blob: 426dfdfdbe06a13fdd5418383d81c7f2f4b9d234 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/ganesh/geometry/GrTriangulator.h"
#include "src/gpu/BufferWriter.h"
#include "src/gpu/ganesh/GrEagerVertexAllocator.h"
#include "src/gpu/ganesh/geometry/GrPathUtils.h"
#include "src/core/SkGeometry.h"
#include "src/core/SkPointPriv.h"
#include <algorithm>
#include <tuple>
#if !defined(SK_ENABLE_OPTIMIZE_SIZE)
#if TRIANGULATOR_LOGGING
#define TESS_LOG printf
#define DUMP_MESH(M) (M).dump()
#else
#define TESS_LOG(...)
#define DUMP_MESH(M)
#endif
using EdgeType = GrTriangulator::EdgeType;
using Vertex = GrTriangulator::Vertex;
using VertexList = GrTriangulator::VertexList;
using Line = GrTriangulator::Line;
using Edge = GrTriangulator::Edge;
using EdgeList = GrTriangulator::EdgeList;
using Poly = GrTriangulator::Poly;
using MonotonePoly = GrTriangulator::MonotonePoly;
using Comparator = GrTriangulator::Comparator;
template <class T, T* T::*Prev, T* T::*Next>
static void list_insert(T* t, T* prev, T* next, T** head, T** tail) {
t->*Prev = prev;
t->*Next = next;
if (prev) {
prev->*Next = t;
} else if (head) {
*head = t;
}
if (next) {
next->*Prev = t;
} else if (tail) {
*tail = t;
}
}
template <class T, T* T::*Prev, T* T::*Next>
static void list_remove(T* t, T** head, T** tail) {
if (t->*Prev) {
t->*Prev->*Next = t->*Next;
} else if (head) {
*head = t->*Next;
}
if (t->*Next) {
t->*Next->*Prev = t->*Prev;
} else if (tail) {
*tail = t->*Prev;
}
t->*Prev = t->*Next = nullptr;
}
typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b);
static bool sweep_lt_horiz(const SkPoint& a, const SkPoint& b) {
return a.fX < b.fX || (a.fX == b.fX && a.fY > b.fY);
}
static bool sweep_lt_vert(const SkPoint& a, const SkPoint& b) {
return a.fY < b.fY || (a.fY == b.fY && a.fX < b.fX);
}
bool GrTriangulator::Comparator::sweep_lt(const SkPoint& a, const SkPoint& b) const {
return fDirection == Direction::kHorizontal ? sweep_lt_horiz(a, b) : sweep_lt_vert(a, b);
}
static inline skgpu::VertexWriter emit_vertex(Vertex* v,
bool emitCoverage,
skgpu::VertexWriter data) {
data << v->fPoint;
if (emitCoverage) {
data << GrNormalizeByteToFloat(v->fAlpha);
}
return data;
}
static skgpu::VertexWriter emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2,
bool emitCoverage, skgpu::VertexWriter data) {
TESS_LOG("emit_triangle %g (%g, %g) %d\n", v0->fID, v0->fPoint.fX, v0->fPoint.fY, v0->fAlpha);
TESS_LOG(" %g (%g, %g) %d\n", v1->fID, v1->fPoint.fX, v1->fPoint.fY, v1->fAlpha);
TESS_LOG(" %g (%g, %g) %d\n", v2->fID, v2->fPoint.fX, v2->fPoint.fY, v2->fAlpha);
#if TRIANGULATOR_WIREFRAME
data = emit_vertex(v0, emitCoverage, std::move(data));
data = emit_vertex(v1, emitCoverage, std::move(data));
data = emit_vertex(v1, emitCoverage, std::move(data));
data = emit_vertex(v2, emitCoverage, std::move(data));
data = emit_vertex(v2, emitCoverage, std::move(data));
data = emit_vertex(v0, emitCoverage, std::move(data));
#else
data = emit_vertex(v0, emitCoverage, std::move(data));
data = emit_vertex(v1, emitCoverage, std::move(data));
data = emit_vertex(v2, emitCoverage, std::move(data));
#endif
return data;
}
void GrTriangulator::VertexList::insert(Vertex* v, Vertex* prev, Vertex* next) {
list_insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, prev, next, &fHead, &fTail);
}
void GrTriangulator::VertexList::remove(Vertex* v) {
list_remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, &fHead, &fTail);
}
// Round to nearest quarter-pixel. This is used for screenspace tessellation.
static inline void round(SkPoint* p) {
p->fX = SkScalarRoundToScalar(p->fX * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f);
p->fY = SkScalarRoundToScalar(p->fY * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f);
}
static inline SkScalar double_to_clamped_scalar(double d) {
// Clamps large values to what's finitely representable when cast back to a float.
static const double kMaxLimit = (double) SK_ScalarMax;
// It's not perfect, but a using a value larger than float_min helps protect from denormalized
// values and ill-conditions in intermediate calculations on coordinates.
static const double kNearZeroLimit = 16 * (double) std::numeric_limits<float>::min();
if (std::abs(d) < kNearZeroLimit) {
d = 0.f;
}
return SkDoubleToScalar(std::max(-kMaxLimit, std::min(d, kMaxLimit)));
}
bool GrTriangulator::Line::intersect(const Line& other, SkPoint* point) const {
double denom = fA * other.fB - fB * other.fA;
if (denom == 0.0) {
return false;
}
double scale = 1.0 / denom;
point->fX = double_to_clamped_scalar((fB * other.fC - other.fB * fC) * scale);
point->fY = double_to_clamped_scalar((other.fA * fC - fA * other.fC) * scale);
round(point);
return point->isFinite();
}
// If the edge's vertices differ by many orders of magnitude, the computed line equation can have
// significant error in its distance and intersection tests. To avoid this, we recursively subdivide
// long edges and effectively perform a binary search to perform a more accurate intersection test.
static bool edge_line_needs_recursion(const SkPoint& p0, const SkPoint& p1) {
// ilogbf(0) returns an implementation-defined constant, but we are choosing to saturate
// negative exponents to 0 for comparisons sake. We're only trying to recurse on lines with
// very large coordinates.
int expDiffX = std::abs((std::abs(p0.fX) < 1.f ? 0 : std::ilogbf(p0.fX)) -
(std::abs(p1.fX) < 1.f ? 0 : std::ilogbf(p1.fX)));
int expDiffY = std::abs((std::abs(p0.fY) < 1.f ? 0 : std::ilogbf(p0.fY)) -
(std::abs(p1.fY) < 1.f ? 0 : std::ilogbf(p1.fY)));
// Differ by more than 2^20, or roughly a factor of one million.
return expDiffX > 20 || expDiffY > 20;
}
static bool recursive_edge_intersect(const Line& u, SkPoint u0, SkPoint u1,
const Line& v, SkPoint v0, SkPoint v1,
SkPoint* p, double* s, double* t) {
// First check if the bounding boxes of [u0,u1] intersects [v0,v1]. If they do not, then the
// two line segments cannot intersect in their domain (even if the lines themselves might).
// - don't use SkRect::intersect since the vertices aren't sorted and horiz/vertical lines
// appear as empty rects, which then never "intersect" according to SkRect.
if (std::min(u0.fX, u1.fX) > std::max(v0.fX, v1.fX) ||
std::max(u0.fX, u1.fX) < std::min(v0.fX, v1.fX) ||
std::min(u0.fY, u1.fY) > std::max(v0.fY, v1.fY) ||
std::max(u0.fY, u1.fY) < std::min(v0.fY, v1.fY)) {
return false;
}
// Compute intersection based on current segment vertices; if an intersection is found but the
// vertices differ too much in magnitude, we recurse using the midpoint of the segment to
// reject false positives. We don't currently try to avoid false negatives (e.g. large magnitude
// line reports no intersection but there is one).
double denom = u.fA * v.fB - u.fB * v.fA;
if (denom == 0.0) {
return false;
}
double dx = static_cast<double>(v0.fX) - u0.fX;
double dy = static_cast<double>(v0.fY) - u0.fY;
double sNumer = dy * v.fB + dx * v.fA;
double tNumer = dy * u.fB + dx * u.fA;
// If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early.
