blob: 76acc7c01b2325b90500d7f038e511a31623cf05 [file] [log] [blame]
/*
* Copyright 2019 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkMatrix.h"
#include "include/core/SkPoint.h"
#include "include/core/SkRect.h"
#include "include/core/SkScalar.h"
#include "include/core/SkTypes.h"
#include "include/private/gpu/ganesh/GrTypesPriv.h"
#include "src/gpu/ganesh/geometry/GrQuad.h"
#include "src/gpu/ganesh/geometry/GrQuadUtils.h"
#include "tests/Test.h"
#define ASSERT(cond) REPORTER_ASSERT(r, cond)
#define ASSERTF(cond, ...) REPORTER_ASSERT(r, cond, __VA_ARGS__)
#define TEST(name) DEF_TEST(GrQuadCrop##name, r)
#define ASSERT_NEARLY_EQUAL(expected, actual) \
ASSERTF(SkScalarNearlyEqual(expected, actual), "expected: %f, actual: %f", \
expected, actual)
// Make the base rect contain the origin and have unique edge values so that each transform
// produces a different axis-aligned rectangle.
static const SkRect kDrawRect = SkRect::MakeLTRB(-5.f, -6.f, 10.f, 11.f);
static void run_crop_axis_aligned_test(skiatest::Reporter* r, const SkRect& clipRect, GrAA clipAA,
const SkMatrix& viewMatrix, const SkMatrix* localMatrix) {
// Should use run_crop_fully_covers_test for non-rect matrices
SkASSERT(viewMatrix.rectStaysRect());
DrawQuad quad = {GrQuad::MakeFromRect(kDrawRect, viewMatrix),
GrQuad::MakeFromRect(kDrawRect, localMatrix ? *localMatrix : SkMatrix::I()),
clipAA == GrAA::kYes ? GrQuadAAFlags::kNone : GrQuadAAFlags::kAll};
bool exact = GrQuadUtils::CropToRect(clipRect, clipAA, &quad, /* calc. locals */ !!localMatrix);
ASSERTF(exact, "Expected exact crop");
ASSERTF(quad.fDevice.quadType() == GrQuad::Type::kAxisAligned,
"Expected quad to remain axis-aligned");
// Since we remained a rectangle, the bounds will exactly match the coordinates
SkRect expectedBounds = viewMatrix.mapRect(kDrawRect);
SkAssertResult(expectedBounds.intersect(clipRect));
SkRect actualBounds = quad.fDevice.bounds();
ASSERT_NEARLY_EQUAL(expectedBounds.fLeft, actualBounds.fLeft);
ASSERT_NEARLY_EQUAL(expectedBounds.fTop, actualBounds.fTop);
ASSERT_NEARLY_EQUAL(expectedBounds.fRight, actualBounds.fRight);
ASSERT_NEARLY_EQUAL(expectedBounds.fBottom, actualBounds.fBottom);
// Confirm that local coordinates match up with clipped edges and the transform
SkMatrix invViewMatrix;
SkAssertResult(viewMatrix.invert(&invViewMatrix));
if (localMatrix) {
SkMatrix toLocal = SkMatrix::Concat(*localMatrix, invViewMatrix);
for (int p = 0; p < 4; ++p) {
SkPoint expectedPoint = quad.fDevice.point(p);
toLocal.mapPoints(&expectedPoint, 1);
SkPoint actualPoint = quad.fLocal.point(p);
ASSERT_NEARLY_EQUAL(expectedPoint.fX, actualPoint.fX);
ASSERT_NEARLY_EQUAL(expectedPoint.fY, actualPoint.fY);
}
}
// Confirm that the edge flags match, by mapping clip rect to drawRect space and
// comparing to the original draw rect edges
SkRect drawClip = invViewMatrix.mapRect(clipRect);
if (drawClip.fLeft > kDrawRect.fLeft) {
if (clipAA == GrAA::kYes) {
