| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef GrPathUtils_DEFINED |
| #define GrPathUtils_DEFINED |
| |
| #include "include/core/SkRect.h" |
| #include "include/private/base/SkTArray.h" |
| #include "src/core/SkGeometry.h" |
| #include "src/core/SkPathPriv.h" |
| #include "src/gpu/BufferWriter.h" |
| |
| class SkMatrix; |
| |
| /** |
| * Utilities for evaluating paths. |
| */ |
| namespace GrPathUtils { |
| |
| // When tessellating curved paths into linear segments, this defines the maximum distance in screen |
| // space which a segment may deviate from the mathematically correct value. Above this value, the |
| // segment will be subdivided. |
| // This value was chosen to approximate the supersampling accuracy of the raster path (16 samples, |
| // or one quarter pixel). |
| static const SkScalar kDefaultTolerance = SkDoubleToScalar(0.25); |
| |
| // We guarantee that no quad or cubic will ever produce more than this many points |
| static const int kMaxPointsPerCurve = 1 << 10; |
| |
| // Very small tolerances will be increased to a minimum threshold value, to avoid division problems |
| // in subsequent math. |
| SkScalar scaleToleranceToSrc(SkScalar devTol, |
| const SkMatrix& viewM, |
| const SkRect& pathBounds); |
| |
| // Returns the maximum number of vertices required when using a recursive chopping algorithm to |
| // linearize the quadratic Bezier (e.g. generateQuadraticPoints below) to the given error tolerance. |
| // This is a power of two and will not exceed kMaxPointsPerCurve. |
| uint32_t quadraticPointCount(const SkPoint points[], SkScalar tol); |
| |
| // Returns the number of points actually written to 'points', will be <= to 'pointsLeft' |
| uint32_t generateQuadraticPoints(const SkPoint& p0, |
| const SkPoint& p1, |
| const SkPoint& p2, |
| SkScalar tolSqd, |
| SkPoint** points, |
| uint32_t pointsLeft); |
| |
| // Returns the maximum number of vertices required when using a recursive chopping algorithm to |
| // linearize the cubic Bezier (e.g. generateQuadraticPoints below) to the given error tolerance. |
| // This is a power of two and will not exceed kMaxPointsPerCurve. |
| uint32_t cubicPointCount(const SkPoint points[], SkScalar tol); |
| |
| // Returns the number of points actually written to 'points', will be <= to 'pointsLeft' |
| uint32_t generateCubicPoints(const SkPoint& p0, |
| const SkPoint& p1, |
| const SkPoint& p2, |
| const SkPoint& p3, |
| SkScalar tolSqd, |
| SkPoint** points, |
| uint32_t pointsLeft); |
| |
| // A 2x3 matrix that goes from the 2d space coordinates to UV space where u^2-v = 0 specifies the |
| // quad. The matrix is determined by the control points of the quadratic. |
| class QuadUVMatrix { |
| public: |
| QuadUVMatrix() {} |
| // Initialize the matrix from the control pts |
| QuadUVMatrix(const SkPoint controlPts[3]) { this->set(controlPts); } |
| void set(const SkPoint controlPts[3]); |
| |
| /** |
| * Applies the matrix to vertex positions to compute UV coords. |
| * |
| * vertices is a pointer to the first vertex. |
| * vertexCount is the number of vertices. |
| * stride is the size of each vertex. |
| * uvOffset is the offset of the UV values within each vertex. |
| */ |
| void apply(void* vertices, int vertexCount, size_t stride, size_t uvOffset) const { |
| intptr_t xyPtr = reinterpret_cast<intptr_t>(vertices); |
| intptr_t uvPtr = reinterpret_cast<intptr_t>(vertices) + uvOffset; |
| float sx = fM[0]; |
| float kx = fM[1]; |
| float tx = fM[2]; |
| float ky = fM[3]; |
| float sy = fM[4]; |
| float ty = fM[5]; |
| for (int i = 0; i < vertexCount; ++i) { |
| const SkPoint* xy = reinterpret_cast<const SkPoint*>(xyPtr); |
| SkPoint* uv = reinterpret_cast<SkPoint*>(uvPtr); |
| uv->fX = sx * xy->fX + kx * xy->fY + tx; |
| uv->fY = ky * xy->fX + sy * xy->fY + ty; |
| xyPtr += stride; |
| uvPtr += stride; |
| } |
| } |
| private: |
| float fM[6]; |
| }; |
| |
| // Input is 3 control points and a weight for a bezier conic. Calculates the three linear |
| // functionals (K,L,M) that represent the implicit equation of the conic, k^2 - lm. |
| // |
| // Output: klm holds the linear functionals K,L,M as row vectors: |
| // |
| // | ..K.. | | x | | k | |
| // | ..L.. | * | y | == | l | |
| // | ..M.. | | 1 | | m | |
| // |
| void getConicKLM(const SkPoint p[3], const SkScalar weight, SkMatrix* klm); |
| |
| // Converts a cubic into a sequence of quads. If working in device space use tolScale = 1, otherwise |
| // set based on stretchiness of the matrix. The result is sets of 3 points in quads. This will |
| // preserve the starting and ending tangent vectors (modulo FP precision). |
| void convertCubicToQuads(const SkPoint p[4], |
| SkScalar tolScale, |
| skia_private::TArray<SkPoint, true>* quads); |
| |
| // When we approximate a cubic {a,b,c,d} with a quadratic we may have to ensure that the new control |
| // point lies between the lines ab and cd. The convex path renderer requires this. It starts with a |
| // path where all the control points taken together form a convex polygon. It relies on this |
| // property and the quadratic approximation of cubics step cannot alter it. This variation enforces |
| // this constraint. The cubic must be simple and dir must specify the orientation of the contour |
| // containing the cubic. |
| void convertCubicToQuadsConstrainToTangents(const SkPoint p[4], |
| SkScalar tolScale, |
| SkPathFirstDirection dir, |
| skia_private::TArray<SkPoint, true>* quads); |
| |
| } // namespace GrPathUtils |
| |
| #endif |