// This saves us doing the divide below unless absolutely necessary.
if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom)
: (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) {
return false;
}
*s = sNumer / denom;
*t = tNumer / denom;
SkASSERT(*s >= 0.0 && *s <= 1.0 && *t >= 0.0 && *t <= 1.0);
const bool uNeedsSplit = edge_line_needs_recursion(u0, u1);
const bool vNeedsSplit = edge_line_needs_recursion(v0, v1);
if (!uNeedsSplit && !vNeedsSplit) {
p->fX = double_to_clamped_scalar(u0.fX - (*s) * u.fB);
p->fY = double_to_clamped_scalar(u0.fY + (*s) * u.fA);
return true;
} else {
double sScale = 1.0, sShift = 0.0;
double tScale = 1.0, tShift = 0.0;
if (uNeedsSplit) {
SkPoint uM = {(float) (0.5 * u0.fX + 0.5 * u1.fX),
(float) (0.5 * u0.fY + 0.5 * u1.fY)};
sScale = 0.5;
if (*s >= 0.5) {
u0 = uM;
sShift = 0.5;
} else {
u1 = uM;
}
}
if (vNeedsSplit) {
SkPoint vM = {(float) (0.5 * v0.fX + 0.5 * v1.fX),
(float) (0.5 * v0.fY + 0.5 * v1.fY)};
tScale = 0.5;
if (*t >= 0.5) {
v0 = vM;
tShift = 0.5;
} else {
v1 = vM;
}
}
// Just recompute both lines, even if only one was split; we're already in a slow path.
if (recursive_edge_intersect(Line(u0, u1), u0, u1, Line(v0, v1), v0, v1, p, s, t)) {
// Adjust s and t back to full range
*s = sScale * (*s) + sShift;
*t = tScale * (*t) + tShift;
return true;
} else {
// False positive
return false;
}
}
}
bool GrTriangulator::Edge::intersect(const Edge& other, SkPoint* p, uint8_t* alpha) const {
TESS_LOG("intersecting %g -> %g with %g -> %g\n",
fTop->fID, fBottom->fID, other.fTop->fID, other.fBottom->fID);
if (fTop == other.fTop || fBottom == other.fBottom ||
fTop == other.fBottom || fBottom == other.fTop) {
// If the two edges share a vertex by construction, they have already been split and
// shouldn't be considered "intersecting" anymore.
return false;
}
double s, t; // needed to interpolate vertex alpha
const bool intersects = recursive_edge_intersect(
fLine, fTop->fPoint, fBottom->fPoint,
other.fLine, other.fTop->fPoint, other.fBottom->fPoint,
p, &s, &t);
if (!intersects) {
return false;
}
if (alpha) {
if (fType == EdgeType::kInner || other.fType == EdgeType::kInner) {
// If the intersection is on any interior edge, it needs to stay fully opaque or later
// triangulation could leech transparency into the inner fill region.
*alpha = 255;
} else if (fType == EdgeType::kOuter && other.fType == EdgeType::kOuter) {
// Trivially, the intersection will be fully transparent since since it is by
// construction on the outer edge.
*alpha = 0;
} else {
// Could be two connectors crossing, or a connector crossing an outer edge.
// Take the max interpolated alpha
SkASSERT(fType == EdgeType::kConnector || other.fType == EdgeType::kConnector);
*alpha = std::max((1.0 - s) * fTop->fAlpha + s * fBottom->fAlpha,
(1.0 - t) * other.fTop->fAlpha + t * other.fBottom->fAlpha);
}
}
return true;
}
void GrTriangulator::EdgeList::insert(Edge* edge, Edge* prev, Edge* next) {
list_insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, &fHead, &fTail);
}
bool GrTriangulator::EdgeList::remove(Edge* edge) {
TESS_LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
// SkASSERT(this->contains(edge)); // Leave this here for future debugging.
if (!this->contains(edge)) {
return false;
}
list_remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, &fHead, &fTail);
return true;
}
void GrTriangulator::MonotonePoly::addEdge(Edge* edge) {
if (fSide == kRight_Side) {
SkASSERT(!edge->fUsedInRightPoly);
list_insert<Edge, &Edge::fRightPolyPrev, &Edge::fRightPolyNext>(
edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
edge->fUsedInRightPoly = true;
} else {
SkASSERT(!edge->fUsedInLeftPoly);
list_insert<Edge, &Edge::fLeftPolyPrev, &Edge::fLeftPolyNext>(
edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
edge->fUsedInLeftPoly = true;
}
}
skgpu::VertexWriter GrTriangulator::emitMonotonePoly(const MonotonePoly* monotonePoly,
skgpu::VertexWriter data) const {
SkASSERT(monotonePoly->fWinding != 0);
Edge* e = monotonePoly->fFirstEdge;
VertexList vertices;
vertices.append(e->fTop);
int count = 1;
while (e != nullptr) {
if (kRight_Side == monotonePoly->fSide) {
vertices.append(e->fBottom);
e = e->fRightPolyNext;
} else {
vertices.prepend(e->fBottom);
e = e->fLeftPolyNext;
}
count++;
}
Vertex* first = vertices.fHead;
Vertex* v = first->fNext;
while (v != vertices.fTail) {
SkASSERT(v && v->fPrev && v->fNext);
Vertex* prev = v->fPrev;
Vertex* curr = v;
Vertex* next = v->fNext;
if (count == 3) {
return this->emitTriangle(prev, curr, next, monotonePoly->fWinding, std::move(data));
}
double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX;
double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY;
double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX;
double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY;
if (ax * by - ay * bx >= 0.0) {
data = this->emitTriangle(prev, curr, next, monotonePoly->fWinding, std::move(data));
v->fPrev->fNext = v->fNext;
v->fNext->fPrev = v->fPrev;
count--;
if (v->fPrev == first) {
v = v->fNext;
} else {
v = v->fPrev;
}
} else {
v = v->fNext;
}
}
return data;
}
skgpu::VertexWriter GrTriangulator::emitTriangle(
Vertex* prev, Vertex* curr, Vertex* next, int winding, skgpu::VertexWriter data) const {
if (winding > 0) {
// Ensure our triangles always wind in the same direction as if the path had been
// triangulated as a simple fan (a la red book).
std::swap(prev, next);
}
if (fCollectBreadcrumbTriangles && abs(winding) > 1 &&
fPath.getFillType() == SkPathFillType::kWinding) {
// The first winding count will come from the actual triangle we emit. The remaining counts
// come from the breadcrumb triangle.
