blob: 20228fd5225de65f9886c741c48edbf569e52ddc [file] [log] [blame]
/*
* Copyright 2018 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/core/SkGlyphRunPainter.h"
#if SK_SUPPORT_GPU
#include "include/private/GrRecordingContext.h"
#include "src/gpu/GrCaps.h"
#include "src/gpu/GrColorInfo.h"
#include "src/gpu/GrContextPriv.h"
#include "src/gpu/GrRecordingContextPriv.h"
#include "src/gpu/GrRenderTargetContext.h"
#include "src/gpu/SkGr.h"
#include "src/gpu/text/GrTextBlobCache.h"
#include "src/gpu/text/GrTextContext.h"
#endif
#include "include/core/SkColorFilter.h"
#include "include/core/SkMaskFilter.h"
#include "include/core/SkPathEffect.h"
#include "include/private/SkTDArray.h"
#include "src/core/SkDevice.h"
#include "src/core/SkDistanceFieldGen.h"
#include "src/core/SkDraw.h"
#include "src/core/SkEnumerate.h"
#include "src/core/SkFontPriv.h"
#include "src/core/SkRasterClip.h"
#include "src/core/SkStrike.h"
#include "src/core/SkStrikeCache.h"
#include "src/core/SkStrikeForGPU.h"
#include "src/core/SkStrikeSpec.h"
#include "src/core/SkTraceEvent.h"
#include <climits>
// -- SkGlyphRunListPainter ------------------------------------------------------------------------
SkGlyphRunListPainter::SkGlyphRunListPainter(const SkSurfaceProps& props,
SkColorType colorType,
SkScalerContextFlags flags,
SkStrikeForGPUCacheInterface* strikeCache)
: fDeviceProps{props}
, fBitmapFallbackProps{SkSurfaceProps{props.flags(), kUnknown_SkPixelGeometry}}
, fColorType{colorType}, fScalerContextFlags{flags}
, fStrikeCache{strikeCache} {}
// TODO: unify with code in GrTextContext.cpp
static SkScalerContextFlags compute_scaler_context_flags(const SkColorSpace* cs) {
// If we're doing linear blending, then we can disable the gamma hacks.
// Otherwise, leave them on. In either case, we still want the contrast boost:
// TODO: Can we be even smarter about mask gamma based on the dest transfer function?
if (cs && cs->gammaIsLinear()) {
return SkScalerContextFlags::kBoostContrast;
} else {
return SkScalerContextFlags::kFakeGammaAndBoostContrast;
}
}
SkGlyphRunListPainter::SkGlyphRunListPainter(const SkSurfaceProps& props,
SkColorType colorType,
SkColorSpace* cs,
SkStrikeForGPUCacheInterface* strikeCache)
: SkGlyphRunListPainter(props, colorType, compute_scaler_context_flags(cs), strikeCache) {}
#if SK_SUPPORT_GPU
SkGlyphRunListPainter::SkGlyphRunListPainter(const SkSurfaceProps& props, const GrColorInfo& csi)
: SkGlyphRunListPainter(props,
kUnknown_SkColorType,
compute_scaler_context_flags(csi.colorSpace()),
SkStrikeCache::GlobalStrikeCache()) {}
SkGlyphRunListPainter::SkGlyphRunListPainter(const GrRenderTargetContext& rtc)
: SkGlyphRunListPainter{rtc.surfaceProps(), rtc.colorInfo()} {}
#endif
void SkGlyphRunListPainter::drawForBitmapDevice(
const SkGlyphRunList& glyphRunList, const SkMatrix& deviceMatrix,
const BitmapDevicePainter* bitmapDevice) {
ScopedBuffers _ = this->ensureBuffers(glyphRunList);
// TODO: fStrikeCache is only used for GPU, and some compilers complain about it during the no
// gpu build. Remove when SkGlyphRunListPainter is split into GPU and CPU version.
