blob: ef4f20aebb2be2935d61a206094852730551895f [file] [log] [blame]
/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrFillRectOp.h"
#include "GrCaps.h"
#include "GrGeometryProcessor.h"
#include "GrMeshDrawOp.h"
#include "GrPaint.h"
#include "GrQuad.h"
#include "GrQuadPerEdgeAA.h"
#include "GrSimpleMeshDrawOpHelper.h"
#include "SkGr.h"
#include "SkMatrix.h"
#include "SkRect.h"
#include "glsl/GrGLSLColorSpaceXformHelper.h"
#include "glsl/GrGLSLGeometryProcessor.h"
#include "glsl/GrGLSLVarying.h"
namespace {
using VertexSpec = GrQuadPerEdgeAA::VertexSpec;
using ColorType = GrQuadPerEdgeAA::ColorType;
#ifdef SK_DEBUG
static SkString dump_quad_info(int index, const GrPerspQuad& deviceQuad,
const GrPerspQuad& localQuad, const SkPMColor4f& color,
GrQuadAAFlags aaFlags) {
SkString str;
str.appendf("%d: Color: [%.2f, %.2f, %.2f, %.2f], Edge AA: l%u_t%u_r%u_b%u, \n"
" device quad: [(%.2f, %2.f, %.2f), (%.2f, %.2f, %.2f), (%.2f, %.2f, %.2f), "
"(%.2f, %.2f, %.2f)],\n"
" local quad: [(%.2f, %2.f, %.2f), (%.2f, %.2f, %.2f), (%.2f, %.2f, %.2f), "
"(%.2f, %.2f, %.2f)]\n",
index, color.fR, color.fG, color.fB, color.fA,
(uint32_t) (aaFlags & GrQuadAAFlags::kLeft),
(uint32_t) (aaFlags & GrQuadAAFlags::kTop),
(uint32_t) (aaFlags & GrQuadAAFlags::kRight),
(uint32_t) (aaFlags & GrQuadAAFlags::kBottom),
deviceQuad.x(0), deviceQuad.y(0), deviceQuad.w(0),
deviceQuad.x(1), deviceQuad.y(1), deviceQuad.w(1),
deviceQuad.x(2), deviceQuad.y(2), deviceQuad.w(2),
deviceQuad.x(3), deviceQuad.y(3), deviceQuad.w(3),
localQuad.x(0), localQuad.y(0), localQuad.w(0),
localQuad.x(1), localQuad.y(1), localQuad.w(1),
localQuad.x(2), localQuad.y(2), localQuad.w(2),
localQuad.x(3), localQuad.y(3), localQuad.w(3));
return str;
}
#endif
class FillRectOp final : public GrMeshDrawOp {
private:
using Helper = GrSimpleMeshDrawOpHelperWithStencil;
public:
static std::unique_ptr<GrDrawOp> Make(GrRecordingContext* context,
GrPaint&& paint,
GrAAType aaType,
GrQuadAAFlags edgeAA,
const GrUserStencilSettings* stencilSettings,
const GrPerspQuad& deviceQuad,
GrQuadType deviceQuadType,
const GrPerspQuad& localQuad,
GrQuadType localQuadType) {
// Clean up deviations between aaType and edgeAA
GrResolveAATypeForQuad(aaType, edgeAA, deviceQuad, deviceQuadType, &aaType, &edgeAA);
return Helper::FactoryHelper<FillRectOp>(context, std::move(paint), aaType, edgeAA,
stencilSettings, deviceQuad, deviceQuadType, localQuad, localQuadType);
}
// aaType is passed to Helper in the initializer list, so incongruities between aaType and
// edgeFlags must be resolved prior to calling this constructor.