ASSERTF(quad.fEdgeFlags & GrQuadAAFlags::kLeft, "Expected left edge AA set");
} else {
ASSERTF(!(quad.fEdgeFlags & GrQuadAAFlags::kLeft), "Expected left edge AA unset");
}
}
if (drawClip.fRight < kDrawRect.fRight) {
if (clipAA == GrAA::kYes) {
ASSERTF(quad.fEdgeFlags & GrQuadAAFlags::kRight, "Expected right edge AA set");
} else {
ASSERTF(!(quad.fEdgeFlags & GrQuadAAFlags::kRight), "Expected right edge AA unset");
}
}
if (drawClip.fTop > kDrawRect.fTop) {
if (clipAA == GrAA::kYes) {
ASSERTF(quad.fEdgeFlags & GrQuadAAFlags::kTop, "Expected top edge AA set");
} else {
ASSERTF(!(quad.fEdgeFlags & GrQuadAAFlags::kTop), "Expected top edge AA unset");
}
}
if (drawClip.fBottom < kDrawRect.fBottom) {
if (clipAA == GrAA::kYes) {
ASSERTF(quad.fEdgeFlags & GrQuadAAFlags::kBottom, "Expected bottom edge AA set");
} else {
ASSERTF(!(quad.fEdgeFlags & GrQuadAAFlags::kBottom), "Expected bottom edge AA unset");
}
}
}
static void run_crop_fully_covered_test(skiatest::Reporter* r, GrAA clipAA,
const SkMatrix& viewMatrix, const SkMatrix* localMatrix) {
// Should use run_crop_axis_aligned for rect transforms since that verifies more behavior
SkASSERT(!viewMatrix.rectStaysRect());
// Test what happens when the geometry fully covers the crop rect. Given a fixed crop,
// use the provided view matrix to derive the "input" geometry that we know covers the crop.
SkMatrix invViewMatrix;
SkAssertResult(viewMatrix.invert(&invViewMatrix));
SkRect containsCrop = kDrawRect; // Use kDrawRect as the crop rect for this test
containsCrop.outset(10.f, 10.f);
SkRect drawRect = invViewMatrix.mapRect(containsCrop);
DrawQuad quad = {GrQuad::MakeFromRect(drawRect, viewMatrix),
GrQuad::MakeFromRect(drawRect, localMatrix ? *localMatrix : SkMatrix::I()),
clipAA == GrAA::kYes ? GrQuadAAFlags::kNone : GrQuadAAFlags::kAll};
if (localMatrix) {
DrawQuad originalQuad = quad;
bool exact = GrQuadUtils::CropToRect(kDrawRect, clipAA, &quad);
// Currently non-rect matrices don't know how to update local coordinates, so the crop
// doesn't know how to restrict itself and should leave the inputs unmodified
ASSERTF(!exact, "Expected crop to be not exact");
ASSERTF(quad.fEdgeFlags == originalQuad.fEdgeFlags,
"Expected edge flags not to be modified");
for (int i = 0; i < 4; ++i) {
ASSERT_NEARLY_EQUAL(originalQuad.fDevice.x(i), quad.fDevice.x(i));
ASSERT_NEARLY_EQUAL(originalQuad.fDevice.y(i), quad.fDevice.y(i));
ASSERT_NEARLY_EQUAL(originalQuad.fDevice.w(i), quad.fDevice.w(i));
ASSERT_NEARLY_EQUAL(originalQuad.fLocal.x(i), quad.fLocal.x(i));
ASSERT_NEARLY_EQUAL(originalQuad.fLocal.y(i), quad.fLocal.y(i));
ASSERT_NEARLY_EQUAL(originalQuad.fLocal.w(i), quad.fLocal.w(i));
}
} else {
// Since no local coordinates were provided, and the input draw geometry is known to
// fully cover the crop rect, the quad should be updated to match cropRect exactly,
// unless it's perspective in which case we don't do anything since the code isn't
// numerically robust enough.
