM; |
| auto& info = this->getFormatInfo(format); |
| info.init(contextOptions, interface, physDev, properties, format); |
| if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { |
| info.fColorTypeInfoCount = 2; |
| info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: VK_FORMAT_R8G8B8A8_UNORM, Surface: kRGBA_8888 |
| { |
| constexpr GrColorType ct = GrColorType::kRGBA_8888; |
| auto& ctInfo = info.fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = ct; |
| ctInfo.fTransferColorType = ct; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| } |
| // Format: VK_FORMAT_R8G8B8A8_UNORM, Surface: kRGB_888x |
| { |
| constexpr GrColorType ct = GrColorType::kRGB_888x; |
| auto& ctInfo = info.fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = ct; |
| ctInfo.fTransferColorType = ct; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag; |
| ctInfo.fReadSwizzle = skgpu::Swizzle::RGB1(); |
| } |
| } |
| } |
| |
| // Format: VK_FORMAT_R8_UNORM |
| { |
| constexpr VkFormat format = VK_FORMAT_R8_UNORM; |
| auto& info = this->getFormatInfo(format); |
| info.init(contextOptions, interface, physDev, properties, format); |
| if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { |
| info.fColorTypeInfoCount = 3; |
| info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: VK_FORMAT_R8_UNORM, Surface: kR_8 |
| { |
| constexpr GrColorType ct = GrColorType::kR_8; |
| auto& ctInfo = info.fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = ct; |
| ctInfo.fTransferColorType = ct; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| } |
| // Format: VK_FORMAT_R8_UNORM, Surface: kAlpha_8 |
| { |
| constexpr GrColorType ct = GrColorType::kAlpha_8; |
| auto& ctInfo = info.fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = ct; |
| ctInfo.fTransferColorType = ct; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| ctInfo.fReadSwizzle = skgpu::Swizzle("000r"); |
| ctInfo.fWriteSwizzle = skgpu::Swizzle("a000"); |
| } |
| // Format: VK_FORMAT_R8_UNORM, Surface: kGray_8 |
| { |
| constexpr GrColorType ct = GrColorType::kGray_8; |
| auto& ctInfo = info.fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = ct; |
| ctInfo.fTransferColorType = ct; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag; |
| ctInfo.fReadSwizzle = skgpu::Swizzle("rrr1"); |
| } |
| } |
| } |
| // Format: VK_FORMAT_B8G8R8A8_UNORM |
| { |
| constexpr VkFormat format = VK_FORMAT_B8G8R8A8_UNORM; |
| auto& info = this->getFormatInfo(format); |
| info.init(contextOptions, interface, physDev, properties, format); |
| if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { |
| info.fColorTypeInfoCount = 2; |
| info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: VK_FORMAT_B8G8R8A8_UNORM, Surface: kBGRA_8888 |
| { |
| constexpr GrColorType ct = GrColorType::kBGRA_8888; |
| auto& ctInfo = info.fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = ct; |
| ctInfo.fTransferColorType = ct; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| } |
| // Format: VK_FORMAT_B8G8R8A8_UNORM, Surface: kRGB_888x |
| // TODO: add and use kBGR_888X instead |
| { |
| constexpr GrColorType ct = GrColorType::kRGB_888x; |
| auto& ctInfo = info.fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = ct; |
| ctInfo.fTransferColorType = GrColorType::kBGRA_8888; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag; |
| ctInfo.fReadSwizzle = skgpu::Swizzle::RGB1(); |
| } |
| } |
| } |
| // Format: VK_FORMAT_R5G6B5_UNORM_PACK16 |
| { |
| constexpr VkFormat format = VK_FORMAT_R5G6B5_UNORM_PACK16; |
| auto& info = this->getFormatInfo(format); |
| info.init(contextOptions, interface, physDev, properties, format); |
| if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { |
| info.fColorTypeInfoCount = 1; |
| info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: VK_FORMAT_R5G6B5_UNORM_PACK16, Surface: kBGR_565 |
| { |
| constexpr GrColorType ct = GrColorType::kBGR_565; |
| auto& ctInfo = info.fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = ct; |
| ctInfo.fTransferColorType = ct; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| } |
| } |
| } |
| // Format: VK_FORMAT_B5G6R5_UNORM_PACK16 |
| { |
| constexpr VkFormat format = VK_FORMAT_B5G6R5_UNORM_PACK16; |
| auto& info = this->getFormatInfo(format); |
| info.init(contextOptions, interface, physDev, properties, format); |
| if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { |
| info.fColorTypeInfoCount = 2; |
| info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: VK_FORMAT_B5G6R5_UNORM_PACK16, Surface: kRGB_565 |
| { |
| constexpr GrColorType ct = GrColorType::kRGB_565; |
| auto& ctInfo = info.fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = ct; |
| ctInfo.fTransferColorType = ct; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| } |
| // Format: VK_FORMAT_B5G6R5_UNORM_PACK16, Surface: kBGR_565 |
| // We need this because there is no kBGR_565_SkColorType. |
| { |
| constexpr GrColorType ct = GrColorType::kBGR_565; |
| auto& ctInfo = info.fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = ct; |
| ctInfo.fTransferColorType = GrColorType::kRGB_565; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag; |
| } |
| } |
| } |
| // Format: VK_FORMAT_R16G16B16A16_SFLOAT |
| { |
| constexpr VkFormat format = VK_FORMAT_R16G16B16A16_SFLOAT; |
| auto& info = this->getFormatInfo(format); |
| info.init(contextOptions, interface, physDev, properties, format); |
| if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { |
| info.fColorTypeInfoCount = 2; |
| info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: VK_FORMAT_R16G16B16A16_SFLOAT, Surface: GrColorType::kRGBA_F16 |
| { |
| constexpr GrColorType ct = GrColorType::kRGBA_F16; |
| auto& ctInfo = info.fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = ct; |
| ctInfo.fTransferColorType = ct; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| } |
| // Format: VK_FORMAT_R16G16B16A16_SFLOAT, Surface: GrColorType::kRGBA_F16_Clamped |
| { |
| constexpr GrColorType ct = GrColorType::kRGBA_F16_Clamped; |
| auto& ctInfo = info.fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = ct; |
| ctInfo.fTransferColorType = ct; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| } |
| } |
| } |
| // Format: VK_FORMAT_R16_SFLOAT |