(void)fStrikeCache;
const SkPaint& runPaint = glyphRunList.paint();
// The bitmap blitters can only draw lcd text to a N32 bitmap in srcOver. Otherwise,
// convert the lcd text into A8 text. The props communicates this to the scaler.
auto& props = (kN32_SkColorType == fColorType && runPaint.isSrcOver())
? fDeviceProps
: fBitmapFallbackProps;
SkPoint origin = glyphRunList.origin();
for (auto& glyphRun : glyphRunList) {
const SkFont& runFont = glyphRun.font();
#ifdef SK_SUPPORT_LEGACY_CPU_EMOJI
if (SkStrikeSpec::ShouldDrawAsPath(runPaint, runFont, deviceMatrix)) {
SkStrikeSpec strikeSpec = SkStrikeSpec::MakePath(
runFont, runPaint, props, fScalerContextFlags);
auto strike = strikeSpec.findOrCreateExclusiveStrike();
fDrawable.startSource(glyphRun.source(), origin);
strike->prepareForDrawingPathsCPU(&fDrawable);
// The paint we draw paths with must have the same anti-aliasing state as the runFont
// allowing the paths to have the same edging as the glyph masks.
SkPaint pathPaint = runPaint;
pathPaint.setAntiAlias(runFont.hasSomeAntiAliasing());
bitmapDevice->paintPaths(&fDrawable, strikeSpec.strikeToSourceRatio(), pathPaint);
} else {
SkStrikeSpec strikeSpec = SkStrikeSpec::MakeMask(
runFont, runPaint, props, fScalerContextFlags, deviceMatrix);
auto strike = strikeSpec.findOrCreateExclusiveStrike();
fDrawable.startDevice(glyphRun.source(), origin, deviceMatrix, strike->roundingSpec());
strike->prepareForDrawingMasksCPU(&fDrawable);
bitmapDevice->paintMasks(&fDrawable, runPaint);
}
#else
fRejects.setSource(glyphRun.source());
if (SkStrikeSpec::ShouldDrawAsPath(runPaint, runFont, deviceMatrix)) {
SkStrikeSpec strikeSpec = SkStrikeSpec::MakePath(
runFont, runPaint, props, fScalerContextFlags);
auto strike = strikeSpec.findOrCreateExclusiveStrike();
fDrawable.startSource(fRejects.source(), origin);
strike->prepareForPathDrawing(&fDrawable, &fRejects);
fRejects.flipRejectsToSource();
// The paint we draw paths with must have the same anti-aliasing state as the runFont
// allowing the paths to have the same edging as the glyph masks.
SkPaint pathPaint = runPaint;
pathPaint.setAntiAlias(runFont.hasSomeAntiAliasing());
bitmapDevice->paintPaths(&fDrawable, strikeSpec.strikeToSourceRatio(), pathPaint);
}
if (!fRejects.source().empty()) {
SkStrikeSpec strikeSpec = SkStrikeSpec::MakeMask(
runFont, runPaint, props, fScalerContextFlags, deviceMatrix);
auto strike = strikeSpec.findOrCreateExclusiveStrike();
fDrawable.startDevice(fRejects.source(), origin, deviceMatrix, strike->roundingSpec());
strike->prepareForDrawingMasksCPU(&fDrawable);
bitmapDevice->paintMasks(&fDrawable, runPaint);
}
// TODO: have the mask stage above reject the glyphs that are too big, and handle the
// rejects in a more sophisticated stage.
#endif
}
}
#if SK_SUPPORT_GPU
void SkGlyphRunListPainter::processGlyphRunList(const SkGlyphRunList& glyphRunList,
const SkMatrix& viewMatrix,
const SkSurfaceProps& props,
bool contextSupportsDistanceFieldText,
const GrTextContext::Options& options,
SkGlyphRunPainterInterface* process) {
SkPoint origin = glyphRunList.origin();
const SkPaint& runPaint = glyphRunList.paint();
ScopedBuffers _ = this->ensureBuffers(glyphRunList);
for (const auto& glyphRun : glyphRunList) {
fRejects.setSource(glyphRun.source());
const SkFont& runFont = glyphRun.font();
bool useSDFT = GrTextContext::CanDrawAsDistanceFields(
runPaint, runFont, viewMatrix, props, contextSupportsDistanceFieldText, options);
bool usePaths =
useSDFT ? false : SkStrikeSpec::ShouldDrawAsPath(runPaint, runFont, viewMatrix);
if (!useSDFT && !usePaths) {
// Process masks - this should be the 99.99% case.