DrawQuad originalQuad = quad;
bool exact = GrQuadUtils::CropToRect(kDrawRect, clipAA, &quad, /* calc. local */ false);
if (originalQuad.fDevice.quadType() == GrQuad::Type::kPerspective) {
ASSERTF(!exact, "Expected no change for perspective");
for (int i = 0; i < 4; ++i) {
ASSERTF(originalQuad.fDevice.x(i) == quad.fDevice.x(i));
ASSERTF(originalQuad.fDevice.y(i) == quad.fDevice.y(i));
ASSERTF(originalQuad.fDevice.w(i) == quad.fDevice.w(i));
}
return;
}
ASSERTF(exact, "Expected crop to be exact");
GrQuadAAFlags expectedFlags = clipAA == GrAA::kYes ? GrQuadAAFlags::kAll
: GrQuadAAFlags::kNone;
ASSERTF(expectedFlags == quad.fEdgeFlags,
"Expected edge flags do not match clip AA setting");
ASSERTF(quad.fDevice.quadType() == GrQuad::Type::kAxisAligned, "Unexpected quad type");
ASSERT_NEARLY_EQUAL(kDrawRect.fLeft, quad.fDevice.x(0));
ASSERT_NEARLY_EQUAL(kDrawRect.fTop, quad.fDevice.y(0));
ASSERT_NEARLY_EQUAL(1.f, quad.fDevice.w(0));
ASSERT_NEARLY_EQUAL(kDrawRect.fLeft, quad.fDevice.x(1));
ASSERT_NEARLY_EQUAL(kDrawRect.fBottom, quad.fDevice.y(1));
ASSERT_NEARLY_EQUAL(1.f, quad.fDevice.w(1));
ASSERT_NEARLY_EQUAL(kDrawRect.fRight, quad.fDevice.x(2));
ASSERT_NEARLY_EQUAL(kDrawRect.fTop, quad.fDevice.y(2));
ASSERT_NEARLY_EQUAL(1.f, quad.fDevice.w(2));
ASSERT_NEARLY_EQUAL(kDrawRect.fRight, quad.fDevice.x(3));
ASSERT_NEARLY_EQUAL(kDrawRect.fBottom, quad.fDevice.y(3));
ASSERT_NEARLY_EQUAL(1.f, quad.fDevice.w(3));
}
}
static void test_axis_aligned_all_clips(skiatest::Reporter* r, const SkMatrix& viewMatrix,
const SkMatrix* localMatrix) {
static const float kInsideEdge = SkScalarAbs(kDrawRect.fLeft) - 1.f;
static const float kOutsideEdge = SkScalarAbs(kDrawRect.fBottom) + 1.f;
static const float kIntersectEdge = SkScalarAbs(kDrawRect.fTop) + 1.f;
static const SkRect kInsideClipRect = SkRect::MakeLTRB(-kInsideEdge, -kInsideEdge,
kInsideEdge, kInsideEdge);
static const SkRect kContainsClipRect = SkRect::MakeLTRB(-kOutsideEdge, -kOutsideEdge,
kOutsideEdge, kOutsideEdge);
static const SkRect kXYAxesClipRect = SkRect::MakeLTRB(-kIntersectEdge, -kIntersectEdge,
kIntersectEdge, kIntersectEdge);
static const SkRect kXAxisClipRect = SkRect::MakeLTRB(-kIntersectEdge, -kOutsideEdge,
kIntersectEdge, kOutsideEdge);
static const SkRect kYAxisClipRect = SkRect::MakeLTRB(-kOutsideEdge, -kIntersectEdge,
kOutsideEdge, kIntersectEdge);
run_crop_axis_aligned_test(r, kInsideClipRect, GrAA::kNo, viewMatrix, localMatrix);
run_crop_axis_aligned_test(r, kContainsClipRect, GrAA::kNo, viewMatrix, localMatrix);
run_crop_axis_aligned_test(r, kXYAxesClipRect, GrAA::kNo, viewMatrix, localMatrix);