| { |
| constexpr VkFormat format = VK_FORMAT_R16_SFLOAT; |
| auto& info = this->getFormatInfo(format); |
| info.init(contextOptions, interface, physDev, properties, format); |
| if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { |
| info.fColorTypeInfoCount = 1; |
| info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: VK_FORMAT_R16_SFLOAT, Surface: kAlpha_F16 |
| { |
| constexpr GrColorType ct = GrColorType::kAlpha_F16; |
| auto& ctInfo = info.fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = ct; |
| ctInfo.fTransferColorType = ct; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| ctInfo.fReadSwizzle = skgpu::Swizzle("000r"); |
| ctInfo.fWriteSwizzle = skgpu::Swizzle("a000"); |
| } |
| } |
| } |
| // Format: VK_FORMAT_R8G8B8_UNORM |
| { |
| constexpr VkFormat format = VK_FORMAT_R8G8B8_UNORM; |
| auto& info = this->getFormatInfo(format); |
| info.init(contextOptions, interface, physDev, properties, format); |
| if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { |
| info.fColorTypeInfoCount = 1; |
| info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: VK_FORMAT_R8G8B8_UNORM, Surface: kRGB_888x |
| { |
| constexpr GrColorType ct = GrColorType::kRGB_888x; |
| auto& ctInfo = info.fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = ct; |
| // The Vulkan format is 3 bpp so we must convert to/from that when transferring. |
| ctInfo.fTransferColorType = GrColorType::kRGB_888; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| } |
| } |
| } |
| // Format: VK_FORMAT_R8G8_UNORM |
| { |
| constexpr VkFormat format = VK_FORMAT_R8G8_UNORM; |
| auto& info = this->getFormatInfo(format); |
| info.init(contextOptions, interface, physDev, properties, format); |
| if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { |
| info.fColorTypeInfoCount = 1; |
| info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: VK_FORMAT_R8G8_UNORM, Surface: kRG_88 |
| { |
| constexpr GrColorType ct = GrColorType::kRG_88; |
| auto& ctInfo = info.fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = ct; |
| ctInfo.fTransferColorType = ct; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| } |
| } |
| } |
| // Format: VK_FORMAT_A2B10G10R10_UNORM_PACK32 |
| { |
| constexpr VkFormat format = VK_FORMAT_A2B10G10R10_UNORM_PACK32; |
| auto& info = this->getFormatInfo(format); |
| info.init(contextOptions, interface, physDev, properties, format); |
| if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { |
| info.fColorTypeInfoCount = 1; |
| info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: VK_FORMAT_A2B10G10R10_UNORM_PACK32, Surface: kRGBA_1010102 |
| { |
| constexpr GrColorType ct = GrColorType::kRGBA_1010102; |
| auto& ctInfo = info.fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = ct; |
| ctInfo.fTransferColorType = ct; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| } |
| } |
| } |
| // Format: VK_FORMAT_A2R10G10B10_UNORM_PACK32 |
| { |
| constexpr VkFormat format = VK_FORMAT_A2R10G10B10_UNORM_PACK32; |
| auto& info = this->getFormatInfo(format); |
| info.init(contextOptions, interface, physDev, properties, format); |
| if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { |
| info.fColorTypeInfoCount = 1; |
| info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: VK_FORMAT_A2R10G10B10_UNORM_PACK32, Surface: kBGRA_1010102 |
| { |
| constexpr GrColorType ct = GrColorType::kBGRA_1010102; |
| auto& ctInfo = info.fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = ct; |
| ctInfo.fTransferColorType = ct; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| } |
| } |
| } |
| |
| bool supportsRGBA10x6 = false; |
| if (extensions.hasExtension(VK_EXT_RGBA10X6_FORMATS_EXTENSION_NAME, 1)) { |
| auto rgba10x6Feature = |
| skgpu::GetExtensionFeatureStruct<VkPhysicalDeviceRGBA10X6FormatsFeaturesEXT>( |
| features, VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RGBA10X6_FORMATS_FEATURES_EXT); |
| // Technically without this extension and exabled feature we could still use this format to |
| // sample with a ycbcr sampler. But for simplicity until we have clients requesting that, we |
| // limit the use of this format to cases where we have the extension supported. |
| supportsRGBA10x6 = rgba10x6Feature && rgba10x6Feature->formatRgba10x6WithoutYCbCrSampler; |
| } |
| |
| // Format: VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16 |
| if (supportsRGBA10x6) { |
| constexpr VkFormat format = VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16; |
| auto& info = this->getFormatInfo(format); |
| info.init(contextOptions, interface, physDev, properties, format); |
| if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { |
| info.fColorTypeInfoCount = 1; |
| info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16, Surface: kRGBA_10x6 |
| { |
| constexpr GrColorType ct = GrColorType::kRGBA_10x6; |
| auto& ctInfo = info.fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = ct; |
| ctInfo.fTransferColorType = ct; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| } |
| } |
| } |
| |
| // Format: VK_FORMAT_B4G4R4A4_UNORM_PACK16 |
| { |
| constexpr VkFormat format = VK_FORMAT_B4G4R4A4_UNORM_PACK16; |
| auto& info = this->getFormatInfo(format); |
| info.init(contextOptions, interface, physDev, properties, format); |
| if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { |
| info.fColorTypeInfoCount = 1; |
| info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: VK_FORMAT_B4G4R4A4_UNORM_PACK16, Surface: kABGR_4444 |
| { |
| constexpr GrColorType ct = GrColorType::kABGR_4444; |
| auto& ctInfo = info.fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = ct; |
| ctInfo.fTransferColorType = ct; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| ctInfo.fReadSwizzle = skgpu::Swizzle::BGRA(); |
| ctInfo.fWriteSwizzle = skgpu::Swizzle::BGRA(); |
| } |
| } |
| } |
| |
| // Format: VK_FORMAT_R4G4B4A4_UNORM_PACK16 |
| { |
| constexpr VkFormat format = VK_FORMAT_R4G4B4A4_UNORM_PACK16; |
| auto& info = this->getFormatInfo(format); |
| info.init(contextOptions, interface, physDev, properties, format); |
| if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { |
| info.fColorTypeInfoCount = 1; |
| info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: VK_FORMAT_R4G4B4A4_UNORM_PACK16, Surface: kABGR_4444 |