fBreadcrumbList.append(fAlloc, prev->fPoint, curr->fPoint, next->fPoint, abs(winding) - 1);
}
return emit_triangle(prev, curr, next, fEmitCoverage, std::move(data));
}
GrTriangulator::Poly::Poly(Vertex* v, int winding)
: fFirstVertex(v)
, fWinding(winding)
, fHead(nullptr)
, fTail(nullptr)
, fNext(nullptr)
, fPartner(nullptr)
, fCount(0)
{
#if TRIANGULATOR_LOGGING
static int gID = 0;
fID = gID++;
TESS_LOG("*** created Poly %d\n", fID);
#endif
}
Poly* GrTriangulator::Poly::addEdge(Edge* e, Side side, GrTriangulator* tri) {
TESS_LOG("addEdge (%g -> %g) to poly %d, %s side\n",
e->fTop->fID, e->fBottom->fID, fID, side == kLeft_Side ? "left" : "right");
Poly* partner = fPartner;
Poly* poly = this;
if (side == kRight_Side) {
if (e->fUsedInRightPoly) {
return this;
}
} else {
if (e->fUsedInLeftPoly) {
return this;
}
}
if (partner) {
fPartner = partner->fPartner = nullptr;
}
if (!fTail) {
fHead = fTail = tri->allocateMonotonePoly(e, side, fWinding);
fCount += 2;
} else if (e->fBottom == fTail->fLastEdge->fBottom) {
return poly;
} else if (side == fTail->fSide) {
fTail->addEdge(e);
fCount++;
} else {
e = tri->allocateEdge(fTail->fLastEdge->fBottom, e->fBottom, 1, EdgeType::kInner);
fTail->addEdge(e);
fCount++;
if (partner) {
partner->addEdge(e, side, tri);
poly = partner;
} else {
MonotonePoly* m = tri->allocateMonotonePoly(e, side, fWinding);
m->fPrev = fTail;
fTail->fNext = m;
fTail = m;
}
}
return poly;
}
skgpu::VertexWriter GrTriangulator::emitPoly(const Poly* poly, skgpu::VertexWriter data) const {
if (poly->fCount < 3) {
return data;
}
TESS_LOG("emit() %d, size %d\n", poly->fID, poly->fCount);
for (MonotonePoly* m = poly->fHead; m != nullptr; m = m->fNext) {
data = this->emitMonotonePoly(m, std::move(data));
}
return data;
}
static bool coincident(const SkPoint& a, const SkPoint& b) {
return a == b;
}
Poly* GrTriangulator::makePoly(Poly** head, Vertex* v, int winding) const {
Poly* poly = fAlloc->make<Poly>(v, winding);
poly->fNext = *head;
*head = poly;
return poly;
}
void GrTriangulator::appendPointToContour(const SkPoint& p, VertexList* contour) const {
Vertex* v = fAlloc->make<Vertex>(p, 255);
#if TRIANGULATOR_LOGGING
static float gID = 0.0f;
v->fID = gID++;
#endif
contour->append(v);
}
static SkScalar quad_error_at(const SkPoint pts[3], SkScalar t, SkScalar u) {
SkQuadCoeff quad(pts);
SkPoint p0 = to_point(quad.eval(t - 0.5f * u));
SkPoint mid = to_point(quad.eval(t));
SkPoint p1 = to_point(quad.eval(t + 0.5f * u));
if (!p0.isFinite() || !mid.isFinite() || !p1.isFinite()) {
return 0;
}
return SkPointPriv::DistanceToLineSegmentBetweenSqd(mid, p0, p1);
}
void GrTriangulator::appendQuadraticToContour(const SkPoint pts[3], SkScalar toleranceSqd,
VertexList* contour) const {
SkQuadCoeff quad(pts);
skvx::float2 aa = quad.fA * quad.fA;
SkScalar denom = 2.0f * (aa[0] + aa[1]);
skvx::float2 ab = quad.fA * quad.fB;
SkScalar t = denom ? (-ab[0] - ab[1]) / denom : 0.0f;
int nPoints = 1;
SkScalar u = 1.0f;
// Test possible subdivision values only at the point of maximum curvature.
// If it passes the flatness metric there, it'll pass everywhere.
while (nPoints < GrPathUtils::kMaxPointsPerCurve) {
u = 1.0f / nPoints;
if (quad_error_at(pts, t, u) < toleranceSqd) {
break;
}
nPoints++;
}
for (int j = 1; j <= nPoints; j++) {
this->appendPointToContour(to_point(quad.eval(j * u)), contour);
}
}
void GrTriangulator::generateCubicPoints(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
const SkPoint& p3, SkScalar tolSqd, VertexList* contour,
int pointsLeft) const {
SkScalar d1 = SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p3);
SkScalar d2 = SkPointPriv::DistanceToLineSegmentBetweenSqd(p2, p0, p3);
if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) ||
!SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) {
this->appendPointToContour(p3, contour);
return;
}
const SkPoint q[] = {
{ SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
{ SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
{ SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
};
const SkPoint r[] = {
{ SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
{ SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
};
const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
pointsLeft >>= 1;
this->generateCubicPoints(p0, q[0], r[0], s, tolSqd, contour, pointsLeft);
this->generateCubicPoints(s, r[1], q[2], p3, tolSqd, contour, pointsLeft);
}
// Stage 1: convert the input path to a set of linear contours (linked list of Vertices).
void GrTriangulator::pathToContours(float tolerance, const SkRect& clipBounds,
VertexList* contours, bool* isLinear) const {
SkScalar toleranceSqd = tolerance * tolerance;
SkPoint pts[4];
*isLinear = true;
VertexList* contour = contours;
SkPath::Iter iter(fPath, false);
if (fPath.isInverseFillType()) {
SkPoint quad[4];
clipBounds.toQuad(quad);
for (int i = 3; i >= 0; i--) {
this->appendPointToContour(quad[i], contours);
}
contour++;
}
SkAutoConicToQuads converter;
SkPath::Verb verb;
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kConic_Verb: {
*isLinear = false;
if (toleranceSqd == 0) {
this->appendPointToContour(pts[2], contour);
break;
}
SkScalar weight = iter.conicWeight();
const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd);
for (int i = 0; i < converter.countQuads(); ++i) {
this->appendQuadraticToContour(quadPts, toleranceSqd, contour);
quadPts += 2;
}
break;
}
case SkPath::kMove_Verb:
if (contour->fHead) {
contour++;
}
this->appendPointToContour(pts[0], contour);
break;
case SkPath::kLine_Verb: {
this->appendPointToContour(pts[1], contour);
break;
}
case SkPath::kQuad_Verb: {
*isLinear = false;
if (toleranceSqd == 0) {
this->appendPointToContour(pts[2], contour);
break;
}
this->appendQuadraticToContour(pts, toleranceSqd, contour);
break;
}
case SkPath::kCubic_Verb: {
*isLinear = false;
if (toleranceSqd == 0) {
this->appendPointToContour(pts[3], contour);
break;
}
int pointsLeft = GrPathUtils::cubicPointCount(pts, tolerance);
this->generateCubicPoints(pts[0], pts[1], pts[2], pts[3], toleranceSqd, contour,
pointsLeft);
break;
}
case SkPath::kClose_Verb:
case SkPath::kDone_Verb:
break;
}
}
}
static inline bool apply_fill_type(SkPathFillType fillType, int winding) {
switch (fillType) {
case SkPathFillType::kWinding:
return winding != 0;
case SkPathFillType::kEvenOdd:
return (winding & 1) != 0;
case SkPathFillType::kInverseWinding:
return winding == 1;
case SkPathFillType::kInverseEvenOdd:
return (winding & 1) == 1;
default:
SkASSERT(false);
return false;
}
}
bool GrTriangulator::applyFillType(int winding) const {
return apply_fill_type(fPath.getFillType(), winding);
}
static inline bool apply_fill_type(SkPathFillType fillType, Poly* poly) {
return poly && apply_fill_type(fillType, poly->fWinding);
}
MonotonePoly* GrTriangulator::allocateMonotonePoly(Edge* edge, Side side, int winding) {
++fNumMonotonePolys;
return fAlloc->make<MonotonePoly>(edge, side, winding);
}
Edge* GrTriangulator::allocateEdge(Vertex* top, Vertex* bottom, int winding, EdgeType type) {
++fNumEdges;
return fAlloc->make<Edge>(top, bottom, winding, type);
}
Edge* GrTriangulator::makeEdge(Vertex* prev, Vertex* next, EdgeType type,
const Comparator& c) {
SkASSERT(prev->fPoint != next->fPoint);
int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
Vertex* top = winding < 0 ? next : prev;
Vertex* bottom = winding < 0 ? prev : next;
return this->allocateEdge(top, bottom, winding, type);
}
bool EdgeList::insert(Edge* edge, Edge* prev) {
TESS_LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
// SkASSERT(!this->contains(edge)); // Leave this here for debugging.
