| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkRegionPriv_DEFINED |
| #define SkRegionPriv_DEFINED |
| |
| #include "include/core/SkRegion.h" |
| #include "include/private/base/SkMalloc.h" |
| #include "include/private/base/SkMath.h" |
| #include "include/private/base/SkTo.h" |
| |
| #include <atomic> |
| #include <functional> |
| |
| class SkRegionPriv { |
| public: |
| inline static constexpr int kRunTypeSentinel = 0x7FFFFFFF; |
| typedef SkRegion::RunType RunType; |
| typedef SkRegion::RunHead RunHead; |
| |
| // Call the function with each span, in Y -> X ascending order. |
| // We pass a rect, but we will still ensure the span Y->X ordering, so often the height |
| // of the rect may be 1. It should never be empty. |
| static void VisitSpans(const SkRegion& rgn, const std::function<void(const SkIRect&)>&); |
| |
| #ifdef SK_DEBUG |
| static void Validate(const SkRegion& rgn); |
| #endif |
| }; |
| |
| static constexpr int SkRegion_kRunTypeSentinel = 0x7FFFFFFF; |
| |
| inline bool SkRegionValueIsSentinel(int32_t value) { |
| return value == (int32_t)SkRegion_kRunTypeSentinel; |
| } |
| |
| #define assert_sentinel(value, isSentinel) \ |
| SkASSERT(SkRegionValueIsSentinel(value) == isSentinel) |
| |
| #ifdef SK_DEBUG |
| // Given the first interval (just past the interval-count), compute the |
| // interval count, by search for the x-sentinel |
| // |
| static int compute_intervalcount(const SkRegionPriv::RunType runs[]) { |
| const SkRegionPriv::RunType* curr = runs; |
| while (*curr < SkRegion_kRunTypeSentinel) { |
| SkASSERT(curr[0] < curr[1]); |
| SkASSERT(curr[1] < SkRegion_kRunTypeSentinel); |
| curr += 2; |
| } |
| return SkToInt((curr - runs) >> 1); |
| } |
| #endif |
| |
| struct SkRegion::RunHead { |
| private: |
| |
| public: |
| std::atomic<int32_t> fRefCnt; |
| int32_t fRunCount; |
| |
| /** |
| * Number of spans with different Y values. This does not count the initial |
| * Top value, nor does it count the final Y-Sentinel value. In the logical |
| * case of a rectangle, this would return 1, and an empty region would |
| * return 0. |
| */ |
| int getYSpanCount() const { |
| return fYSpanCount; |
| } |
| |
| /** |
| * Number of intervals in the entire region. This equals the number of |
| * rects that would be returned by the Iterator. In the logical case of |
| * a rect, this would return 1, and an empty region would return 0. |
| */ |
| int getIntervalCount() const { |
| return fIntervalCount; |
| } |
| |
| static RunHead* Alloc(int count) { |
| if (count < SkRegion::kRectRegionRuns) { |
| return nullptr; |
| } |
| |
| const int64_t size = sk_64_mul(count, sizeof(RunType)) + sizeof(RunHead); |
| if (count < 0 || !SkTFitsIn<int32_t>(size)) { SK_ABORT("Invalid Size"); } |
| |
| RunHead* head = (RunHead*)sk_malloc_throw(size); |
| head->fRefCnt = 1; |
| head->fRunCount = count; |
| // these must be filled in later, otherwise we will be invalid |
| head->fYSpanCount = 0; |
| head->fIntervalCount = 0; |
| return head; |
| } |
| |
| static RunHead* Alloc(int count, int yspancount, int intervalCount) { |
| if (yspancount <= 0 || intervalCount <= 1) { |
| return nullptr; |
| } |
| |
| RunHead* head = Alloc(count); |
| if (!head) { |
| return nullptr; |
| } |
| head->fYSpanCount = yspancount; |
| head->fIntervalCount = intervalCount; |
| return head; |
| } |
| |
| SkRegion::RunType* writable_runs() { |
| SkASSERT(fRefCnt == 1); |
| return (SkRegion::RunType*)(this + 1); |
| } |
| |
| const SkRegion::RunType* readonly_runs() const { |
| return (const SkRegion::RunType*)(this + 1); |
| } |
| |
| RunHead* ensureWritable() { |
| RunHead* writable = this; |
| if (fRefCnt > 1) { |