| { |
| constexpr GrColorType ct = GrColorType::kABGR_4444; |
| auto& ctInfo = info.fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = ct; |
| ctInfo.fTransferColorType = ct; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| } |
| } |
| } |
| // Format: VK_FORMAT_R8G8B8A8_SRGB |
| { |
| constexpr VkFormat format = VK_FORMAT_R8G8B8A8_SRGB; |
| auto& info = this->getFormatInfo(format); |
| info.init(contextOptions, interface, physDev, properties, format); |
| if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { |
| info.fColorTypeInfoCount = 1; |
| info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: VK_FORMAT_R8G8B8A8_SRGB, Surface: kRGBA_8888_SRGB |
| { |
| constexpr GrColorType ct = GrColorType::kRGBA_8888_SRGB; |
| auto& ctInfo = info.fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = ct; |
| ctInfo.fTransferColorType = ct; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| } |
| } |
| } |
| // Format: VK_FORMAT_R16_UNORM |
| { |
| constexpr VkFormat format = VK_FORMAT_R16_UNORM; |
| auto& info = this->getFormatInfo(format); |
| info.init(contextOptions, interface, physDev, properties, format); |
| if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { |
| info.fColorTypeInfoCount = 1; |
| info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: VK_FORMAT_R16_UNORM, Surface: kAlpha_16 |
| { |
| constexpr GrColorType ct = GrColorType::kAlpha_16; |
| auto& ctInfo = info.fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = ct; |
| ctInfo.fTransferColorType = ct; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| ctInfo.fReadSwizzle = skgpu::Swizzle("000r"); |
| ctInfo.fWriteSwizzle = skgpu::Swizzle("a000"); |
| } |
| } |
| } |
| // Format: VK_FORMAT_R16G16_UNORM |
| { |
| constexpr VkFormat format = VK_FORMAT_R16G16_UNORM; |
| auto& info = this->getFormatInfo(format); |
| info.init(contextOptions, interface, physDev, properties, format); |
| if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { |
| info.fColorTypeInfoCount = 1; |
| info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: VK_FORMAT_R16G16_UNORM, Surface: kRG_1616 |
| { |
| constexpr GrColorType ct = GrColorType::kRG_1616; |
| auto& ctInfo = info.fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = ct; |
| ctInfo.fTransferColorType = ct; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| } |
| } |
| } |
| // Format: VK_FORMAT_R16G16B16A16_UNORM |
| { |
| constexpr VkFormat format = VK_FORMAT_R16G16B16A16_UNORM; |
| auto& info = this->getFormatInfo(format); |
| info.init(contextOptions, interface, physDev, properties, format); |
| if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { |
| info.fColorTypeInfoCount = 1; |
| info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: VK_FORMAT_R16G16B16A16_UNORM, Surface: kRGBA_16161616 |
| { |
| constexpr GrColorType ct = GrColorType::kRGBA_16161616; |
| auto& ctInfo = info.fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = ct; |
| ctInfo.fTransferColorType = ct; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| } |
| } |
| } |
| // Format: VK_FORMAT_R16G16_SFLOAT |
| { |
| constexpr VkFormat format = VK_FORMAT_R16G16_SFLOAT; |
| auto& info = this->getFormatInfo(format); |
| info.init(contextOptions, interface, physDev, properties, format); |
| if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { |
| info.fColorTypeInfoCount = 1; |
| info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: VK_FORMAT_R16G16_SFLOAT, Surface: kRG_F16 |
| { |
| constexpr GrColorType ct = GrColorType::kRG_F16; |
| auto& ctInfo = info.fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = ct; |
| ctInfo.fTransferColorType = ct; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| } |
| } |
| } |
| // Format: VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM |
| { |
| constexpr VkFormat format = VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM; |
| auto& info = this->getFormatInfo(format); |
| if (fSupportsYcbcrConversion) { |
| info.init(contextOptions, interface, physDev, properties, format); |
| } |
| if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { |
| info.fColorTypeInfoCount = 1; |
| info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM, Surface: kRGB_888x |
| { |
| constexpr GrColorType ct = GrColorType::kRGB_888x; |
| auto& ctInfo = info.fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = ct; |
| ctInfo.fTransferColorType = ct; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kWrappedOnly_Flag; |
| } |
| } |
| } |
| // Format: VK_FORMAT_G8_B8R8_2PLANE_420_UNORM |
| { |
| constexpr VkFormat format = VK_FORMAT_G8_B8R8_2PLANE_420_UNORM; |
| auto& info = this->getFormatInfo(format); |
| if (fSupportsYcbcrConversion) { |
| info.init(contextOptions, interface, physDev, properties, format); |
| } |
| if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { |
| info.fColorTypeInfoCount = 1; |
| info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: VK_FORMAT_G8_B8R8_2PLANE_420_UNORM, Surface: kRGB_888x |
| { |
| constexpr GrColorType ct = GrColorType::kRGB_888x; |
| auto& ctInfo = info.fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = ct; |
| ctInfo.fTransferColorType = ct; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kWrappedOnly_Flag; |
| } |
| } |
| } |
| // Format: VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16 |
| { |
| constexpr VkFormat format = VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16; |
| auto& info = this->getFormatInfo(format); |
| if (fSupportsYcbcrConversion) { |
| info.init(contextOptions, interface, physDev, properties, format); |
| } |
| if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) { |
| info.fColorTypeInfoCount = 1; |
| info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16, Surface: kRGBA_1010102 |
| { |
| constexpr GrColorType ct = GrColorType::kRGBA_1010102; |
| auto& ctInfo = info.fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = ct; |
| ctInfo.fTransferColorType = ct; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kWrappedOnly_Flag; |
| } |
| } |
| } |
| // Format: VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK |
| { |
| constexpr VkFormat format = VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK; |