if (this->contains(edge)) {
return false;
}
Edge* next = prev ? prev->fRight : fHead;
this->insert(edge, prev, next);
return true;
}
void GrTriangulator::FindEnclosingEdges(const Vertex& v,
const EdgeList& edges,
Edge** left, Edge**right) {
if (v.fFirstEdgeAbove && v.fLastEdgeAbove) {
*left = v.fFirstEdgeAbove->fLeft;
*right = v.fLastEdgeAbove->fRight;
return;
}
Edge* next = nullptr;
Edge* prev;
for (prev = edges.fTail; prev != nullptr; prev = prev->fLeft) {
if (prev->isLeftOf(v)) {
break;
}
next = prev;
}
*left = prev;
*right = next;
}
void GrTriangulator::Edge::insertAbove(Vertex* v, const Comparator& c) {
if (fTop->fPoint == fBottom->fPoint ||
c.sweep_lt(fBottom->fPoint, fTop->fPoint)) {
return;
}
TESS_LOG("insert edge (%g -> %g) above vertex %g\n", fTop->fID, fBottom->fID, v->fID);
Edge* prev = nullptr;
Edge* next;
for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) {
if (next->isRightOf(*fTop)) {
break;
}
prev = next;
}
list_insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
this, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove);
}
void GrTriangulator::Edge::insertBelow(Vertex* v, const Comparator& c) {
if (fTop->fPoint == fBottom->fPoint ||
c.sweep_lt(fBottom->fPoint, fTop->fPoint)) {
return;
}
TESS_LOG("insert edge (%g -> %g) below vertex %g\n", fTop->fID, fBottom->fID, v->fID);
Edge* prev = nullptr;
Edge* next;
for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) {
if (next->isRightOf(*fBottom)) {
break;
}
prev = next;
}
list_insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
this, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow);
}
static void remove_edge_above(Edge* edge) {
SkASSERT(edge->fTop && edge->fBottom);
TESS_LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
edge->fBottom->fID);
list_remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove);
}
static void remove_edge_below(Edge* edge) {
SkASSERT(edge->fTop && edge->fBottom);
TESS_LOG("removing edge (%g -> %g) below vertex %g\n",
edge->fTop->fID, edge->fBottom->fID, edge->fTop->fID);
list_remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow);
}
void GrTriangulator::Edge::disconnect() {
remove_edge_above(this);
remove_edge_below(this);
}
static bool rewind(EdgeList* activeEdges, Vertex** current, Vertex* dst, const Comparator& c) {
if (!current || *current == dst || c.sweep_lt((*current)->fPoint, dst->fPoint)) {
return true;
}
Vertex* v = *current;
TESS_LOG("rewinding active edges from vertex %g to vertex %g\n", v->fID, dst->fID);
while (v != dst) {
v = v->fPrev;
for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
if (!activeEdges->remove(e)) {
return false;
}
}
Edge* leftEdge = v->fLeftEnclosingEdge;
for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
if (!activeEdges->insert(e, leftEdge)) {
return false;
}
leftEdge = e;
Vertex* top = e->fTop;
if (c.sweep_lt(top->fPoint, dst->fPoint) &&
((top->fLeftEnclosingEdge && !top->fLeftEnclosingEdge->isLeftOf(*e->fTop)) ||
(top->fRightEnclosingEdge && !top->fRightEnclosingEdge->isRightOf(*e->fTop)))) {
dst = top;
}
}
}
*current = v;
return true;
}
static bool rewind_if_necessary(Edge* edge, EdgeList* activeEdges, Vertex** current,
const Comparator& c) {
if (!activeEdges || !current) {
return true;
}
if (!edge) {
return false;
}
Vertex* top = edge->fTop;
Vertex* bottom = edge->fBottom;
if (edge->fLeft) {
Vertex* leftTop = edge->fLeft->fTop;
Vertex* leftBottom = edge->fLeft->fBottom;
if (leftTop && leftBottom) {
if (c.sweep_lt(leftTop->fPoint, top->fPoint) && !edge->fLeft->isLeftOf(*top)) {
if (!rewind(activeEdges, current, leftTop, c)) {
return false;
}
} else if (c.sweep_lt(top->fPoint, leftTop->fPoint) && !edge->isRightOf(*leftTop)) {
if (!rewind(activeEdges, current, top, c)) {
return false;
}
} else if (c.sweep_lt(bottom->fPoint, leftBottom->fPoint) &&
!edge->fLeft->isLeftOf(*bottom)) {
if (!rewind(activeEdges, current, leftTop, c)) {
return false;
}
} else if (c.sweep_lt(leftBottom->fPoint, bottom->fPoint) &&
!edge->isRightOf(*leftBottom)) {
if (!rewind(activeEdges, current, top, c)) {
return false;
}
}
}
}
if (edge->fRight) {
Vertex* rightTop = edge->fRight->fTop;
Vertex* rightBottom = edge->fRight->fBottom;
if (rightTop && rightBottom) {
if (c.sweep_lt(rightTop->fPoint, top->fPoint) && !edge->fRight->isRightOf(*top)) {
if (!rewind(activeEdges, current, rightTop, c)) {
return false;
}
} else if (c.sweep_lt(top->fPoint, rightTop->fPoint) && !edge->isLeftOf(*rightTop)) {
if (!rewind(activeEdges, current, top, c)) {
return false;
}
} else if (c.sweep_lt(bottom->fPoint, rightBottom->fPoint) &&
!edge->fRight->isRightOf(*bottom)) {
if (!rewind(activeEdges, current, rightTop, c)) {
return false;
}
} else if (c.sweep_lt(rightBottom->fPoint, bottom->fPoint) &&
!edge->isLeftOf(*rightBottom)) {
if (!rewind(activeEdges, current, top, c)) {
return false;
}
}
}
}
return true;
}
bool GrTriangulator::setTop(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current,
const Comparator& c) const {
remove_edge_below(edge);
if (fCollectBreadcrumbTriangles) {
fBreadcrumbList.append(fAlloc, edge->fTop->fPoint, edge->fBottom->fPoint, v->fPoint,
edge->fWinding);
}
edge->fTop = v;
edge->recompute();
edge->insertBelow(v, c);
if (!rewind_if_necessary(edge, activeEdges, current, c)) {
return false;
}
return this->mergeCollinearEdges(edge, activeEdges, current, c);
}
bool GrTriangulator::setBottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current,
const Comparator& c) const {
remove_edge_above(edge);
if (fCollectBreadcrumbTriangles) {
fBreadcrumbList.append(fAlloc, edge->fTop->fPoint, edge->fBottom->fPoint, v->fPoint,
edge->fWinding);
}
edge->fBottom = v;
edge->recompute();
edge->insertAbove(v, c);
if (!rewind_if_necessary(edge, activeEdges, current, c)) {
return false;
}
return this->mergeCollinearEdges(edge, activeEdges, current, c);
}
bool GrTriangulator::mergeEdgesAbove(Edge* edge, Edge* other, EdgeList* activeEdges,
Vertex** current, const Comparator& c) const {
if (!edge || !other) {
return false;
}
if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) {
TESS_LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n",
edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
if (!rewind(activeEdges, current, edge->fTop, c)) {
return false;
}
other->fWinding += edge->fWinding;
edge->disconnect();
edge->fTop = edge->fBottom = nullptr;
} else if (c.sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) {
if (!rewind(activeEdges, current, edge->fTop, c)) {
return false;
}
other->fWinding += edge->fWinding;
if (!this->setBottom(edge, other->fTop, activeEdges, current, c)) {
return false;
}
} else {
if (!rewind(activeEdges, current, other->fTop, c)) {
return false;
}
edge->fWinding += other->fWinding;
if (!this->setBottom(other, edge->fTop, activeEdges, current, c)) {
return false;
}
}
return true;
}
bool GrTriangulator::mergeEdgesBelow(Edge* edge, Edge* other, EdgeList* activeEdges,
Vertex** current, const Comparator& c) const {
if (!edge || !other) {
return false;
}
if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) {
TESS_LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n",
edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
if (!rewind(activeEdges, current, edge->fTop, c)) {
return false;
}
other->fWinding += edge->fWinding;
edge->disconnect();
edge->fTop = edge->fBottom = nullptr;