| // We need to alloc & copy the current region before decrease |
| // the refcount because it could be freed in the meantime. |
| writable = Alloc(fRunCount, fYSpanCount, fIntervalCount); |
| memcpy(writable->writable_runs(), this->readonly_runs(), |
| fRunCount * sizeof(RunType)); |
| |
| // fRefCount might have changed since we last checked. |
| // If we own the last reference at this point, we need to |
| // free the memory. |
| if (--fRefCnt == 0) { |
| sk_free(this); |
| } |
| } |
| return writable; |
| } |
| |
| /** |
| * Given a scanline (including its Bottom value at runs[0]), return the next |
| * scanline. Asserts that there is one (i.e. runs[0] < Sentinel) |
| */ |
| static SkRegion::RunType* SkipEntireScanline(const SkRegion::RunType runs[]) { |
| // we are not the Y Sentinel |
| SkASSERT(runs[0] < SkRegion_kRunTypeSentinel); |
| |
| const int intervals = runs[1]; |
| SkASSERT(runs[2 + intervals * 2] == SkRegion_kRunTypeSentinel); |
| #ifdef SK_DEBUG |
| { |
| int n = compute_intervalcount(&runs[2]); |
| SkASSERT(n == intervals); |
| } |
| #endif |
| |
| // skip the entire line [B N [L R] S] |
| runs += 1 + 1 + intervals * 2 + 1; |
| return const_cast<SkRegion::RunType*>(runs); |
| } |
| |
| |
| /** |
| * Return the scanline that contains the Y value. This requires that the Y |
| * value is already known to be contained within the bounds of the region, |
| * and so this routine never returns nullptr. |
| * |
| * It returns the beginning of the scanline, starting with its Bottom value. |
| */ |
| SkRegion::RunType* findScanline(int y) const { |
| const RunType* runs = this->readonly_runs(); |
| |
| // if the top-check fails, we didn't do a quick check on the bounds |
| SkASSERT(y >= runs[0]); |
| |
| runs += 1; // skip top-Y |
| for (;;) { |
| int bottom = runs[0]; |
| // If we hit this, we've walked off the region, and our bounds check |
| // failed. |
| SkASSERT(bottom < SkRegion_kRunTypeSentinel); |
| if (y < bottom) { |
| break; |
| } |
| runs = SkipEntireScanline(runs); |
| } |
| return const_cast<SkRegion::RunType*>(runs); |
| } |
| |
| // Copy src runs into us, computing interval counts and bounds along the way |
| void computeRunBounds(SkIRect* bounds) { |
| RunType* runs = this->writable_runs(); |
| bounds->fTop = *runs++; |
| |
| int bot; |
| int ySpanCount = 0; |
| int intervalCount = 0; |
| int left = SK_MaxS32; |
| int rite = SK_MinS32; |
| |
| do { |
| bot = *runs++; |
| SkASSERT(bot < SkRegion_kRunTypeSentinel); |
| ySpanCount += 1; |
| |
| const int intervals = *runs++; |
| SkASSERT(intervals >= 0); |
| SkASSERT(intervals < SkRegion_kRunTypeSentinel); |
| |
| if (intervals > 0) { |
| #ifdef SK_DEBUG |
| { |
| int n = compute_intervalcount(runs); |
| SkASSERT(n == intervals); |
| } |
| #endif |
| RunType L = runs[0]; |
| SkASSERT(L < SkRegion_kRunTypeSentinel); |
| if (left > L) { |
| left = L; |
| } |
| |
| runs += intervals * 2; |
| RunType R = runs[-1]; |
| SkASSERT(R < SkRegion_kRunTypeSentinel); |
| if (rite < R) { |
| rite = R; |
| } |
| |
| intervalCount += intervals; |
| } |
| SkASSERT(SkRegion_kRunTypeSentinel == *runs); |
| runs += 1; // skip x-sentinel |
| |
| // test Y-sentinel |
| } while (SkRegion_kRunTypeSentinel > *runs); |
| |
| #ifdef SK_DEBUG |
| // +1 to skip the last Y-sentinel |
| int runCount = SkToInt(runs - this->writable_runs() + 1); |
| SkASSERT(runCount == fRunCount); |
| #endif |
| |
| fYSpanCount = ySpanCount; |
| fIntervalCount = intervalCount; |
| |
| bounds->fLeft = left; |
| bounds->fRight = rite; |
| bounds->fBottom = bot; |
| } |
| |
| private: |
| int32_t fYSpanCount; |
| int32_t fIntervalCount; |
| }; |
| |
| #endif |