SkStrikeSpec strikeSpec = SkStrikeSpec::MakeMask(
runFont, runPaint, fDeviceProps, fScalerContextFlags, viewMatrix);
SkScopedStrikeForGPU strike = strikeSpec.findOrCreateScopedStrike(fStrikeCache);
fDrawable.startDevice(fRejects.source(), origin, viewMatrix, strike->roundingSpec());
strike->prepareForMaskDrawing(&fDrawable, &fRejects);
fRejects.flipRejectsToSource();
if (process) {
// processDeviceMasks must be called even if there are no glyphs to make sure runs
// are set correctly.
process->processDeviceMasks(fDrawable.drawable(), strikeSpec);
}
} else if (useSDFT) {
// Process SDFT - This should be the .009% case.
SkScalar minScale, maxScale;
SkStrikeSpec strikeSpec;
std::tie(strikeSpec, minScale, maxScale) =
SkStrikeSpec::MakeSDFT(runFont, runPaint, fDeviceProps, viewMatrix, options);
SkScopedStrikeForGPU strike = strikeSpec.findOrCreateScopedStrike(fStrikeCache);
fDrawable.startSource(fRejects.source(), origin);
strike->prepareForSDFTDrawing(&fDrawable, &fRejects);
fRejects.flipRejectsToSource();
if (process) {
// processSourceSDFT must be called even if there are no glyphs to make sure runs
// are set correctly.
process->processSourceSDFT(
fDrawable.drawable(), strikeSpec, runFont, minScale, maxScale);
}
}
// Glyphs are generated in different scales relative to the source space. Masks are drawn
// in device space, and SDFT and Paths are draw in a fixed constant space. This is the
// factor used to scale the generated glyphs back to source space.
SkScalar maxDimensionInSourceSpace = 0.0;
if (!fRejects.source().empty()) {
// Path case
SkStrikeSpec strikeSpec = SkStrikeSpec::MakePath(
runFont, runPaint, fDeviceProps, fScalerContextFlags);
SkScopedStrikeForGPU strike = strikeSpec.findOrCreateScopedStrike(fStrikeCache);
fDrawable.startSource(fRejects.source(), origin);
strike->prepareForPathDrawing(&fDrawable, &fRejects);
fRejects.flipRejectsToSource();
maxDimensionInSourceSpace =
fRejects.rejectedMaxDimension() * strikeSpec.strikeToSourceRatio();
if (process) {
// processSourcePaths must be called even if there are no glyphs to make sure runs
// are set correctly.
process->processSourcePaths(fDrawable.drawable(), runFont, strikeSpec);
}
}
// Getting glyphs to the screen in a fallback situation can be complex. Here is the set of
// transformations that have to happen. Normally, they would all be accommodated by the font
// scaler, but the atlas has an upper limit to the glyphs it can handle. So the GPU is used
// to make up the difference from the smaller atlas size to the larger size needed by the
// final transform. Here are the transformations that are applied.
//
// final transform = [view matrix] * [text scale] * [text size]
//
// There are three cases:
// * Go Fast - view matrix is scale and translate, and all the glyphs are small enough
// Just scale the positions, and have the glyph cache handle the view matrix
// transformation.
// The text scale is 1.
// * It's complicated - view matrix is not scale and translate, and the glyphs are small
// enough The glyph cache does not handle the view matrix, but stores the glyphs at the
// text size specified by the run paint. The GPU handles the rotation, etc. specified
// by the view matrix.
// The text scale is 1.
// * Too big - The glyphs are too big to fit in the atlas
// Reduce the text size so the glyphs will fit in the atlas, but don't apply any
// transformations from the view matrix. Calculate a text scale based on that reduction.
// This scale factor is used to increase the size of the destination rectangles. The
// destination rectangles are then scaled, rotated, etc. by the GPU using the view matrix.
if (!fRejects.source().empty() && maxDimensionInSourceSpace != 0) {
SkScalar maxScale = viewMatrix.getMaxScale();
// This is a linear estimate of the longest dimension among all the glyph widths and
// heights.
SkScalar conservativeMaxGlyphDimension = maxDimensionInSourceSpace * maxScale;
// If the situation that the matrix is simple, and all the glyphs are small enough.
// Go fast!