| auto& info = this->getFormatInfo(format); |
| info.init(contextOptions, interface, physDev, properties, format); |
| // Setting this to texel block size |
| // No supported GrColorTypes. |
| } |
| |
| // Format: VK_FORMAT_BC1_RGB_UNORM_BLOCK |
| { |
| constexpr VkFormat format = VK_FORMAT_BC1_RGB_UNORM_BLOCK; |
| auto& info = this->getFormatInfo(format); |
| info.init(contextOptions, interface, physDev, properties, format); |
| // Setting this to texel block size |
| // No supported GrColorTypes. |
| } |
| |
| // Format: VK_FORMAT_BC1_RGBA_UNORM_BLOCK |
| { |
| constexpr VkFormat format = VK_FORMAT_BC1_RGBA_UNORM_BLOCK; |
| auto& info = this->getFormatInfo(format); |
| info.init(contextOptions, interface, physDev, properties, format); |
| // Setting this to texel block size |
| // No supported GrColorTypes. |
| } |
| |
| //////////////////////////////////////////////////////////////////////////// |
| // Map GrColorTypes (used for creating GrSurfaces) to VkFormats. The order in which the formats |
| // are passed into the setColorType function indicates the priority in selecting which format |
| // we use for a given GrcolorType. |
| |
| this->setColorType(GrColorType::kAlpha_8, { VK_FORMAT_R8_UNORM }); |
| this->setColorType(GrColorType::kBGR_565, { VK_FORMAT_R5G6B5_UNORM_PACK16, |
| VK_FORMAT_B5G6R5_UNORM_PACK16 }); |
| this->setColorType(GrColorType::kRGB_565, { VK_FORMAT_B5G6R5_UNORM_PACK16 }); |
| this->setColorType(GrColorType::kABGR_4444, { VK_FORMAT_R4G4B4A4_UNORM_PACK16, |
| VK_FORMAT_B4G4R4A4_UNORM_PACK16 }); |
| this->setColorType(GrColorType::kRGBA_8888, { VK_FORMAT_R8G8B8A8_UNORM }); |
| this->setColorType(GrColorType::kRGBA_8888_SRGB, { VK_FORMAT_R8G8B8A8_SRGB }); |
| this->setColorType(GrColorType::kRGB_888x, { VK_FORMAT_R8G8B8_UNORM, |
| VK_FORMAT_R8G8B8A8_UNORM, |
| VK_FORMAT_B8G8R8A8_UNORM, }); |
| this->setColorType(GrColorType::kRG_88, { VK_FORMAT_R8G8_UNORM }); |
| this->setColorType(GrColorType::kBGRA_8888, { VK_FORMAT_B8G8R8A8_UNORM }); |
| this->setColorType(GrColorType::kRGBA_1010102, { VK_FORMAT_A2B10G10R10_UNORM_PACK32 }); |
| this->setColorType(GrColorType::kBGRA_1010102, { VK_FORMAT_A2R10G10B10_UNORM_PACK32 }); |
| this->setColorType(GrColorType::kGray_8, { VK_FORMAT_R8_UNORM }); |
| this->setColorType(GrColorType::kAlpha_F16, { VK_FORMAT_R16_SFLOAT }); |
| this->setColorType(GrColorType::kRGBA_F16, { VK_FORMAT_R16G16B16A16_SFLOAT }); |
| this->setColorType(GrColorType::kRGBA_F16_Clamped, { VK_FORMAT_R16G16B16A16_SFLOAT }); |
| this->setColorType(GrColorType::kAlpha_16, { VK_FORMAT_R16_UNORM }); |
| this->setColorType(GrColorType::kRG_1616, { VK_FORMAT_R16G16_UNORM }); |
| this->setColorType(GrColorType::kRGBA_16161616, { VK_FORMAT_R16G16B16A16_UNORM }); |
| this->setColorType(GrColorType::kRG_F16, { VK_FORMAT_R16G16_SFLOAT }); |
| } |
| |
| void GrVkCaps::FormatInfo::InitFormatFlags(VkFormatFeatureFlags vkFlags, uint16_t* flags) { |
| if (SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT & vkFlags) && |
| SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT & vkFlags)) { |
| *flags = *flags | kTexturable_Flag; |
| |
| // Ganesh assumes that all renderable surfaces are also texturable |
| if (SkToBool(VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT & vkFlags)) { |
| *flags = *flags | kRenderable_Flag; |
| } |
| } |
| // TODO: For Vk w/ VK_KHR_maintenance1 extension support, check |
| // VK_FORMAT_FEATURE_TRANSFER_[SRC|DST]_BIT_KHR explicitly to set copy flags |
| // Can do similar check for VK_KHR_sampler_ycbcr_conversion added bits |
| |
| if (SkToBool(VK_FORMAT_FEATURE_BLIT_SRC_BIT & vkFlags)) { |
| *flags = *flags | kBlitSrc_Flag; |
| } |
| |
| if (SkToBool(VK_FORMAT_FEATURE_BLIT_DST_BIT & vkFlags)) { |
| *flags = *flags | kBlitDst_Flag; |
| } |
| } |
| |
| void GrVkCaps::FormatInfo::initSampleCounts(const GrContextOptions& contextOptions, |
| const skgpu::VulkanInterface* interface, |
| VkPhysicalDevice physDev, |
| const VkPhysicalDeviceProperties& physProps, |
| VkFormat format) { |
| VkImageUsageFlags usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | |
| VK_IMAGE_USAGE_TRANSFER_DST_BIT | |
| VK_IMAGE_USAGE_SAMPLED_BIT | |
| VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; |
| VkImageFormatProperties properties; |
| GR_VK_CALL(interface, GetPhysicalDeviceImageFormatProperties(physDev, |
| format, |
| VK_IMAGE_TYPE_2D, |
| VK_IMAGE_TILING_OPTIMAL, |
| usage, |
| 0, // createFlags |
| &properties)); |
| VkSampleCountFlags flags = properties.sampleCounts; |
| if (flags & VK_SAMPLE_COUNT_1_BIT) { |
| fColorSampleCounts.push_back(1); |
| } |
| if (kImagination_VkVendor == physProps.vendorID) { |
| // MSAA does not work on imagination |
| return; |
| } |
| if (kIntel_VkVendor == physProps.vendorID) { |
| if (GetIntelGen(GetIntelGPUType(physProps.deviceID)) < 12 || |
| !contextOptions.fAllowMSAAOnNewIntel) { |
| // MSAA doesn't work well on Intel GPUs chromium:527565, chromium:983926 |
| return; |
| } |
| } |
| if (flags & VK_SAMPLE_COUNT_2_BIT) { |
| fColorSampleCounts.push_back(2); |
| } |
| if (flags & VK_SAMPLE_COUNT_4_BIT) { |
| fColorSampleCounts.push_back(4); |
| } |
| if (flags & VK_SAMPLE_COUNT_8_BIT) { |
| fColorSampleCounts.push_back(8); |
| } |
| if (flags & VK_SAMPLE_COUNT_16_BIT) { |
| fColorSampleCounts.push_back(16); |
| } |
| // Standard sample locations are not defined for more than 16 samples, and we don't need more |
| // than 16. Omit 32 and 64. |
| } |
| |
| void GrVkCaps::FormatInfo::init(const GrContextOptions& contextOptions, |
| const skgpu::VulkanInterface* interface, |
| VkPhysicalDevice physDev, |
| const VkPhysicalDeviceProperties& properties, |
| VkFormat format) { |
| VkFormatProperties props; |
| memset(&props, 0, sizeof(VkFormatProperties)); |
| GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props)); |
| InitFormatFlags(props.linearTilingFeatures, &fLinearFlags); |
| InitFormatFlags(props.optimalTilingFeatures, &fOptimalFlags); |
| if (fOptimalFlags & kRenderable_Flag) { |
| this->initSampleCounts(contextOptions, interface, physDev, properties, format); |
| } |
| } |
| |
| // For many checks in caps, we need to know whether the GrBackendFormat is external or not. If it is |