FillRectOp(Helper::MakeArgs args, SkPMColor4f paintColor, GrAAType aaType,
GrQuadAAFlags edgeFlags, const GrUserStencilSettings* stencil,
const GrPerspQuad& deviceQuad, GrQuadType deviceQuadType,
const GrPerspQuad& localQuad, GrQuadType localQuadType)
: INHERITED(ClassID())
, fHelper(args, aaType, stencil) {
// The color stored with the quad is the clear color if a scissor-clear is decided upon
// when executing the op.
fDeviceQuads.push_back(deviceQuad, deviceQuadType, { paintColor, edgeFlags });
if (!fHelper.isTrivial()) {
// Conservatively keep track of the local coordinates; it may be that the paint doesn't
// need them after analysis is finished. If the paint is known to be solid up front they
// can be skipped entirely.
fLocalQuads.push_back(localQuad, localQuadType);
}
this->setBounds(deviceQuad.bounds(deviceQuadType),
HasAABloat(aaType == GrAAType::kCoverage), IsZeroArea::kNo);
}
const char* name() const override { return "FillRectOp"; }
void visitProxies(const VisitProxyFunc& func, VisitorType) const override {
return fHelper.visitProxies(func);
}
#ifdef SK_DEBUG
SkString dumpInfo() const override {
SkString str;
str.appendf("# draws: %u\n", this->quadCount());
str.appendf("Device quad type: %u, local quad type: %u\n",
(uint32_t) fDeviceQuads.quadType(), (uint32_t) fLocalQuads.quadType());
str += fHelper.dumpInfo();
GrPerspQuad device, local;
for (int i = 0; i < this->quadCount(); i++) {
device = fDeviceQuads[i];
const ColorAndAA& info = fDeviceQuads.metadata(i);
if (!fHelper.isTrivial()) {
local = fLocalQuads[i];
}
str += dump_quad_info(i, device, local, info.fColor, info.fAAFlags);
}
str += INHERITED::dumpInfo();
return str;
}
#endif
GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip,
GrFSAAType fsaaType, GrClampType clampType) override {
// Initialize aggregate color analysis with the first quad's color (which always exists)
SkASSERT(this->quadCount() > 0);
GrProcessorAnalysisColor quadColors(fDeviceQuads.metadata(0).fColor);
// Then combine the colors of any additional quads (e.g. from MakeSet)
for (int i = 1; i < this->quadCount(); ++i) {
quadColors = GrProcessorAnalysisColor::Combine(quadColors,
fDeviceQuads.metadata(i).fColor);
if (quadColors.isUnknown()) {
// No point in accumulating additional starting colors, combining cannot make it
// less unknown.
break;
}
}
// If the AA type is coverage, it will be a single value per pixel; if it's not coverage AA
// then the coverage is always 1.0, so specify kNone for more optimal blending.
GrProcessorAnalysisCoverage coverage = fHelper.aaType() == GrAAType::kCoverage ?
GrProcessorAnalysisCoverage::kSingleChannel :
GrProcessorAnalysisCoverage::kNone;
auto result = fHelper.finalizeProcessors(
caps, clip, fsaaType, clampType, coverage, &quadColors);
// If there is a constant color after analysis, that means all of the quads should be set
// to the same color (even if they started out with different colors).
SkPMColor4f colorOverride;
if (quadColors.isConstant(&colorOverride)) {
fColorType = GrQuadPerEdgeAA::MinColorType(colorOverride, clampType, caps);
for (int i = 0; i < this->quadCount(); ++i) {
fDeviceQuads.metadata(i).fColor = colorOverride;
}
} else {
// Otherwise compute the color type needed as the max over all quads.
fColorType = ColorType::kNone;
for (int i = 0; i < this->quadCount(); ++i) {
SkPMColor4f* color = &fDeviceQuads.metadata(i).fColor;
fColorType = SkTMax(fColorType,
GrQuadPerEdgeAA::MinColorType(*color, clampType, caps));
}
}
// Most SkShaders' FPs multiply their calculated color by the paint color or alpha. We want
// to use ColorType::kNone to optimize out that multiply. However, if there are no color
// FPs then were really writing a special shader for white rectangles and not saving any
// multiples. So in that case use bytes to avoid the extra shader (and possibly work around
// an ANGLE issue: crbug.com/942565).
if (fColorType == ColorType::kNone && !result.hasColorFragmentProcessor()) {
fColorType = ColorType::kByte;
}
return result;
}
FixedFunctionFlags fixedFunctionFlags() const override {
// Since the AA type of the whole primitive is kept consistent with the per edge AA flags
// the helper's fixed function flags are appropriate.