// N.B. If the matrix has scale, that will be reflected in the strike through the
// viewMatrix in the useFastPath case.
bool useDeviceCache =
viewMatrix.isScaleTranslate()
&& conservativeMaxGlyphDimension <= SkStrikeCommon::kSkSideTooBigForAtlas;
// A scaled and translated transform is the common case, and is handled directly in
// fallback. Even if the transform is scale and translate, fallback must be careful
// to use glyphs that fit in the atlas. If a glyph will not fit in the atlas, then
// the general transform case is used to render the glyphs.
if (useDeviceCache) {
SkStrikeSpec strikeSpec = SkStrikeSpec::MakeMask(
runFont, runPaint, fDeviceProps, fScalerContextFlags, viewMatrix);
SkScopedStrikeForGPU strike = strikeSpec.findOrCreateScopedStrike(fStrikeCache);
fDrawable.startDevice(
fRejects.source(), origin, viewMatrix, strike->roundingSpec());
strike->prepareForMaskDrawing(&fDrawable, &fRejects);
fRejects.flipRejectsToSource();
SkASSERT(fRejects.source().empty());
if (process) {
process->processDeviceMasks(fDrawable.drawable(), strikeSpec);
}
} else {
// If the matrix is complicated or if scaling is used to fit the glyphs in the
// atlas, then this case is used.
SkStrikeSpec strikeSpec = SkStrikeSpec::MakeSourceFallback(
runFont, runPaint, fDeviceProps,
fScalerContextFlags, maxDimensionInSourceSpace);
SkScopedStrikeForGPU strike = strikeSpec.findOrCreateScopedStrike(fStrikeCache);
fDrawable.startSource(fRejects.source(), origin);
strike->prepareForMaskDrawing(&fDrawable, &fRejects);
fRejects.flipRejectsToSource();
SkASSERT(fRejects.source().empty());
if (process) {
process->processSourceMasks(fDrawable.drawable(), strikeSpec);
}
}
}
} // For all glyph runs
}
#endif // SK_SUPPORT_GPU
auto SkGlyphRunListPainter::ensureBuffers(const SkGlyphRunList& glyphRunList) -> ScopedBuffers {
size_t size = 0;
for (const SkGlyphRun& run : glyphRunList) {
size = std::max(run.runSize(), size);
}
return ScopedBuffers(this, size);
}
SkGlyphRunListPainter::ScopedBuffers
SkGlyphRunListPainter::ensureBuffers(const SkGlyphRun& glyphRun) {
return ScopedBuffers(this, glyphRun.runSize());
}
#if SK_SUPPORT_GPU
// -- GrTextContext --------------------------------------------------------------------------------
SkPMColor4f generate_filtered_color(const SkPaint& paint, const GrColorInfo& colorInfo) {
SkColor4f filteredColor = paint.getColor4f();
if (auto* xform = colorInfo.colorSpaceXformFromSRGB()) {
filteredColor = xform->apply(filteredColor);
}
if (paint.getColorFilter() != nullptr) {
filteredColor = paint.getColorFilter()->filterColor4f(filteredColor, colorInfo.colorSpace(),
colorInfo.colorSpace());
}
return filteredColor.premul();
}
void GrTextContext::drawGlyphRunList(
GrRecordingContext* context, GrTextTarget* target, const GrClip& clip,
const SkMatrix& viewMatrix, const SkSurfaceProps& props,
const SkGlyphRunList& glyphRunList) {
SkPoint origin = glyphRunList.origin();
// Get the first paint to use as the key paint.