| // external the VkFormat will be VK_NULL_HANDLE which is not handled by our various format |
| // capability checks. |
| static bool backend_format_is_external(const GrBackendFormat& format) { |
| const GrVkYcbcrConversionInfo* ycbcrInfo = GrBackendFormats::GetVkYcbcrConversionInfo(format); |
| SkASSERT(ycbcrInfo); |
| |
| // All external formats have a valid ycbcrInfo used for sampling and a non zero external format. |
| if (ycbcrInfo->isValid() && ycbcrInfo->fExternalFormat != 0) { |
| #ifdef SK_DEBUG |
| VkFormat vkFormat; |
| SkAssertResult(GrBackendFormats::AsVkFormat(format, &vkFormat)); |
| SkASSERT(vkFormat == VK_FORMAT_UNDEFINED); |
| #endif |
| return true; |
| } |
| return false; |
| } |
| |
| bool GrVkCaps::isFormatSRGB(const GrBackendFormat& format) const { |
| VkFormat vkFormat; |
| if (!GrBackendFormats::AsVkFormat(format, &vkFormat)) { |
| return false; |
| } |
| if (backend_format_is_external(format)) { |
| return false; |
| } |
| |
| return format_is_srgb(vkFormat); |
| } |
| |
| bool GrVkCaps::isFormatTexturable(const GrBackendFormat& format, GrTextureType) const { |
| VkFormat vkFormat; |
| if (!GrBackendFormats::AsVkFormat(format, &vkFormat)) { |
| return false; |
| } |
| if (backend_format_is_external(format)) { |
| // We can always texture from an external format (assuming we have the ycbcr conversion |
| // info which we require to be passed in). |
| return true; |
| } |
| return this->isVkFormatTexturable(vkFormat); |
| } |
| |
| bool GrVkCaps::isVkFormatTexturable(VkFormat format) const { |
| const FormatInfo& info = this->getFormatInfo(format); |
| return SkToBool(FormatInfo::kTexturable_Flag & info.fOptimalFlags); |
| } |
| |
| bool GrVkCaps::isFormatAsColorTypeRenderable(GrColorType ct, const GrBackendFormat& format, |
| int sampleCount) const { |
| if (!this->isFormatRenderable(format, sampleCount)) { |
| return false; |
| } |
| VkFormat vkFormat; |
| if (!GrBackendFormats::AsVkFormat(format, &vkFormat)) { |
| return false; |
| } |
| const auto& info = this->getFormatInfo(vkFormat); |
| if (!SkToBool(info.colorTypeFlags(ct) & ColorTypeInfo::kRenderable_Flag)) { |
| return false; |
| } |
| return true; |
| } |
| |
| bool GrVkCaps::isFormatRenderable(const GrBackendFormat& format, int sampleCount) const { |
| VkFormat vkFormat; |
| if (!GrBackendFormats::AsVkFormat(format, &vkFormat)) { |
| return false; |
| } |
| return this->isFormatRenderable(vkFormat, sampleCount); |
| } |
| |
| bool GrVkCaps::isFormatRenderable(VkFormat format, int sampleCount) const { |
| return sampleCount <= this->maxRenderTargetSampleCount(format); |
| } |
| |
| int GrVkCaps::getRenderTargetSampleCount(int requestedCount, |
| const GrBackendFormat& format) const { |
| VkFormat vkFormat; |
| if (!GrBackendFormats::AsVkFormat(format, &vkFormat)) { |
| return 0; |
| } |
| |
| return this->getRenderTargetSampleCount(requestedCount, vkFormat); |
| } |
| |
| int GrVkCaps::getRenderTargetSampleCount(int requestedCount, VkFormat format) const { |
| requestedCount = std::max(1, requestedCount); |
| |
| const FormatInfo& info = this->getFormatInfo(format); |
| |
| int count = info.fColorSampleCounts.size(); |
| |
| if (!count) { |
| return 0; |
| } |
| |
| if (1 == requestedCount) { |
| SkASSERT(info.fColorSampleCounts.size() && info.fColorSampleCounts[0] == 1); |
| return 1; |
| } |
| |
| for (int i = 0; i < count; ++i) { |
| if (info.fColorSampleCounts[i] >= requestedCount) { |
| return info.fColorSampleCounts[i]; |
| } |
| } |
| return 0; |
| } |
| |
| int GrVkCaps::maxRenderTargetSampleCount(const GrBackendFormat& format) const { |
| VkFormat vkFormat; |
| if (!GrBackendFormats::AsVkFormat(format, &vkFormat)) { |
| return 0; |
| } |
| return this->maxRenderTargetSampleCount(vkFormat); |
| } |
| |
| int GrVkCaps::maxRenderTargetSampleCount(VkFormat format) const { |
| const FormatInfo& info = this->getFormatInfo(format); |
| |
| const auto& table = info.fColorSampleCounts; |
| if (!table.size()) { |
| return 0; |
| } |
| return table[table.size() - 1]; |
| } |
| |
| static inline size_t align_to_4(size_t v) { |
| switch (v & 0b11) { |
| // v is already a multiple of 4. |
| case 0: return v; |
| // v is a multiple of 2 but not 4. |
| case 2: return 2 * v; |
| // v is not a multiple of 2. |
| default: return 4 * v; |
| } |
| } |
| |
| GrCaps::SupportedWrite GrVkCaps::supportedWritePixelsColorType(GrColorType surfaceColorType, |
| const GrBackendFormat& surfaceFormat, |
| GrColorType srcColorType) const { |
| VkFormat vkFormat; |
| if (!GrBackendFormats::AsVkFormat(surfaceFormat, &vkFormat)) { |
| return {GrColorType::kUnknown, 0}; |
| } |
| |
| // We don't support the ability to upload to external formats or formats that require a ycbcr |
| // sampler. In general these types of formats are only used for sampling in a shader. |
| if (backend_format_is_external(surfaceFormat) || skgpu::VkFormatNeedsYcbcrSampler(vkFormat)) { |
| return {GrColorType::kUnknown, 0}; |
| } |
| |
| // The VkBufferImageCopy bufferOffset field must be both a multiple of 4 and of a single texel. |
| size_t offsetAlignment = align_to_4(skgpu::VkFormatBytesPerBlock(vkFormat)); |
| |
| const auto& info = this->getFormatInfo(vkFormat); |
| for (int i = 0; i < info.fColorTypeInfoCount; ++i) { |
| const auto& ctInfo = info.fColorTypeInfos[i]; |
| if (ctInfo.fColorType == surfaceColorType) { |
| return {ctInfo.fTransferColorType, offsetAlignment}; |
| } |
| } |
| return {GrColorType::kUnknown, 0}; |
| } |
| |
| GrCaps::SurfaceReadPixelsSupport GrVkCaps::surfaceSupportsReadPixels( |
| const GrSurface* surface) const { |
| if (surface->isProtected()) { |
| return SurfaceReadPixelsSupport::kUnsupported; |
| } |
| if (auto tex = static_cast<const GrVkTexture*>(surface->asTexture())) { |
| auto texImage = tex->textureImage(); |
| if (!texImage) { |
| return SurfaceReadPixelsSupport::kUnsupported; |
| } |
| // We can't directly read from a VkImage that has a ycbcr sampler. |
| if (texImage->ycbcrConversionInfo().isValid()) { |
| return SurfaceReadPixelsSupport::kCopyToTexture2D; |
| } |
| // We can't directly read from a compressed format |
| if (skgpu::VkFormatIsCompressed(texImage->imageFormat())) { |
| return SurfaceReadPixelsSupport::kCopyToTexture2D; |