} else if (c.sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) {
if (!rewind(activeEdges, current, other->fTop, c)) {
return false;
}
edge->fWinding += other->fWinding;
if (!this->setTop(other, edge->fBottom, activeEdges, current, c)) {
return false;
}
} else {
if (!rewind(activeEdges, current, edge->fTop, c)) {
return false;
}
other->fWinding += edge->fWinding;
if (!this->setTop(edge, other->fBottom, activeEdges, current, c)) {
return false;
}
}
return true;
}
static bool top_collinear(Edge* left, Edge* right) {
if (!left || !right) {
return false;
}
return left->fTop->fPoint == right->fTop->fPoint ||
!left->isLeftOf(*right->fTop) || !right->isRightOf(*left->fTop);
}
static bool bottom_collinear(Edge* left, Edge* right) {
if (!left || !right) {
return false;
}
return left->fBottom->fPoint == right->fBottom->fPoint ||
!left->isLeftOf(*right->fBottom) || !right->isRightOf(*left->fBottom);
}
bool GrTriangulator::mergeCollinearEdges(Edge* edge, EdgeList* activeEdges, Vertex** current,
const Comparator& c) const {
for (;;) {
if (top_collinear(edge->fPrevEdgeAbove, edge)) {
if (!this->mergeEdgesAbove(edge->fPrevEdgeAbove, edge, activeEdges, current, c)) {
return false;
}
} else if (top_collinear(edge, edge->fNextEdgeAbove)) {
if (!this->mergeEdgesAbove(edge->fNextEdgeAbove, edge, activeEdges, current, c)) {
return false;
}
} else if (bottom_collinear(edge->fPrevEdgeBelow, edge)) {
if (!this->mergeEdgesBelow(edge->fPrevEdgeBelow, edge, activeEdges, current, c)) {
return false;
}
} else if (bottom_collinear(edge, edge->fNextEdgeBelow)) {
if (!this->mergeEdgesBelow(edge->fNextEdgeBelow, edge, activeEdges, current, c)) {
return false;
}
} else {
break;
}
}
SkASSERT(!top_collinear(edge->fPrevEdgeAbove, edge));
SkASSERT(!top_collinear(edge, edge->fNextEdgeAbove));
SkASSERT(!bottom_collinear(edge->fPrevEdgeBelow, edge));
SkASSERT(!bottom_collinear(edge, edge->fNextEdgeBelow));
return true;
}
GrTriangulator::BoolFail GrTriangulator::splitEdge(
Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current, const Comparator& c) {
if (!edge->fTop || !edge->fBottom || v == edge->fTop || v == edge->fBottom) {
return BoolFail::kFalse;
}
TESS_LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n",
edge->fTop->fID, edge->fBottom->fID, v->fID, v->fPoint.fX, v->fPoint.fY);
Vertex* top;
Vertex* bottom;
int winding = edge->fWinding;
// Theoretically, and ideally, the edge betwee p0 and p1 is being split by v, and v is "between"
// the segment end points according to c. This is equivalent to p0 < v < p1. Unfortunately, if
// v was clamped/rounded this relation doesn't always hold.
if (c.sweep_lt(v->fPoint, edge->fTop->fPoint)) {
// Actually "v < p0 < p1": update 'edge' to be v->p1 and add v->p0. We flip the winding on
// the new edge so that it winds as if it were p0->v.
top = v;
bottom = edge->fTop;
winding *= -1;
if (!this->setTop(edge, v, activeEdges, current, c)) {
return BoolFail::kFail;
}
} else if (c.sweep_lt(edge->fBottom->fPoint, v->fPoint)) {
// Actually "p0 < p1 < v": update 'edge' to be p0->v and add p1->v. We flip the winding on
// the new edge so that it winds as if it were v->p1.
top = edge->fBottom;
bottom = v;
winding *= -1;
if (!this->setBottom(edge, v, activeEdges, current, c)) {
return BoolFail::kFail;
}
} else {
// The ideal case, "p0 < v < p1": update 'edge' to be p0->v and add v->p1. Original winding
// is valid for both edges.
top = v;
bottom = edge->fBottom;
if (!this->setBottom(edge, v, activeEdges, current, c)) {
return BoolFail::kFail;
}
}
Edge* newEdge = this->allocateEdge(top, bottom, winding, edge->fType);
newEdge->insertBelow(top, c);
newEdge->insertAbove(bottom, c);
if (!this->mergeCollinearEdges(newEdge, activeEdges, current, c)) {
return BoolFail::kFail;
}
return BoolFail::kTrue;
}
GrTriangulator::BoolFail GrTriangulator::intersectEdgePair(
Edge* left, Edge* right, EdgeList* activeEdges, Vertex** current, const Comparator& c) {
if (!left->fTop || !left->fBottom || !right->fTop || !right->fBottom) {
return BoolFail::kFalse;
}
if (left->fTop == right->fTop || left->fBottom == right->fBottom) {
return BoolFail::kFalse;
}
// Check if the lines intersect as determined by isLeftOf and isRightOf, since that is the
// source of ground truth. It may suggest an intersection even if Edge::intersect() did not have
// the precision to check it. In this case we are explicitly correcting the edge topology to
// match the sided-ness checks.
Edge* split = nullptr;
Vertex* splitAt = nullptr;
if (c.sweep_lt(left->fTop->fPoint, right->fTop->fPoint)) {
if (!left->isLeftOf(*right->fTop)) {
split = left;
splitAt = right->fTop;
}
} else {
if (!right->isRightOf(*left->fTop)) {
split = right;
splitAt = left->fTop;
}
}
if (c.sweep_lt(right->fBottom->fPoint, left->fBottom->fPoint)) {
if (!left->isLeftOf(*right->fBottom)) {
split = left;
splitAt = right->fBottom;
}
} else {
if (!right->isRightOf(*left->fBottom)) {
split = right;
splitAt = left->fBottom;
}
}
if (!split) {
return BoolFail::kFalse;
}
// Rewind to the top of the edge that is "moving" since this topology correction can change the
// geometry of the split edge.
if (!rewind(activeEdges, current, split->fTop, c)) {
return BoolFail::kFail;
}
return this->splitEdge(split, splitAt, activeEdges, current, c);
}
Edge* GrTriangulator::makeConnectingEdge(Vertex* prev, Vertex* next, EdgeType type,
const Comparator& c, int windingScale) {
if (!prev || !next || prev->fPoint == next->fPoint) {
return nullptr;
}
Edge* edge = this->makeEdge(prev, next, type, c);
edge->insertBelow(edge->fTop, c);
edge->insertAbove(edge->fBottom, c);
edge->fWinding *= windingScale;
this->mergeCollinearEdges(edge, nullptr, nullptr, c);
return edge;
}
void GrTriangulator::mergeVertices(Vertex* src, Vertex* dst, VertexList* mesh,
const Comparator& c) const {
TESS_LOG("found coincident verts at %g, %g; merging %g into %g\n",
src->fPoint.fX, src->fPoint.fY, src->fID, dst->fID);
dst->fAlpha = std::max(src->fAlpha, dst->fAlpha);
if (src->fPartner) {
src->fPartner->fPartner = dst;
}
while (Edge* edge = src->fFirstEdgeAbove) {
std::ignore = this->setBottom(edge, dst, nullptr, nullptr, c);
}
while (Edge* edge = src->fFirstEdgeBelow) {
std::ignore = this->setTop(edge, dst, nullptr, nullptr, c);
}
mesh->remove(src);
dst->fSynthetic = true;
}
Vertex* GrTriangulator::makeSortedVertex(const SkPoint& p, uint8_t alpha, VertexList* mesh,
Vertex* reference, const Comparator& c) const {
Vertex* prevV = reference;
while (prevV && c.sweep_lt(p, prevV->fPoint)) {
prevV = prevV->fPrev;
}
Vertex* nextV = prevV ? prevV->fNext : mesh->fHead;
while (nextV && c.sweep_lt(nextV->fPoint, p)) {
prevV = nextV;
nextV = nextV->fNext;
}
Vertex* v;
if (prevV && coincident(prevV->fPoint, p)) {
v = prevV;
} else if (nextV && coincident(nextV->fPoint, p)) {
v = nextV;
} else {
v = fAlloc->make<Vertex>(p, alpha);
#if TRIANGULATOR_LOGGING
if (!prevV) {
v->fID = mesh->fHead->fID - 1.0f;
} else if (!nextV) {
v->fID = mesh->fTail->fID + 1.0f;
} else {
v->fID = (prevV->fID + nextV->fID) * 0.5f;
}
#endif
mesh->insert(v, prevV, nextV);
}
return v;
}
// Clamps x and y coordinates independently, so the returned point will lie within the bounding
// box formed by the corners of 'min' and 'max' (although min/max here refer to the ordering
// imposed by 'c').