const SkPaint& listPaint = glyphRunList.paint();
SkPMColor4f filteredColor = generate_filtered_color(listPaint, target->colorInfo());
GrColor color = generate_filtered_color(listPaint, target->colorInfo()).toBytes_RGBA();
// If we have been abandoned, then don't draw
if (context->priv().abandoned()) {
return;
}
SkMaskFilterBase::BlurRec blurRec;
// It might be worth caching these things, but its not clear at this time
// TODO for animated mask filters, this will fill up our cache. We need a safeguard here
const SkMaskFilter* mf = listPaint.getMaskFilter();
bool canCache = glyphRunList.canCache() && !(listPaint.getPathEffect() ||
(mf && !as_MFB(mf)->asABlur(&blurRec)));
SkScalerContextFlags scalerContextFlags = ComputeScalerContextFlags(target->colorInfo());
auto grStrikeCache = context->priv().getGrStrikeCache();
GrTextBlobCache* textBlobCache = context->priv().getTextBlobCache();
sk_sp<GrTextBlob> cacheBlob;
GrTextBlob::Key key;
if (canCache) {
bool hasLCD = glyphRunList.anyRunsLCD();
// We canonicalize all non-lcd draws to use kUnknown_SkPixelGeometry
SkPixelGeometry pixelGeometry = hasLCD ? props.pixelGeometry() :
kUnknown_SkPixelGeometry;
// TODO we want to figure out a way to be able to use the canonical color on LCD text,
// see the note on ComputeCanonicalColor above. We pick a dummy value for LCD text to
// ensure we always match the same key
GrColor canonicalColor = hasLCD ? SK_ColorTRANSPARENT :
ComputeCanonicalColor(listPaint, hasLCD);
key.fPixelGeometry = pixelGeometry;
key.fUniqueID = glyphRunList.uniqueID();
key.fStyle = listPaint.getStyle();
key.fHasBlur = SkToBool(mf);
key.fCanonicalColor = canonicalColor;
key.fScalerContextFlags = scalerContextFlags;
cacheBlob = textBlobCache->find(key);
}
bool forceW = fOptions.fDistanceFieldVerticesAlwaysHaveW;
if (cacheBlob) {
if (cacheBlob->mustRegenerate(listPaint, glyphRunList.anyRunsSubpixelPositioned(),
blurRec, viewMatrix, origin.x(),origin.y())) {
// We have to remake the blob because changes may invalidate our masks.
// TODO we could probably get away reuse most of the time if the pointer is unique,
// but we'd have to clear the subrun information
textBlobCache->remove(cacheBlob.get());
cacheBlob = textBlobCache->makeCachedBlob(
glyphRunList, key, blurRec, listPaint, forceW, color, grStrikeCache);
cacheBlob->generateFromGlyphRunList(
*context->priv().caps()->shaderCaps(), fOptions,
listPaint, viewMatrix, props,
glyphRunList, target->glyphPainter());
} else {
textBlobCache->makeMRU(cacheBlob.get());
if (CACHE_SANITY_CHECK) {
sk_sp<GrTextBlob> sanityBlob(textBlobCache->makeBlob(
glyphRunList, forceW, color, grStrikeCache));
sanityBlob->setupKey(key, blurRec, listPaint);
cacheBlob->generateFromGlyphRunList(
*context->priv().caps()->shaderCaps(), fOptions,
listPaint, viewMatrix, props, glyphRunList,
target->glyphPainter());
GrTextBlob::AssertEqual(*sanityBlob, *cacheBlob);
}
}
} else {
if (canCache) {
cacheBlob = textBlobCache->makeCachedBlob(
glyphRunList, key, blurRec, listPaint, forceW, color, grStrikeCache);
} else {
cacheBlob = textBlobCache->makeBlob(glyphRunList, forceW, color, grStrikeCache);
}
cacheBlob->generateFromGlyphRunList(
*context->priv().caps()->shaderCaps(), fOptions, listPaint,
viewMatrix, props, glyphRunList,
target->glyphPainter());
}
cacheBlob->flush(target, props, fDistanceAdjustTable.get(), listPaint, filteredColor,