run_crop_axis_aligned_test(r, kXAxisClipRect, GrAA::kNo, viewMatrix, localMatrix);
run_crop_axis_aligned_test(r, kYAxisClipRect, GrAA::kNo, viewMatrix, localMatrix);
run_crop_axis_aligned_test(r, kInsideClipRect, GrAA::kYes, viewMatrix, localMatrix);
run_crop_axis_aligned_test(r, kContainsClipRect, GrAA::kYes, viewMatrix, localMatrix);
run_crop_axis_aligned_test(r, kXYAxesClipRect, GrAA::kYes, viewMatrix, localMatrix);
run_crop_axis_aligned_test(r, kXAxisClipRect, GrAA::kYes, viewMatrix, localMatrix);
run_crop_axis_aligned_test(r, kYAxisClipRect, GrAA::kYes, viewMatrix, localMatrix);
}
static void test_axis_aligned(skiatest::Reporter* r, const SkMatrix& viewMatrix) {
test_axis_aligned_all_clips(r, viewMatrix, nullptr);
SkMatrix normalized = SkMatrix::RectToRect(kDrawRect, SkRect::MakeWH(1.f, 1.f));
test_axis_aligned_all_clips(r, viewMatrix, &normalized);
SkMatrix rotated;
rotated.setRotate(45.f);
test_axis_aligned_all_clips(r, viewMatrix, &rotated);
SkMatrix perspective;
perspective.setPerspY(0.001f);
perspective.setSkewX(8.f / 25.f);
test_axis_aligned_all_clips(r, viewMatrix, &perspective);
}
static void test_crop_fully_covered(skiatest::Reporter* r, const SkMatrix& viewMatrix) {
run_crop_fully_covered_test(r, GrAA::kNo, viewMatrix, nullptr);
run_crop_fully_covered_test(r, GrAA::kYes, viewMatrix, nullptr);
SkMatrix normalized = SkMatrix::RectToRect(kDrawRect, SkRect::MakeWH(1.f, 1.f));
run_crop_fully_covered_test(r, GrAA::kNo, viewMatrix, &normalized);
run_crop_fully_covered_test(r, GrAA::kYes, viewMatrix, &normalized);
SkMatrix rotated;
rotated.setRotate(45.f);
run_crop_fully_covered_test(r, GrAA::kNo, viewMatrix, &rotated);
run_crop_fully_covered_test(r, GrAA::kYes, viewMatrix, &rotated);
SkMatrix perspective;
perspective.setPerspY(0.001f);
perspective.setSkewX(8.f / 25.f);
run_crop_fully_covered_test(r, GrAA::kNo, viewMatrix, &perspective);
run_crop_fully_covered_test(r, GrAA::kYes, viewMatrix, &perspective);
}
TEST(AxisAligned) {
test_axis_aligned(r, SkMatrix::I());
test_axis_aligned(r, SkMatrix::Scale(-1.f, 1.f));
test_axis_aligned(r, SkMatrix::Scale(1.f, -1.f));
SkMatrix rotation;
rotation.setRotate(90.f);
test_axis_aligned(r, rotation);
rotation.setRotate(180.f);
test_axis_aligned(r, rotation);
rotation.setRotate(270.f);
test_axis_aligned(r, rotation);
}
TEST(FullyCovered) {
SkMatrix rotation;
rotation.setRotate(34.f);
test_crop_fully_covered(r, rotation);
SkMatrix skew;
skew.setSkewX(0.3f);
skew.setSkewY(0.04f);
test_crop_fully_covered(r, skew);
SkMatrix perspective;
perspective.setPerspX(0.001f);
perspective.setSkewY(8.f / 25.f);
test_crop_fully_covered(r, perspective);
}