| /* |
| * Copyright 2023 Google LLC |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "fuzz/Fuzz.h" |
| #include "include/private/base/SkAssert.h" |
| #include "include/private/base/SkFloatingPoint.h" |
| #include "src/base/SkCubics.h" |
| #include "src/base/SkQuads.h" |
| #include "src/base/SkUtils.h" |
| |
| #include <cmath> |
| |
| static void fuzz_quad_real_roots(double A, double B, double C) { |
| double roots[2]; |
| const int numSolutions = SkQuads::RootsReal(A, B, C, roots); |
| SkASSERT_RELEASE(numSolutions >= 0 && numSolutions <= 2); |
| for (int i = 0; i < numSolutions; i++) { |
| SkASSERT_RELEASE(std::isfinite(roots[i])); |
| // You may be tempted to add assertions that plug the provided solutions into |
| // the quadratic equation and verify that the result is zero. Be advised |
| // that the fuzzer is very good at finding float values that result in |
| // seemingly arbitrarily large errors, due to the imprecision of floating |
| // point math. Unless the input range is sufficiently small, such an |
| // effort seems fruitless. |
| } |
| if (numSolutions == 2) { |
| // Roots should not be duplicated |
| SkASSERT_RELEASE(!sk_doubles_nearly_equal_ulps(roots[0], roots[1])); |
| } |
| } |
| |
| static void fuzz_cubic_real_roots(double A, double B, double C, double D) { |
| double roots[3]; |
| const int numSolutions = SkCubics::RootsReal(A, B, C, D, roots); |
| SkASSERT_RELEASE(numSolutions >= 0 && numSolutions <= 3); |
| for (int i = 0; i < numSolutions; i++) { |
| SkASSERT_RELEASE(std::isfinite(roots[i])); |
| } |
| // Roots should not be duplicated |
| if (numSolutions >= 2) { |
| SkASSERT_RELEASE(!sk_doubles_nearly_equal_ulps(roots[0], roots[1])); |
| } |
| if (numSolutions == 3) { |
| SkASSERT_RELEASE(!sk_doubles_nearly_equal_ulps(roots[1], roots[2])); |
| SkASSERT_RELEASE(!sk_doubles_nearly_equal_ulps(roots[0], roots[2])); |
| } |
| } |
| |
| static void fuzz_cubic_roots_valid_t(double A, double B, double C, double D) { |
| double roots[3]; |
| const int numSolutions = SkCubics::RootsValidT(A, B, C, D, roots); |
| SkASSERT_RELEASE(numSolutions >= 0 && numSolutions <= 3); |
| for (int i = 0; i < numSolutions; i++) { |
| SkASSERT_RELEASE(std::isfinite(roots[i])); |
| SkASSERT_RELEASE(roots[i] >= 0.0); |
| SkASSERT_RELEASE(roots[i] <= 1.0); |
| } |
| // Roots should not be duplicated |
| if (numSolutions >= 2) { |
| SkASSERT_RELEASE(!sk_doubles_nearly_equal_ulps(roots[0], roots[1])); |
| } |
| if (numSolutions == 3) { |
| SkASSERT_RELEASE(!sk_doubles_nearly_equal_ulps(roots[1], roots[2])); |
| SkASSERT_RELEASE(!sk_doubles_nearly_equal_ulps(roots[0], roots[2])); |
| } |
| } |
| |
| static void fuzz_cubic_roots_binary_search(double A, double B, double C, double D) { |
| double roots[3]; |
| const int numSolutions = SkCubics::BinarySearchRootsValidT(A, B, C, D, roots); |
| SkASSERT_RELEASE(numSolutions >= 0 && numSolutions <= 3); |
| for (int i = 0; i < numSolutions; i++) { |
| SkASSERT_RELEASE(std::isfinite(roots[i])); |
| SkASSERT_RELEASE(roots[i] >= 0.0); |
| SkASSERT_RELEASE(roots[i] <= 1.0); |
| double actual = SkCubics::EvalAt(A, B, C, D, roots[i]); |
| // The binary search algorithm *should* be accurate regardless of the inputs. |
| SkASSERT_RELEASE(std::abs(actual) < 0.001); |
| } |
| // Roots should not be duplicated |
| if (numSolutions >= 2) { |
| SkASSERT_RELEASE(!sk_doubles_nearly_equal_ulps(roots[0], roots[1])); |
| } |
| if (numSolutions == 3) { |
| SkASSERT_RELEASE(!sk_doubles_nearly_equal_ulps(roots[1], roots[2])); |
| SkASSERT_RELEASE(!sk_doubles_nearly_equal_ulps(roots[0], roots[2])); |
| } |
| } |
| |
| DEF_FUZZ(CubicQuadRoots, fuzz) { |
| double A, B, C, D; |
| fuzz->next(&A); |
| fuzz->next(&B); |
| fuzz->next(&C); |
| fuzz->next(&D); |
| |
| // Uncomment for easy test case creation |
| // SkDebugf("A %16e (0x%lx) B %16e (0x%lx) C %16e (0x%lx) D %16e (0x%lx)\n", |
| // A, sk_bit_cast<uint64_t>(A), B, sk_bit_cast<uint64_t>(B), |
| // C, sk_bit_cast<uint64_t>(C), D, sk_bit_cast<uint64_t>(D)); |
| |
| fuzz_quad_real_roots(A, B, C); |
| |
| fuzz_cubic_real_roots(A, B, C, D); |
| |
| fuzz_cubic_roots_valid_t(A, B, C, D); |
| |
| fuzz_cubic_roots_binary_search(A, B, C, D); |
| } |