clip, viewMatrix, origin.x(), origin.y());
}
void GrTextBlob::generateFromGlyphRunList(const GrShaderCaps& shaderCaps,
const GrTextContext::Options& options,
const SkPaint& paint,
const SkMatrix& viewMatrix,
const SkSurfaceProps& props,
const SkGlyphRunList& glyphRunList,
SkGlyphRunListPainter* glyphPainter) {
SkPoint origin = glyphRunList.origin();
const SkPaint& runPaint = glyphRunList.paint();
this->initReusableBlob(SkPaintPriv::ComputeLuminanceColor(runPaint), viewMatrix,
origin.x(), origin.y());
glyphPainter->processGlyphRunList(glyphRunList,
viewMatrix,
props,
shaderCaps.supportsDistanceFieldText(),
options,
this);
}
GrTextBlob::SubRun::SubRun(SubRunType type, GrTextBlob* textBlob, const SkStrikeSpec& strikeSpec,
GrMaskFormat format, const GrTextBlob::SubRunBufferSpec& bufferSpec,
sk_sp<GrTextStrike>&& grStrike)
: fType{type}
, fBlob{textBlob}
, fMaskFormat{format}
, fGlyphStartIndex{std::get<0>(bufferSpec)}
, fGlyphEndIndex{std::get<1>(bufferSpec)}
, fVertexStartIndex{std::get<2>(bufferSpec)}
, fVertexEndIndex{std::get<3>(bufferSpec)}
, fStrikeSpec{strikeSpec}
, fStrike{grStrike}
, fColor{textBlob->fColor}
, fX{textBlob->fInitialX}
, fY{textBlob->fInitialY}
, fCurrentViewMatrix{textBlob->fInitialViewMatrix} {
SkASSERT(type != kTransformedPath);
}
GrTextBlob::SubRun::SubRun(GrTextBlob* textBlob, const SkStrikeSpec& strikeSpec)
: fType{kTransformedPath}
, fBlob{textBlob}
, fMaskFormat{kA8_GrMaskFormat}
, fGlyphStartIndex{0}
, fGlyphEndIndex{0}
, fVertexStartIndex{0}
, fVertexEndIndex{0}
, fStrikeSpec{strikeSpec}
, fStrike{nullptr}
, fColor{textBlob->fColor}
, fPaths{} { }
class GrTextBlob::SubRun* GrTextBlob::makeSubRun(SubRunType type,
const SkZip<SkGlyphVariant, SkPoint>& drawables,
const SkStrikeSpec& strikeSpec,
GrMaskFormat format) {
bool hasW = this->hasW(type);
uint32_t glyphsStart = fGlyphsCursor;
fGlyphsCursor += drawables.size();
uint32_t glyphsEnd = fGlyphsCursor;
size_t verticesStart = fVerticesCursor;
fVerticesCursor += drawables.size() * GetVertexStride(format, hasW) * kVerticesPerGlyph;
size_t verticesEnd = fVerticesCursor;
SubRunBufferSpec bufferSpec = std::make_tuple(
glyphsStart, glyphsEnd, verticesStart, verticesEnd);
sk_sp<GrTextStrike> grStrike = strikeSpec.findOrCreateGrStrike(fStrikeCache);
SubRun& subRun = fSubRuns.emplace_back(
type, this, strikeSpec, format, bufferSpec, std::move(grStrike));
subRun.appendGlyphs(drawables);
return &subRun;
}
void GrTextBlob::SubRun::appendGlyphs(const SkZip<SkGlyphVariant, SkPoint>& drawables) {
GrTextStrike* grStrike = fStrike.get();
SkScalar strikeToSource = fStrikeSpec.strikeToSourceRatio();
uint32_t glyphCursor = fGlyphStartIndex;
size_t vertexCursor = fVertexStartIndex;
bool hasW = this->hasW();
GrColor color = this->color();
// glyphs drawn in perspective must always have a w coord.
SkASSERT(hasW || !fBlob->fInitialViewMatrix.hasPerspective());
size_t vertexStride = GetVertexStride(fMaskFormat, hasW);
// We always write the third position component used by SDFs. If it is unused it gets
// overwritten. Similarly, we always write the color and the blob will later overwrite it
// with texture coords if it is unused.
size_t colorOffset = hasW ? sizeof(SkPoint3) : sizeof(SkPoint);
for (auto t : drawables) {
SkGlyph* skGlyph; SkPoint pos;
std::tie(skGlyph, pos) = t;
GrGlyph* grGlyph = grStrike->getGlyph(*skGlyph);
// Only floor the device coordinates.