return fHelper.fixedFunctionFlags();
}
DEFINE_OP_CLASS_ID
private:
// For GrFillRectOp::MakeSet's use of addQuad
friend std::unique_ptr<GrDrawOp> GrFillRectOp::MakeSet(
GrRecordingContext*,
GrPaint&&,
GrAAType, const SkMatrix& viewMatrix,
const GrRenderTargetContext::QuadSetEntry quads[], int quadCount,
const GrUserStencilSettings*);
void onPrepareDraws(Target* target) override {
TRACE_EVENT0("skia", TRACE_FUNC);
using Domain = GrQuadPerEdgeAA::Domain;
static constexpr SkRect kEmptyDomain = SkRect::MakeEmpty();
VertexSpec vertexSpec(fDeviceQuads.quadType(), fColorType, fLocalQuads.quadType(),
fHelper.usesLocalCoords(), Domain::kNo, fHelper.aaType(),
fHelper.compatibleWithCoverageAsAlpha());
// Make sure that if the op thought it was a solid color, the vertex spec does not use
// local coords.
SkASSERT(!fHelper.isTrivial() || !fHelper.usesLocalCoords());
sk_sp<GrGeometryProcessor> gp = GrQuadPerEdgeAA::MakeProcessor(vertexSpec);
size_t vertexSize = gp->vertexStride();
sk_sp<const GrBuffer> vbuffer;
int vertexOffsetInBuffer = 0;
// Fill the allocated vertex data
void* vdata = target->makeVertexSpace(
vertexSize, this->quadCount() * vertexSpec.verticesPerQuad(),
&vbuffer, &vertexOffsetInBuffer);
if (!vdata) {
SkDebugf("Could not allocate vertices\n");
return;
}
// vertices pointer advances through vdata based on Tessellate's return value
void* vertices = vdata;
if (fHelper.isTrivial()) {
SkASSERT(fLocalQuads.count() == 0); // No local coords, so send an ignored dummy quad
static const GrPerspQuad kIgnoredLocal(SkRect::MakeEmpty());
for (int i = 0; i < this->quadCount(); ++i) {
const ColorAndAA& info = fDeviceQuads.metadata(i);
vertices = GrQuadPerEdgeAA::Tessellate(vertices, vertexSpec, fDeviceQuads[i],
info.fColor, kIgnoredLocal, kEmptyDomain, info.fAAFlags);
}
} else {
SkASSERT(fLocalQuads.count() == fDeviceQuads.count());
for (int i = 0; i < this->quadCount(); ++i) {
const ColorAndAA& info = fDeviceQuads.metadata(i);
vertices = GrQuadPerEdgeAA::Tessellate(vertices, vertexSpec, fDeviceQuads[i],
info.fColor, fLocalQuads[i], kEmptyDomain, info.fAAFlags);
}
}
// Configure the mesh for the vertex data
GrMesh* mesh = target->allocMeshes(1);
if (!GrQuadPerEdgeAA::ConfigureMeshIndices(target, mesh, vertexSpec, this->quadCount())) {
SkDebugf("Could not allocate indices\n");
return;
}
mesh->setVertexData(std::move(vbuffer), vertexOffsetInBuffer);
target->recordDraw(std::move(gp), mesh);
}
void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override {
fHelper.executeDrawsAndUploads(this, flushState, chainBounds);
}
CombineResult onCombineIfPossible(GrOp* t, const GrCaps& caps) override {
TRACE_EVENT0("skia", TRACE_FUNC);
const auto* that = t->cast<FillRectOp>();
if ((fHelper.aaType() == GrAAType::kCoverage ||
that->fHelper.aaType() == GrAAType::kCoverage) &&
this->quadCount() + that->quadCount() > GrQuadPerEdgeAA::kNumAAQuadsInIndexBuffer) {
// This limit on batch size seems to help on Adreno devices
return CombineResult::kCannotCombine;
}
// Unlike most users of the draw op helper, this op can merge none-aa and coverage-aa draw
// ops together, so pass true as the last argument.
if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds(), true)) {
return CombineResult::kCannotCombine;
}
// If the paints were compatible, the trivial/solid-color state should be the same
SkASSERT(fHelper.isTrivial() == that->fHelper.isTrivial());
// If the processor sets are compatible, the two ops are always compatible; it just needs to
// adjust the state of the op to be the more general quad and aa types of the two ops and
// then concatenate the per-quad data.