static SkPoint clamp(SkPoint p, SkPoint min, SkPoint max, const Comparator& c) {
if (c.fDirection == Comparator::Direction::kHorizontal) {
// With horizontal sorting, we know min.x <= max.x, but there's no relation between
// Y components unless min.x == max.x.
return {SkTPin(p.fX, min.fX, max.fX),
min.fY < max.fY ? SkTPin(p.fY, min.fY, max.fY)
: SkTPin(p.fY, max.fY, min.fY)};
} else {
// And with vertical sorting, we know Y's relation but not necessarily X's.
return {min.fX < max.fX ? SkTPin(p.fX, min.fX, max.fX)
: SkTPin(p.fX, max.fX, min.fX),
SkTPin(p.fY, min.fY, max.fY)};
}
}
void GrTriangulator::computeBisector(Edge* edge1, Edge* edge2, Vertex* v) const {
SkASSERT(fEmitCoverage); // Edge-AA only!
Line line1 = edge1->fLine;
Line line2 = edge2->fLine;
line1.normalize();
line2.normalize();
double cosAngle = line1.fA * line2.fA + line1.fB * line2.fB;
if (cosAngle > 0.999) {
return;
}
line1.fC += edge1->fWinding > 0 ? -1 : 1;
line2.fC += edge2->fWinding > 0 ? -1 : 1;
SkPoint p;
if (line1.intersect(line2, &p)) {
uint8_t alpha = edge1->fType == EdgeType::kOuter ? 255 : 0;
v->fPartner = fAlloc->make<Vertex>(p, alpha);
TESS_LOG("computed bisector (%g,%g) alpha %d for vertex %g\n", p.fX, p.fY, alpha, v->fID);
}
}
GrTriangulator::BoolFail GrTriangulator::checkForIntersection(
Edge* left, Edge* right, EdgeList* activeEdges,
Vertex** current, VertexList* mesh,
const Comparator& c) {
if (!left || !right) {
return BoolFail::kFalse;
}
SkPoint p;
uint8_t alpha;
// If we are going to call intersect, then there must be tops and bottoms.
if (!left->fTop || !left->fBottom || !right->fTop || !right->fBottom) {
return BoolFail::kFail;
}
if (left->intersect(*right, &p, &alpha) && p.isFinite()) {
Vertex* v;
TESS_LOG("found intersection, pt is %g, %g\n", p.fX, p.fY);
Vertex* top = *current;
// If the intersection point is above the current vertex, rewind to the vertex above the
// intersection.
while (top && c.sweep_lt(p, top->fPoint)) {
top = top->fPrev;
}
// Always clamp the intersection to lie between the vertices of each segment, since
// in theory that's where the intersection is, but in reality, floating point error may
// have computed an intersection beyond a vertex's component(s).
p = clamp(p, left->fTop->fPoint, left->fBottom->fPoint, c);
p = clamp(p, right->fTop->fPoint, right->fBottom->fPoint, c);
if (coincident(p, left->fTop->fPoint)) {
v = left->fTop;
} else if (coincident(p, left->fBottom->fPoint)) {
v = left->fBottom;
} else if (coincident(p, right->fTop->fPoint)) {
v = right->fTop;
} else if (coincident(p, right->fBottom->fPoint)) {
v = right->fBottom;
} else {
v = this->makeSortedVertex(p, alpha, mesh, top, c);
if (left->fTop->fPartner) {
SkASSERT(fEmitCoverage); // Edge-AA only!
v->fSynthetic = true;
this->computeBisector(left, right, v);
}
}
if (!rewind(activeEdges, current, top ? top : v, c)) {
return BoolFail::kFail;
}
if (this->splitEdge(left, v, activeEdges, current, c) == BoolFail::kFail) {
return BoolFail::kFail;
}
if (this->splitEdge(right, v, activeEdges, current, c) == BoolFail::kFail) {
return BoolFail::kFail;
}
v->fAlpha = std::max(v->fAlpha, alpha);
return BoolFail::kTrue;
}
return this->intersectEdgePair(left, right, activeEdges, current, c);
}
void GrTriangulator::sanitizeContours(VertexList* contours, int contourCnt) const {
for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) {
SkASSERT(contour->fHead);
Vertex* prev = contour->fTail;
prev->fPoint.fX = double_to_clamped_scalar((double) prev->fPoint.fX);
prev->fPoint.fY = double_to_clamped_scalar((double) prev->fPoint.fY);
if (fRoundVerticesToQuarterPixel) {
round(&prev->fPoint);
}
for (Vertex* v = contour->fHead; v;) {
v->fPoint.fX = double_to_clamped_scalar((double) v->fPoint.fX);
v->fPoint.fY = double_to_clamped_scalar((double) v->fPoint.fY);
if (fRoundVerticesToQuarterPixel) {
round(&v->fPoint);
}
Vertex* next = v->fNext;
Vertex* nextWrap = next ? next : contour->fHead;
if (coincident(prev->fPoint, v->fPoint)) {
TESS_LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY);
contour->remove(v);
} else if (!v->fPoint.isFinite()) {
TESS_LOG("vertex %g,%g non-finite; removing\n", v->fPoint.fX, v->fPoint.fY);
contour->remove(v);
} else if (!fPreserveCollinearVertices &&
Line(prev->fPoint, nextWrap->fPoint).dist(v->fPoint) == 0.0) {
TESS_LOG("vertex %g,%g collinear; removing\n", v->fPoint.fX, v->fPoint.fY);
contour->remove(v);
} else {
prev = v;
}
v = next;
}
}
}
bool GrTriangulator::mergeCoincidentVertices(VertexList* mesh, const Comparator& c) const {
if (!mesh->fHead) {
return false;
}
bool merged = false;
for (Vertex* v = mesh->fHead->fNext; v;) {
Vertex* next = v->fNext;
if (c.sweep_lt(v->fPoint, v->fPrev->fPoint)) {
v->fPoint = v->fPrev->fPoint;
}
if (coincident(v->fPrev->fPoint, v->fPoint)) {
this->mergeVertices(v, v->fPrev, mesh, c);
merged = true;
}
v = next;
}
return merged;
}
// Stage 2: convert the contours to a mesh of edges connecting the vertices.
void GrTriangulator::buildEdges(VertexList* contours, int contourCnt, VertexList* mesh,
const Comparator& c) {
for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) {
Vertex* prev = contour->fTail;
for (Vertex* v = contour->fHead; v;) {
Vertex* next = v->fNext;
this->makeConnectingEdge(prev, v, EdgeType::kInner, c);
mesh->append(v);
prev = v;
v = next;
}
}
}
template <CompareFunc sweep_lt>
static void sorted_merge(VertexList* front, VertexList* back, VertexList* result) {
Vertex* a = front->fHead;
Vertex* b = back->fHead;
while (a && b) {
if (sweep_lt(a->fPoint, b->fPoint)) {
front->remove(a);
result->append(a);
a = front->fHead;
} else {
back->remove(b);
result->append(b);
b = back->fHead;
}
}
result->append(*front);
result->append(*back);
}
void GrTriangulator::SortedMerge(VertexList* front, VertexList* back, VertexList* result,
const Comparator& c) {
if (c.fDirection == Comparator::Direction::kHorizontal) {
sorted_merge<sweep_lt_horiz>(front, back, result);
} else {
sorted_merge<sweep_lt_vert>(front, back, result);
}
#if TRIANGULATOR_LOGGING
float id = 0.0f;
for (Vertex* v = result->fHead; v; v = v->fNext) {
v->fID = id++;
}
#endif
}
// Stage 3: sort the vertices by increasing sweep direction.