| } |
| return SurfaceReadPixelsSupport::kSupported; |
| } else if (auto rt = surface->asRenderTarget()) { |
| if (rt->numSamples() > 1) { |
| return SurfaceReadPixelsSupport::kCopyToTexture2D; |
| } |
| return SurfaceReadPixelsSupport::kSupported; |
| } |
| return SurfaceReadPixelsSupport::kUnsupported; |
| } |
| |
| GrColorType GrVkCaps::transferColorType(VkFormat vkFormat, GrColorType surfaceColorType) const { |
| const auto& info = this->getFormatInfo(vkFormat); |
| for (int i = 0; i < info.fColorTypeInfoCount; ++i) { |
| if (info.fColorTypeInfos[i].fColorType == surfaceColorType) { |
| return info.fColorTypeInfos[i].fTransferColorType; |
| } |
| } |
| return GrColorType::kUnknown; |
| } |
| |
| bool GrVkCaps::onSurfaceSupportsWritePixels(const GrSurface* surface) const { |
| if (auto rt = surface->asRenderTarget()) { |
| return rt->numSamples() <= 1 && SkToBool(surface->asTexture()); |
| } |
| // We can't write to a texture that has a ycbcr sampler. |
| if (auto tex = static_cast<const GrVkTexture*>(surface->asTexture())) { |
| auto texImage = tex->textureImage(); |
| if (!texImage) { |
| return false; |
| } |
| // We can't directly read from a VkImage that has a ycbcr sampler. |
| if (texImage->ycbcrConversionInfo().isValid()) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool GrVkCaps::onAreColorTypeAndFormatCompatible(GrColorType ct, |
| const GrBackendFormat& format) const { |
| VkFormat vkFormat; |
| if (!GrBackendFormats::AsVkFormat(format, &vkFormat)) { |
| return false; |
| } |
| const GrVkYcbcrConversionInfo* ycbcrInfo = GrBackendFormats::GetVkYcbcrConversionInfo(format); |
| SkASSERT(ycbcrInfo); |
| |
| if (ycbcrInfo->isValid() && !skgpu::VkFormatNeedsYcbcrSampler(vkFormat)) { |
| // Format may be undefined for external images, which are required to have YCbCr conversion. |
| if (VK_FORMAT_UNDEFINED == vkFormat && ycbcrInfo->fExternalFormat != 0) { |
| return true; |
| } |
| return false; |
| } |
| |
| const auto& info = this->getFormatInfo(vkFormat); |
| for (int i = 0; i < info.fColorTypeInfoCount; ++i) { |
| if (info.fColorTypeInfos[i].fColorType == ct) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| GrBackendFormat GrVkCaps::onGetDefaultBackendFormat(GrColorType ct) const { |
| VkFormat format = this->getFormatFromColorType(ct); |
| if (format == VK_FORMAT_UNDEFINED) { |
| return {}; |
| } |
| return GrBackendFormats::MakeVk(format); |
| } |
| |
| bool GrVkCaps::onSupportsDynamicMSAA(const GrRenderTargetProxy* rtProxy) const { |
| // We must be able to use the rtProxy as an input attachment to load into the discardable msaa |
| // attachment. Also the rtProxy should have a sample count of 1 so that it can be used as a |
| // resolve attachment. |
| return this->supportsDiscardableMSAAForDMSAA() && |
| rtProxy->supportsVkInputAttachment() && |
| rtProxy->numSamples() == 1; |
| } |
| |
| bool GrVkCaps::renderTargetSupportsDiscardableMSAA(const GrVkRenderTarget* rt) const { |
| return rt->resolveAttachment() && |
| rt->resolveAttachment()->supportsInputAttachmentUsage() && |
| ((rt->numSamples() > 1 && this->preferDiscardableMSAAAttachment()) || |
| (rt->numSamples() == 1 && this->supportsDiscardableMSAAForDMSAA())); |
| } |
| |
| bool GrVkCaps::programInfoWillUseDiscardableMSAA(const GrProgramInfo& programInfo) const { |
| return programInfo.targetHasVkResolveAttachmentWithInput() && |
| programInfo.numSamples() > 1 && |
| ((programInfo.targetsNumSamples() > 1 && this->preferDiscardableMSAAAttachment()) || |
| (programInfo.targetsNumSamples() == 1 && this->supportsDiscardableMSAAForDMSAA())); |
| } |
| |
| GrBackendFormat GrVkCaps::getBackendFormatFromCompressionType( |
| SkTextureCompressionType compressionType) const { |
| switch (compressionType) { |
| case SkTextureCompressionType::kNone: |
| return {}; |
| case SkTextureCompressionType::kETC2_RGB8_UNORM: |
| if (this->isVkFormatTexturable(VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK)) { |
| return GrBackendFormats::MakeVk(VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK); |
| } |
| return {}; |
| case SkTextureCompressionType::kBC1_RGB8_UNORM: |
| if (this->isVkFormatTexturable(VK_FORMAT_BC1_RGB_UNORM_BLOCK)) { |
| return GrBackendFormats::MakeVk(VK_FORMAT_BC1_RGB_UNORM_BLOCK); |
| } |
| return {}; |
| case SkTextureCompressionType::kBC1_RGBA8_UNORM: |
| if (this->isVkFormatTexturable(VK_FORMAT_BC1_RGBA_UNORM_BLOCK)) { |
| return GrBackendFormats::MakeVk(VK_FORMAT_BC1_RGBA_UNORM_BLOCK); |
| } |
| return {}; |
| } |
| |
| SkUNREACHABLE; |
| } |
| |
| skgpu::Swizzle GrVkCaps::onGetReadSwizzle(const GrBackendFormat& format, |
| GrColorType colorType) const { |
| VkFormat vkFormat; |
| SkAssertResult(GrBackendFormats::AsVkFormat(format, &vkFormat)); |
| const GrVkYcbcrConversionInfo* ycbcrInfo = GrBackendFormats::GetVkYcbcrConversionInfo(format); |
| SkASSERT(ycbcrInfo); |
| if (ycbcrInfo->isValid() && ycbcrInfo->fExternalFormat != 0) { |
| // We allow these to work with any color type and never swizzle. See |
| // onAreColorTypeAndFormatCompatible. |
| return skgpu::Swizzle{"rgba"}; |
| } |
| |
| const auto& info = this->getFormatInfo(vkFormat); |
| for (int i = 0; i < info.fColorTypeInfoCount; ++i) { |
| const auto& ctInfo = info.fColorTypeInfos[i]; |
| if (ctInfo.fColorType == colorType) { |
| return ctInfo.fReadSwizzle; |
| } |
| } |
| SkDEBUGFAILF("Illegal color type (%d) and format (%d) combination.", |
| (int)colorType, (int)vkFormat); |
| return {}; |
| } |
| |
| skgpu::Swizzle GrVkCaps::getWriteSwizzle(const GrBackendFormat& format, |
| GrColorType colorType) const { |
| VkFormat vkFormat; |
| SkAssertResult(GrBackendFormats::AsVkFormat(format, &vkFormat)); |
| const auto& info = this->getFormatInfo(vkFormat); |
| for (int i = 0; i < info.fColorTypeInfoCount; ++i) { |
| const auto& ctInfo = info.fColorTypeInfos[i]; |
| if (ctInfo.fColorType == colorType) { |
| return ctInfo.fWriteSwizzle; |
| } |
| } |
| SkDEBUGFAILF("Illegal color type (%d) and format (%d) combination.", |
| (int)colorType, (int)vkFormat); |
| return {}; |
| } |
| |
| GrDstSampleFlags GrVkCaps::onGetDstSampleFlagsForProxy(const GrRenderTargetProxy* rt) const { |
| bool isMSAAWithResolve = rt->numSamples() > 1 && rt->asTextureProxy(); |