SkRect dstRect;
if (!this->needsTransform()) {
pos = {SkScalarFloorToScalar(pos.x()), SkScalarFloorToScalar(pos.y())};
dstRect = grGlyph->destRect(pos);
} else {
dstRect = grGlyph->destRect(pos, strikeToSource);
}
this->joinGlyphBounds(dstRect);
intptr_t vertex = reinterpret_cast<intptr_t>(fBlob->fVertices + vertexCursor);
// V0
*reinterpret_cast<SkPoint3*>(vertex) = {dstRect.fLeft, dstRect.fTop, 1.f};
*reinterpret_cast<GrColor*>(vertex + colorOffset) = color;
vertex += vertexStride;
// V1
*reinterpret_cast<SkPoint3*>(vertex) = {dstRect.fLeft, dstRect.fBottom, 1.f};
*reinterpret_cast<GrColor*>(vertex + colorOffset) = color;
vertex += vertexStride;
// V2
*reinterpret_cast<SkPoint3*>(vertex) = {dstRect.fRight, dstRect.fTop, 1.f};
*reinterpret_cast<GrColor*>(vertex + colorOffset) = color;
vertex += vertexStride;
// V3
*reinterpret_cast<SkPoint3*>(vertex) = {dstRect.fRight, dstRect.fBottom, 1.f};
*reinterpret_cast<GrColor*>(vertex + colorOffset) = color;
vertexCursor += vertexStride * kVerticesPerGlyph;
fBlob->fGlyphs[glyphCursor++] = grGlyph;
}
SkASSERT(glyphCursor == fGlyphEndIndex);
SkASSERT(vertexCursor == fVertexEndIndex);
}
void GrTextBlob::addSingleMaskFormat(
SubRunType type,
const SkZip<SkGlyphVariant, SkPoint>& drawables,
const SkStrikeSpec& strikeSpec,
GrMaskFormat format) {
this->makeSubRun(type, drawables, strikeSpec, format);
}
void GrTextBlob::addMultiMaskFormat(
SubRunType type,
const SkZip<SkGlyphVariant, SkPoint>& drawables,
const SkStrikeSpec& strikeSpec) {
this->setHasBitmap();
if (drawables.empty()) { return; }
SkGlyph* glyph;
std::tie(glyph, std::ignore) = drawables[0];
GrMaskFormat format = GrGlyph::FormatFromSkGlyph(glyph->maskFormat());
size_t startIndex = 0;
for (size_t i = 1; i < drawables.size(); i++) {
std::tie(glyph, std::ignore) = drawables[i];
GrMaskFormat nextFormat = GrGlyph::FormatFromSkGlyph(glyph->maskFormat());
if (format != nextFormat) {
auto sameFormat = drawables.subspan(startIndex, i - startIndex);
this->addSingleMaskFormat(type, sameFormat, strikeSpec, format);
format = nextFormat;
startIndex = i;
}
}
auto sameFormat = drawables.last(drawables.size() - startIndex);
this->addSingleMaskFormat(type, sameFormat, strikeSpec, format);
}
void GrTextBlob::addSDFT(const SkZip<SkGlyphVariant, SkPoint>& drawables,
const SkStrikeSpec& strikeSpec,
const SkFont& runFont,
SkScalar minScale,
SkScalar maxScale) {
this->setHasDistanceField();
this->setMinAndMaxScale(minScale, maxScale);
SubRun* subRun = this->makeSubRun(kTransformedSDFT, drawables, strikeSpec, kA8_GrMaskFormat);
subRun->setUseLCDText(runFont.getEdging() == SkFont::Edging::kSubpixelAntiAlias);
subRun->setAntiAliased(runFont.hasSomeAntiAliasing());
}
void GrTextBlob::processDeviceMasks(const SkZip<SkGlyphVariant, SkPoint>& drawables,
const SkStrikeSpec& strikeSpec) {
this->addMultiMaskFormat(kDirectMask, drawables, strikeSpec);
}
void GrTextBlob::processSourcePaths(const SkZip<SkGlyphVariant, SkPoint>& drawables,
const SkFont& runFont,
const SkStrikeSpec& strikeSpec) {
this->setHasBitmap();
SubRun& subRun = fSubRuns.emplace_back(this, strikeSpec);
subRun.setAntiAliased(runFont.hasSomeAntiAliasing());
for (auto t : drawables) {
const SkPath* path; SkPoint pos;
std::tie(path, pos) = t;
subRun.fPaths.emplace_back(*path, pos);
}
}
void GrTextBlob::processSourceSDFT(const SkZip<SkGlyphVariant, SkPoint>& drawables,
const SkStrikeSpec& strikeSpec,
const SkFont& runFont,