template <CompareFunc sweep_lt>
static void merge_sort(VertexList* vertices) {
Vertex* slow = vertices->fHead;
if (!slow) {
return;
}
Vertex* fast = slow->fNext;
if (!fast) {
return;
}
do {
fast = fast->fNext;
if (fast) {
fast = fast->fNext;
slow = slow->fNext;
}
} while (fast);
VertexList front(vertices->fHead, slow);
VertexList back(slow->fNext, vertices->fTail);
front.fTail->fNext = back.fHead->fPrev = nullptr;
merge_sort<sweep_lt>(&front);
merge_sort<sweep_lt>(&back);
vertices->fHead = vertices->fTail = nullptr;
sorted_merge<sweep_lt>(&front, &back, vertices);
}
#if TRIANGULATOR_LOGGING
void VertexList::dump() const {
for (Vertex* v = fHead; v; v = v->fNext) {
TESS_LOG("vertex %g (%g, %g) alpha %d", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
if (Vertex* p = v->fPartner) {
TESS_LOG(", partner %g (%g, %g) alpha %d\n",
p->fID, p->fPoint.fX, p->fPoint.fY, p->fAlpha);
} else {
TESS_LOG(", null partner\n");
}
for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
TESS_LOG(" edge %g -> %g, winding %d\n", e->fTop->fID, e->fBottom->fID, e->fWinding);
}
for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
TESS_LOG(" edge %g -> %g, winding %d\n", e->fTop->fID, e->fBottom->fID, e->fWinding);
}
}
}
#endif
#ifdef SK_DEBUG
static void validate_edge_pair(Edge* left, Edge* right, const Comparator& c) {
if (!left || !right) {
return;
}
if (left->fTop == right->fTop) {
SkASSERT(left->isLeftOf(*right->fBottom));
SkASSERT(right->isRightOf(*left->fBottom));
} else if (c.sweep_lt(left->fTop->fPoint, right->fTop->fPoint)) {
SkASSERT(left->isLeftOf(*right->fTop));
} else {
SkASSERT(right->isRightOf(*left->fTop));
}
if (left->fBottom == right->fBottom) {
SkASSERT(left->isLeftOf(*right->fTop));
SkASSERT(right->isRightOf(*left->fTop));
} else if (c.sweep_lt(right->fBottom->fPoint, left->fBottom->fPoint)) {
SkASSERT(left->isLeftOf(*right->fBottom));
} else {
SkASSERT(right->isRightOf(*left->fBottom));
}
}
static void validate_edge_list(EdgeList* edges, const Comparator& c) {
Edge* left = edges->fHead;
if (!left) {
return;
}
for (Edge* right = left->fRight; right; right = right->fRight) {
validate_edge_pair(left, right, c);
left = right;
}
}
#endif
// Stage 4: Simplify the mesh by inserting new vertices at intersecting edges.
GrTriangulator::SimplifyResult GrTriangulator::simplify(VertexList* mesh,
const Comparator& c) {
TESS_LOG("simplifying complex polygons\n");
int initialNumEdges = fNumEdges;
EdgeList activeEdges;
auto result = SimplifyResult::kAlreadySimple;
for (Vertex* v = mesh->fHead; v != nullptr; v = v->fNext) {
if (!v->isConnected()) {
continue;
}
// The max increase across all skps, svgs and gms with only the triangulating and SW path
// renderers enabled and with the triangulator's maxVerbCount set to the Chrome value is
// 17x.
if (fNumEdges > 170*initialNumEdges) {
return SimplifyResult::kFailed;
}
Edge* leftEnclosingEdge;
Edge* rightEnclosingEdge;
bool restartChecks;
do {
TESS_LOG("\nvertex %g: (%g,%g), alpha %d\n",
v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
restartChecks = false;
FindEnclosingEdges(*v, activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
v->fLeftEnclosingEdge = leftEnclosingEdge;
v->fRightEnclosingEdge = rightEnclosingEdge;
if (v->fFirstEdgeBelow) {
for (Edge* edge = v->fFirstEdgeBelow; edge; edge = edge->fNextEdgeBelow) {
BoolFail l = this->checkForIntersection(
leftEnclosingEdge, edge, &activeEdges, &v, mesh, c);
if (l == BoolFail::kFail) {
return SimplifyResult::kFailed;
} else if (l == BoolFail::kFalse) {
BoolFail r = this->checkForIntersection(
edge, rightEnclosingEdge, &activeEdges, &v, mesh, c);
if (r == BoolFail::kFail) {
return SimplifyResult::kFailed;
} else if (r == BoolFail::kFalse) {
// Neither l and r are both false.
continue;
}
}
// Either l or r are true.
result = SimplifyResult::kFoundSelfIntersection;
restartChecks = true;
break;
} // for
} else {
BoolFail bf = this->checkForIntersection(
leftEnclosingEdge, rightEnclosingEdge, &activeEdges, &v, mesh, c);
if (bf == BoolFail::kFail) {
return SimplifyResult::kFailed;
}
if (bf == BoolFail::kTrue) {
result = SimplifyResult::kFoundSelfIntersection;
restartChecks = true;
}
}
} while (restartChecks);
#ifdef SK_DEBUG
validate_edge_list(&activeEdges, c);
#endif
for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
if (!activeEdges.remove(e)) {
return SimplifyResult::kFailed;
}
}
Edge* leftEdge = leftEnclosingEdge;
for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
activeEdges.insert(e, leftEdge);
leftEdge = e;
}
}
SkASSERT(!activeEdges.fHead && !activeEdges.fTail);
return result;
}
// Stage 5: Tessellate the simplified mesh into monotone polygons.