| // TODO: Currently if we have an msaa rt with a resolve, the supportsVkInputAttachment call |
| // references whether the resolve is supported as an input attachment. We need to add a check to |
| // allow checking the color attachment (msaa or not) supports input attachment specifically. |
| if (!isMSAAWithResolve && rt->supportsVkInputAttachment()) { |
| return GrDstSampleFlags::kRequiresTextureBarrier | GrDstSampleFlags::kAsInputAttachment; |
| } |
| return GrDstSampleFlags::kNone; |
| } |
| |
| uint64_t GrVkCaps::computeFormatKey(const GrBackendFormat& format) const { |
| VkFormat vkFormat; |
| SkAssertResult(GrBackendFormats::AsVkFormat(format, &vkFormat)); |
| |
| #ifdef SK_DEBUG |
| // We should never be trying to compute a key for an external format |
| const GrVkYcbcrConversionInfo* ycbcrInfo = GrBackendFormats::GetVkYcbcrConversionInfo(format); |
| SkASSERT(ycbcrInfo); |
| SkASSERT(!ycbcrInfo->isValid() || ycbcrInfo->fExternalFormat == 0); |
| #endif |
| |
| // A VkFormat has a size of 64 bits. |
| return (uint64_t)vkFormat; |
| } |
| |
| GrCaps::SupportedRead GrVkCaps::onSupportedReadPixelsColorType( |
| GrColorType srcColorType, const GrBackendFormat& srcBackendFormat, |
| GrColorType dstColorType) const { |
| VkFormat vkFormat; |
| if (!GrBackendFormats::AsVkFormat(srcBackendFormat, &vkFormat)) { |
| return {GrColorType::kUnknown, 0}; |
| } |
| |
| if (skgpu::VkFormatNeedsYcbcrSampler(vkFormat)) { |
| return {GrColorType::kUnknown, 0}; |
| } |
| |
| SkTextureCompressionType compression = GrBackendFormatToCompressionType(srcBackendFormat); |
| if (compression != SkTextureCompressionType::kNone) { |
| return { SkTextureCompressionTypeIsOpaque(compression) ? GrColorType::kRGB_888x |
| : GrColorType::kRGBA_8888, 0 }; |
| } |
| |
| // The VkBufferImageCopy bufferOffset field must be both a multiple of 4 and of a single texel. |
| size_t offsetAlignment = align_to_4(skgpu::VkFormatBytesPerBlock(vkFormat)); |
| |
| const auto& info = this->getFormatInfo(vkFormat); |
| for (int i = 0; i < info.fColorTypeInfoCount; ++i) { |
| const auto& ctInfo = info.fColorTypeInfos[i]; |
| if (ctInfo.fColorType == srcColorType) { |
| return {ctInfo.fTransferColorType, offsetAlignment}; |
| } |
| } |
| return {GrColorType::kUnknown, 0}; |
| } |
| |
| int GrVkCaps::getFragmentUniformBinding() const { |
| return GrVkUniformHandler::kUniformBinding; |
| } |
| |
| int GrVkCaps::getFragmentUniformSet() const { |
| return GrVkUniformHandler::kUniformBufferDescSet; |
| } |
| |
| void GrVkCaps::addExtraSamplerKey(skgpu::KeyBuilder* b, |
| GrSamplerState samplerState, |
| const GrBackendFormat& format) const { |
| const GrVkYcbcrConversionInfo* ycbcrInfo = GrBackendFormats::GetVkYcbcrConversionInfo(format); |
| if (!ycbcrInfo) { |
| return; |
| } |
| |
| GrVkSampler::Key key = GrVkSampler::GenerateKey(samplerState, *ycbcrInfo); |
| |
| constexpr size_t numInts = (sizeof(key) + 3) / 4; |
| uint32_t tmp[numInts]; |
| memcpy(tmp, &key, sizeof(key)); |
| |
| for (size_t i = 0; i < numInts; ++i) { |
| b->add32(tmp[i]); |
| } |
| } |
| |
| /** |
| * For Vulkan we want to cache the entire VkPipeline for reuse of draws. The Desc here holds all |
| * the information needed to differentiate one pipeline from another. |
| * |
| * The GrProgramDesc contains all the information need to create the actual shaders for the |
| * pipeline. |
| * |
| * For Vulkan we need to add to the GrProgramDesc to include the rest of the state on the |
| * pipline. This includes stencil settings, blending information, render pass format, draw face |
| * information, and primitive type. Note that some state is set dynamically on the pipeline for |
| * each draw and thus is not included in this descriptor. This includes the viewport, scissor, |
| * and blend constant. |
| */ |
| GrProgramDesc GrVkCaps::makeDesc(GrRenderTarget* rt, |
| const GrProgramInfo& programInfo, |
| ProgramDescOverrideFlags overrideFlags) const { |
| GrProgramDesc desc; |
| GrProgramDesc::Build(&desc, programInfo, *this); |
| |
| skgpu::KeyBuilder b(desc.key()); |
| |
| // This will become part of the sheared off key used to persistently cache |
| // the SPIRV code. It needs to be added right after the base key so that, |
| // when the base-key is sheared off, the shearing code can include it in the |
| // reduced key (c.f. the +4s in the SkData::MakeWithCopy calls in |
| // GrVkPipelineStateBuilder.cpp). |
| b.add32(GrVkGpu::kShader_PersistentCacheKeyType); |
| |
| GrVkRenderPass::SelfDependencyFlags selfDepFlags = GrVkRenderPass::SelfDependencyFlags::kNone; |
| if (programInfo.renderPassBarriers() & GrXferBarrierFlags::kBlend) { |
| selfDepFlags |= GrVkRenderPass::SelfDependencyFlags::kForNonCoherentAdvBlend; |
| } |
| if (programInfo.renderPassBarriers() & GrXferBarrierFlags::kTexture) { |
| selfDepFlags |= GrVkRenderPass::SelfDependencyFlags::kForInputAttachment; |
| } |
| |
| bool needsResolve = this->programInfoWillUseDiscardableMSAA(programInfo); |
| |
| bool forceLoadFromResolve = |
| overrideFlags & GrCaps::ProgramDescOverrideFlags::kVulkanHasResolveLoadSubpass; |
| SkASSERT(!forceLoadFromResolve || needsResolve); |
| |
| GrVkRenderPass::LoadFromResolve loadFromResolve = GrVkRenderPass::LoadFromResolve::kNo; |
| if (needsResolve && (programInfo.colorLoadOp() == GrLoadOp::kLoad || forceLoadFromResolve)) { |
| loadFromResolve = GrVkRenderPass::LoadFromResolve::kLoad; |
| } |
| |
| if (rt) { |
| GrVkRenderTarget* vkRT = (GrVkRenderTarget*) rt; |
| |
| SkASSERT(!needsResolve || (vkRT->resolveAttachment() && |
| vkRT->resolveAttachment()->supportsInputAttachmentUsage())); |
| |
| bool needsStencil = programInfo.needsStencil() || programInfo.isStencilEnabled(); |
| // TODO: support failure in getSimpleRenderPass |
| auto rp = vkRT->getSimpleRenderPass(needsResolve, needsStencil, selfDepFlags, |
| loadFromResolve); |
| SkASSERT(rp); |
| rp->genKey(&b); |
| |
| #ifdef SK_DEBUG |
| if (!rp->isExternal()) { |
| // This is to ensure ReconstructAttachmentsDescriptor keeps matching |
| // getSimpleRenderPass' result |
| GrVkRenderPass::AttachmentsDescriptor attachmentsDescriptor; |
| GrVkRenderPass::AttachmentFlags attachmentFlags; |
| GrVkRenderTarget::ReconstructAttachmentsDescriptor(*this, programInfo, |