SkScalar minScale,
SkScalar maxScale) {
this->addSDFT(drawables, strikeSpec, runFont, minScale, maxScale);
}
void GrTextBlob::processSourceMasks(const SkZip<SkGlyphVariant, SkPoint>& drawables,
const SkStrikeSpec& strikeSpec) {
this->addMultiMaskFormat(kTransformedMask, drawables, strikeSpec);
}
#if GR_TEST_UTILS
#include "src/gpu/GrRecordingContextPriv.h"
#include "src/gpu/GrRenderTargetContext.h"
std::unique_ptr<GrDrawOp> GrTextContext::createOp_TestingOnly(GrRecordingContext* context,
GrTextContext* textContext,
GrRenderTargetContext* rtc,
const SkPaint& skPaint,
const SkFont& font,
const SkMatrix& viewMatrix,
const char* text,
int x,
int y) {
auto direct = context->priv().asDirectContext();
if (!direct) {
return nullptr;
}
auto strikeCache = direct->priv().getGrStrikeCache();
static SkSurfaceProps surfaceProps(SkSurfaceProps::kLegacyFontHost_InitType);
size_t textLen = (int)strlen(text);
SkPMColor4f filteredColor = generate_filtered_color(skPaint, rtc->colorInfo());
GrColor color = filteredColor.toBytes_RGBA();
auto origin = SkPoint::Make(x, y);
SkGlyphRunBuilder builder;
builder.drawTextUTF8(skPaint, font, text, textLen, origin);
auto glyphRunList = builder.useGlyphRunList();
sk_sp<GrTextBlob> blob;
if (!glyphRunList.empty()) {
blob = direct->priv().getTextBlobCache()->makeBlob(glyphRunList, false, color, strikeCache);
blob->generateFromGlyphRunList(
*context->priv().caps()->shaderCaps(), textContext->fOptions,
skPaint, viewMatrix, surfaceProps,
glyphRunList, rtc->textTarget()->glyphPainter());
}
return blob->test_makeOp(textLen, viewMatrix, x, y, skPaint, filteredColor, surfaceProps,
textContext->dfAdjustTable(), rtc->textTarget());
}
#endif // GR_TEST_UTILS
#endif // SK_SUPPORT_GPU
SkGlyphRunListPainter::ScopedBuffers::ScopedBuffers(SkGlyphRunListPainter* painter, size_t size)
: fPainter{painter} {
fPainter->fDrawable.ensureSize(size);
}
SkGlyphRunListPainter::ScopedBuffers::~ScopedBuffers() {
fPainter->fDrawable.reset();
fPainter->fRejects.reset();
}
SkVector SkGlyphPositionRoundingSpec::HalfAxisSampleFreq(bool isSubpixel, SkAxisAlignment axisAlignment) {
if (!isSubpixel) {
return {SK_ScalarHalf, SK_ScalarHalf};
} else {
switch (axisAlignment) {
case kX_SkAxisAlignment:
return {SkPackedGlyphID::kSubpixelRound, SK_ScalarHalf};
case kY_SkAxisAlignment:
return {SK_ScalarHalf, SkPackedGlyphID::kSubpixelRound};
case kNone_SkAxisAlignment:
return {SkPackedGlyphID::kSubpixelRound, SkPackedGlyphID::kSubpixelRound};
}
}
// Some compilers need this.
return {0, 0};
}
SkIPoint SkGlyphPositionRoundingSpec::IgnorePositionMask(
bool isSubpixel, SkAxisAlignment axisAlignment) {
return SkIPoint::Make((!isSubpixel || axisAlignment == kY_SkAxisAlignment) ? 0 : ~0,
(!isSubpixel || axisAlignment == kX_SkAxisAlignment) ? 0 : ~0);
}
SkIPoint SkGlyphPositionRoundingSpec::IgnorePositionFieldMask(bool isSubpixel,
SkAxisAlignment axisAlignment) {
SkIPoint ignoreMask = IgnorePositionMask(isSubpixel, axisAlignment);
SkIPoint answer{ignoreMask.x() & SkPackedGlyphID::kXYFieldMask.x(),
ignoreMask.y() & SkPackedGlyphID::kXYFieldMask.y()};
return answer;
}
SkGlyphPositionRoundingSpec::SkGlyphPositionRoundingSpec(
bool isSubpixel,SkAxisAlignment axisAlignment)
: halfAxisSampleFreq{HalfAxisSampleFreq(isSubpixel, axisAlignment)}
, ignorePositionMask{IgnorePositionMask(isSubpixel, axisAlignment)}
, ignorePositionFieldMask {IgnorePositionFieldMask(isSubpixel, axisAlignment)}{ }