std::tuple<Poly*, bool> GrTriangulator::tessellate(const VertexList& vertices, const Comparator&) {
TESS_LOG("\ntessellating simple polygons\n");
EdgeList activeEdges;
Poly* polys = nullptr;
for (Vertex* v = vertices.fHead; v != nullptr; v = v->fNext) {
if (!v->isConnected()) {
continue;
}
#if TRIANGULATOR_LOGGING
TESS_LOG("\nvertex %g: (%g,%g), alpha %d\n", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
#endif
Edge* leftEnclosingEdge;
Edge* rightEnclosingEdge;
FindEnclosingEdges(*v, activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
Poly* leftPoly;
Poly* rightPoly;
if (v->fFirstEdgeAbove) {
leftPoly = v->fFirstEdgeAbove->fLeftPoly;
rightPoly = v->fLastEdgeAbove->fRightPoly;
} else {
leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : nullptr;
rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : nullptr;
}
#if TRIANGULATOR_LOGGING
TESS_LOG("edges above:\n");
for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n",
e->fTop->fID, e->fBottom->fID,
e->fLeftPoly ? e->fLeftPoly->fID : -1,
e->fRightPoly ? e->fRightPoly->fID : -1);
}
TESS_LOG("edges below:\n");
for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n",
e->fTop->fID, e->fBottom->fID,
e->fLeftPoly ? e->fLeftPoly->fID : -1,
e->fRightPoly ? e->fRightPoly->fID : -1);
}
#endif
if (v->fFirstEdgeAbove) {
if (leftPoly) {
leftPoly = leftPoly->addEdge(v->fFirstEdgeAbove, kRight_Side, this);
}
if (rightPoly) {
rightPoly = rightPoly->addEdge(v->fLastEdgeAbove, kLeft_Side, this);
}
for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) {
Edge* rightEdge = e->fNextEdgeAbove;
activeEdges.remove(e);
if (e->fRightPoly) {
e->fRightPoly->addEdge(e, kLeft_Side, this);
}
if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != e->fRightPoly) {
rightEdge->fLeftPoly->addEdge(e, kRight_Side, this);
}
}
activeEdges.remove(v->fLastEdgeAbove);
if (!v->fFirstEdgeBelow) {
if (leftPoly && rightPoly && leftPoly != rightPoly) {
SkASSERT(leftPoly->fPartner == nullptr && rightPoly->fPartner == nullptr);
rightPoly->fPartner = leftPoly;
leftPoly->fPartner = rightPoly;
}
}
}
if (v->fFirstEdgeBelow) {
if (!v->fFirstEdgeAbove) {
if (leftPoly && rightPoly) {
if (leftPoly == rightPoly) {
if (leftPoly->fTail && leftPoly->fTail->fSide == kLeft_Side) {
leftPoly = this->makePoly(&polys, leftPoly->lastVertex(),
leftPoly->fWinding);
leftEnclosingEdge->fRightPoly = leftPoly;
} else {
rightPoly = this->makePoly(&polys, rightPoly->lastVertex(),
rightPoly->fWinding);
rightEnclosingEdge->fLeftPoly = rightPoly;
}
}
Edge* join = this->allocateEdge(leftPoly->lastVertex(), v, 1, EdgeType::kInner);
leftPoly = leftPoly->addEdge(join, kRight_Side, this);
rightPoly = rightPoly->addEdge(join, kLeft_Side, this);
}
}
Edge* leftEdge = v->fFirstEdgeBelow;
leftEdge->fLeftPoly = leftPoly;
activeEdges.insert(leftEdge, leftEnclosingEdge);
for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge;
rightEdge = rightEdge->fNextEdgeBelow) {
activeEdges.insert(rightEdge, leftEdge);
int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0;
winding += leftEdge->fWinding;
if (winding != 0) {
Poly* poly = this->makePoly(&polys, v, winding);
leftEdge->fRightPoly = rightEdge->fLeftPoly = poly;
}
leftEdge = rightEdge;
}
v->fLastEdgeBelow->fRightPoly = rightPoly;
}
#if TRIANGULATOR_LOGGING
TESS_LOG("\nactive edges:\n");
for (Edge* e = activeEdges.fHead; e != nullptr; e = e->fRight) {
TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n",
e->fTop->fID, e->fBottom->fID,
e->fLeftPoly ? e->fLeftPoly->fID : -1,
e->fRightPoly ? e->fRightPoly->fID : -1);
}
#endif
}
return { polys, true };
}
// This is a driver function that calls stages 2-5 in turn.
void GrTriangulator::contoursToMesh(VertexList* contours, int contourCnt, VertexList* mesh,
const Comparator& c) {
#if TRIANGULATOR_LOGGING
for (int i = 0; i < contourCnt; ++i) {
Vertex* v = contours[i].fHead;
SkASSERT(v);
TESS_LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
for (v = v->fNext; v; v = v->fNext) {
TESS_LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
}
}
#endif
this->sanitizeContours(contours, contourCnt);
this->buildEdges(contours, contourCnt, mesh, c);
}
void GrTriangulator::SortMesh(VertexList* vertices, const Comparator& c) {
if (!vertices || !vertices->fHead) {
return;
}
// Sort vertices in Y (secondarily in X).
if (c.fDirection == Comparator::Direction::kHorizontal) {
merge_sort<sweep_lt_horiz>(vertices);
} else {
merge_sort<sweep_lt_vert>(vertices);
}
#if TRIANGULATOR_LOGGING
for (Vertex* v = vertices->fHead; v != nullptr; v = v->fNext) {
static float gID = 0.0f;
v->fID = gID++;
}
#endif
}
std::tuple<Poly*, bool> GrTriangulator::contoursToPolys(VertexList* contours, int contourCnt) {
const SkRect& pathBounds = fPath.getBounds();
Comparator c(pathBounds.width() > pathBounds.height() ? Comparator::Direction::kHorizontal
: Comparator::Direction::kVertical);
VertexList mesh;
this->contoursToMesh(contours, contourCnt, &mesh, c);
TESS_LOG("\ninitial mesh:\n");
DUMP_MESH(mesh);
SortMesh(&mesh, c);
TESS_LOG("\nsorted mesh:\n");
DUMP_MESH(mesh);
this->mergeCoincidentVertices(&mesh, c);
TESS_LOG("\nsorted+merged mesh:\n");
DUMP_MESH(mesh);
auto result = this->simplify(&mesh, c);
if (result == SimplifyResult::kFailed) {
return { nullptr, false };
}
TESS_LOG("\nsimplified mesh:\n");
DUMP_MESH(mesh);
return this->tessellate(mesh, c);
}
// Stage 6: Triangulate the monotone polygons into a vertex buffer.
skgpu::VertexWriter GrTriangulator::polysToTriangles(Poly* polys,
SkPathFillType overrideFillType,
skgpu::VertexWriter data) const {
for (Poly* poly = polys; poly; poly = poly->fNext) {
if (apply_fill_type(overrideFillType, poly)) {
data = this->emitPoly(poly, std::move(data));
}
}
return data;
}
static int get_contour_count(const SkPath& path, SkScalar tolerance) {
// We could theoretically be more aggressive about not counting empty contours, but we need to
// actually match the exact number of contour linked lists the tessellator will create later on.
int contourCnt = 1;
bool hasPoints = false;
SkPath::Iter iter(path, false);
SkPath::Verb verb;
SkPoint pts[4];
bool first = true;
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
if (!first) {
++contourCnt;
}
[[fallthrough]];
case SkPath::kLine_Verb:
case SkPath::kConic_Verb:
case SkPath::kQuad_Verb:
case SkPath::kCubic_Verb:
hasPoints = true;
break;
default:
break;
}
first = false;
}
if (!hasPoints) {
return 0;
}
return contourCnt;
}
std::tuple<Poly*, bool> GrTriangulator::pathToPolys(float tolerance, const SkRect& clipBounds, bool* isLinear) {
int contourCnt = get_contour_count(fPath, tolerance);
if (contourCnt <= 0) {
*isLinear = true;
return { nullptr, true };
}
if (SkPathFillType_IsInverse(fPath.getFillType())) {
contourCnt++;
}
std::unique_ptr<VertexList[]> contours(new VertexList[contourCnt]);
this->pathToContours(tolerance, clipBounds, contours.get(), isLinear);
return this->contoursToPolys(contours.get(), contourCnt);
}
int64_t GrTriangulator::CountPoints(Poly* polys, SkPathFillType overrideFillType) {
int64_t count = 0;
for (Poly* poly = polys; poly; poly = poly->fNext) {
if (apply_fill_type(overrideFillType, poly) && poly->fCount >= 3) {
count += (poly->fCount - 2) * (TRIANGULATOR_WIREFRAME ? 6 : 3);
}
}
return count;
}
// Stage 6: Triangulate the monotone polygons into a vertex buffer.
int GrTriangulator::polysToTriangles(Poly* polys, GrEagerVertexAllocator* vertexAllocator) const {
int64_t count64 = CountPoints(polys, fPath.getFillType());
if (0 == count64 || count64 > SK_MaxS32) {
return 0;
}
int count = count64;
size_t vertexStride = sizeof(SkPoint);
if (fEmitCoverage) {
vertexStride += sizeof(float);
}
skgpu::VertexWriter verts = vertexAllocator->lockWriter(vertexStride, count);
if (!verts) {
SkDebugf("Could not allocate vertices\n");
return 0;
}
TESS_LOG("emitting %d verts\n", count);
skgpu::BufferWriter::Mark start = verts.mark();
verts = this->polysToTriangles(polys, fPath.getFillType(), std::move(verts));
int actualCount = static_cast<int>((verts.mark() - start) / vertexStride);
SkASSERT(actualCount <= count);
vertexAllocator->unlock(actualCount);
return actualCount;
}
#endif // SK_ENABLE_OPTIMIZE_SIZE