| &attachmentsDescriptor, |
| &attachmentFlags); |
| SkASSERT(rp->isCompatible(attachmentsDescriptor, attachmentFlags, selfDepFlags, |
| loadFromResolve)); |
| } |
| #endif |
| } else { |
| GrVkRenderPass::AttachmentsDescriptor attachmentsDescriptor; |
| GrVkRenderPass::AttachmentFlags attachmentFlags; |
| GrVkRenderTarget::ReconstructAttachmentsDescriptor(*this, programInfo, |
| &attachmentsDescriptor, |
| &attachmentFlags); |
| |
| // kExternal_AttachmentFlag is only set for wrapped secondary command buffers - which |
| // will always go through the above 'rt' path (i.e., we can always pass 0 as the final |
| // parameter to GenKey). |
| GrVkRenderPass::GenKey(&b, attachmentFlags, attachmentsDescriptor, selfDepFlags, |
| loadFromResolve, 0); |
| } |
| |
| GrStencilSettings stencil = programInfo.nonGLStencilSettings(); |
| stencil.genKey(&b, true); |
| |
| programInfo.pipeline().genKey(&b, *this); |
| b.add32(programInfo.numSamples()); |
| |
| // Vulkan requires the full primitive type as part of its key |
| b.add32(programInfo.primitiveTypeKey()); |
| |
| b.flush(); |
| return desc; |
| } |
| |
| GrInternalSurfaceFlags GrVkCaps::getExtraSurfaceFlagsForDeferredRT() const { |
| // We always create vulkan RT with the input attachment flag; |
| return GrInternalSurfaceFlags::kVkRTSupportsInputAttachment; |
| } |
| |
| VkShaderStageFlags GrVkCaps::getPushConstantStageFlags() const { |
| VkShaderStageFlags stageFlags = VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT; |
| return stageFlags; |
| } |
| |
| template <size_t N> |
| static bool intel_deviceID_present(const std::array<uint32_t, N>& array, uint32_t deviceID) { |
| return std::find(array.begin(), array.end(), deviceID) != array.end(); |
| } |
| |
| |
| GrVkCaps::IntelGPUType GrVkCaps::GetIntelGPUType(uint32_t deviceID) { |
| // Some common Intel GPU models, currently we cover SKL/ICL/RKL/TGL/ADL |
| // Referenced from the following Mesa source files: |
| // https://github.com/mesa3d/mesa/blob/master/include/pci_ids/i965_pci_ids.h |
| // https://github.com/mesa3d/mesa/blob/master/include/pci_ids/iris_pci_ids.h |
| static constexpr std::array<uint32_t, 25> kSkyLakeIDs = { |
| {0x1902, 0x1906, 0x190A, 0x190B, 0x190E, 0x1912, 0x1913, |
| 0x1915, 0x1916, 0x1917, 0x191A, 0x191B, 0x191D, 0x191E, |
| 0x1921, 0x1923, 0x1926, 0x1927, 0x192A, 0x192B, 0x192D, |
| 0x1932, 0x193A, 0x193B, 0x193D}}; |
| static constexpr std::array<uint32_t, 14> kIceLakeIDs = { |
| {0x8A50, 0x8A51, 0x8A52, 0x8A53, 0x8A54, 0x8A56, 0x8A57, |
| 0x8A58, 0x8A59, 0x8A5A, 0x8A5B, 0x8A5C, 0x8A5D, 0x8A71}}; |
| static constexpr std::array<uint32_t, 5> kRocketLakeIDs = { |
| {0x4c8a, 0x4c8b, 0x4c8c, 0x4c90, 0x4c9a}}; |
| static constexpr std::array<uint32_t, 11> kTigerLakeIDs = { |
| {0x9A40, 0x9A49, 0x9A59, 0x9A60, 0x9A68, 0x9A70, |
| 0x9A78, 0x9AC0, 0x9AC9, 0x9AD9, 0x9AF8}}; |
| static constexpr std::array<uint32_t, 10> kAlderLakeIDs = { |
| {0x4680, 0x4681, 0x4682, 0x4683, 0x4690, |
| 0x4691, 0x4692, 0x4693, 0x4698, 0x4699}}; |
| |
| if (intel_deviceID_present(kSkyLakeIDs, deviceID)) { |
| return IntelGPUType::kSkyLake; |
| } |
| if (intel_deviceID_present(kIceLakeIDs, deviceID)) { |
| return IntelGPUType::kIceLake; |
| } |
| if (intel_deviceID_present(kRocketLakeIDs, deviceID)) { |
| return IntelGPUType::kRocketLake; |
| } |
| if (intel_deviceID_present(kTigerLakeIDs, deviceID)) { |
| return IntelGPUType::kTigerLake; |
| } |
| if (intel_deviceID_present(kAlderLakeIDs, deviceID)) { |
| return IntelGPUType::kAlderLake; |
| } |
| return IntelGPUType::kOther; |
| } |
| |
| #if defined(GR_TEST_UTILS) |
| std::vector<GrTest::TestFormatColorTypeCombination> GrVkCaps::getTestingCombinations() const { |
| std::vector<GrTest::TestFormatColorTypeCombination> combos = { |
| { GrColorType::kAlpha_8, GrBackendFormats::MakeVk(VK_FORMAT_R8_UNORM) }, |
| { GrColorType::kBGR_565, GrBackendFormats::MakeVk(VK_FORMAT_R5G6B5_UNORM_PACK16) }, |
| { GrColorType::kRGB_565, GrBackendFormats::MakeVk(VK_FORMAT_B5G6R5_UNORM_PACK16) }, |
| { GrColorType::kABGR_4444, GrBackendFormats::MakeVk(VK_FORMAT_R4G4B4A4_UNORM_PACK16)}, |
| { GrColorType::kABGR_4444, GrBackendFormats::MakeVk(VK_FORMAT_B4G4R4A4_UNORM_PACK16)}, |
| { GrColorType::kRGBA_8888, GrBackendFormats::MakeVk(VK_FORMAT_R8G8B8A8_UNORM) }, |
| { GrColorType::kRGBA_8888_SRGB, GrBackendFormats::MakeVk(VK_FORMAT_R8G8B8A8_SRGB) }, |
| { GrColorType::kRGB_888x, GrBackendFormats::MakeVk(VK_FORMAT_R8G8B8A8_UNORM) }, |
| { GrColorType::kRGB_888x, GrBackendFormats::MakeVk(VK_FORMAT_B8G8R8A8_UNORM) }, |
| { GrColorType::kRGB_888x, GrBackendFormats::MakeVk(VK_FORMAT_R8G8B8_UNORM) }, |
| { GrColorType::kRG_88, GrBackendFormats::MakeVk(VK_FORMAT_R8G8_UNORM) }, |
| { GrColorType::kBGRA_8888, GrBackendFormats::MakeVk(VK_FORMAT_B8G8R8A8_UNORM) }, |
| { GrColorType::kRGBA_1010102, GrBackendFormats::MakeVk(VK_FORMAT_A2B10G10R10_UNORM_PACK32)}, |
| { GrColorType::kBGRA_1010102, GrBackendFormats::MakeVk(VK_FORMAT_A2R10G10B10_UNORM_PACK32)}, |
| { GrColorType::kRGBA_10x6, |
| GrBackendFormats::MakeVk(VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16)}, |
| { GrColorType::kGray_8, GrBackendFormats::MakeVk(VK_FORMAT_R8_UNORM) }, |
| { GrColorType::kAlpha_F16, GrBackendFormats::MakeVk(VK_FORMAT_R16_SFLOAT) }, |
| { GrColorType::kRGBA_F16, GrBackendFormats::MakeVk(VK_FORMAT_R16G16B16A16_SFLOAT) }, |
| { GrColorType::kRGBA_F16_Clamped, GrBackendFormats::MakeVk(VK_FORMAT_R16G16B16A16_SFLOAT) }, |
| { GrColorType::kAlpha_16, GrBackendFormats::MakeVk(VK_FORMAT_R16_UNORM) }, |
| { GrColorType::kRG_1616, GrBackendFormats::MakeVk(VK_FORMAT_R16G16_UNORM) }, |
| { GrColorType::kRGBA_16161616, GrBackendFormats::MakeVk(VK_FORMAT_R16G16B16A16_UNORM) }, |
| { GrColorType::kRG_F16, GrBackendFormats::MakeVk(VK_FORMAT_R16G16_SFLOAT) }, |
| // These two compressed formats both have an effective colorType of kRGB_888x |
| { GrColorType::kRGB_888x, GrBackendFormats::MakeVk(VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK)}, |
| { GrColorType::kRGB_888x, GrBackendFormats::MakeVk(VK_FORMAT_BC1_RGB_UNORM_BLOCK) }, |
| { GrColorType::kRGBA_8888, GrBackendFormats::MakeVk(VK_FORMAT_BC1_RGBA_UNORM_BLOCK)}, |
| }; |
| |
| return combos; |
| } |
| #endif |