fColorType = SkTMax(fColorType, that->fColorType);
// The helper stores the aa type, but isCompatible(with true arg) allows the two ops' aa
// types to be none and coverage, in which case this op's aa type must be lifted to coverage
// so that quads with no aa edges can be batched with quads that have some/all edges aa'ed.
if (fHelper.aaType() == GrAAType::kNone && that->fHelper.aaType() == GrAAType::kCoverage) {
fHelper.setAAType(GrAAType::kCoverage);
}
fDeviceQuads.concat(that->fDeviceQuads);
if (!fHelper.isTrivial()) {
fLocalQuads.concat(that->fLocalQuads);
}
return CombineResult::kMerged;
}
// Similar to onCombineIfPossible, but adds a quad assuming its op would have been compatible.
// But since it's avoiding the op list management, it must update the op's bounds. This is only
// used with quad sets, which uses the same view matrix for each quad so this assumes that the
// device quad type of the new quad is the same as the op's.
void addQuad(const GrPerspQuad& deviceQuad, const GrPerspQuad& localQuad,
GrQuadType localQuadType, const SkPMColor4f& color, GrQuadAAFlags edgeAA,
GrAAType aaType) {
// The new quad's aa type should be the same as the first quad's or none, except when the
// first quad's aa type was already downgraded to none, in which case the stored type must
// be lifted to back to the requested type.
if (aaType != fHelper.aaType()) {
if (aaType != GrAAType::kNone) {
// Original quad was downgraded to non-aa, lift back up to this quad's required type
SkASSERT(fHelper.aaType() == GrAAType::kNone);
fHelper.setAAType(aaType);
}
// else the new quad could have been downgraded but the other quads can't be, so don't
// reset the op's accumulated aa type.
}
// Update the bounds and add the quad to this op's storage
SkRect newBounds = this->bounds();
newBounds.joinPossiblyEmptyRect(deviceQuad.bounds(fDeviceQuads.quadType()));
this->setBounds(newBounds, HasAABloat(fHelper.aaType() == GrAAType::kCoverage),
IsZeroArea::kNo);
fDeviceQuads.push_back(deviceQuad, fDeviceQuads.quadType(), { color, edgeAA });
if (!fHelper.isTrivial()) {
fLocalQuads.push_back(localQuad, localQuadType);
}
}
int quadCount() const {
// Sanity check that the parallel arrays for quad properties all have the same size
SkASSERT(fDeviceQuads.count() == fLocalQuads.count() ||
(fLocalQuads.count() == 0 && fHelper.isTrivial()));
return fDeviceQuads.count();
}
struct ColorAndAA {
SkPMColor4f fColor;
GrQuadAAFlags fAAFlags;
};
Helper fHelper;
GrTQuadList<ColorAndAA> fDeviceQuads;
// No metadata attached to the local quads; this list is empty when local coords are not needed.
GrQuadList fLocalQuads;
ColorType fColorType;
typedef GrMeshDrawOp INHERITED;
};
} // anonymous namespace
namespace GrFillRectOp {
std::unique_ptr<GrDrawOp> MakePerEdge(GrRecordingContext* context,
GrPaint&& paint,
GrAAType aaType,
GrQuadAAFlags edgeAA,
const SkMatrix& viewMatrix,
const SkRect& rect,
const GrUserStencilSettings* stencilSettings) {
GrQuadType dstQuadType = GrQuadTypeForTransformedRect(viewMatrix);
return FillRectOp::Make(context, std::move(paint), aaType, edgeAA, stencilSettings,
GrPerspQuad::MakeFromRect(rect, viewMatrix), dstQuadType,
GrPerspQuad(rect), GrQuadType::kRect);
}
std::unique_ptr<GrDrawOp> MakePerEdgeWithLocalMatrix(GrRecordingContext* context,
GrPaint&& paint,
GrAAType aaType,
GrQuadAAFlags edgeAA,
const SkMatrix& viewMatrix,
const SkMatrix& localMatrix,
const SkRect& rect,
const GrUserStencilSettings* stencilSettings) {
GrQuadType dstQuadType = GrQuadTypeForTransformedRect(viewMatrix);
GrQuadType localQuadType = GrQuadTypeForTransformedRect(localMatrix);
return FillRectOp::Make(context, std::move(paint), aaType, edgeAA, stencilSettings,
GrPerspQuad::MakeFromRect(rect, viewMatrix), dstQuadType,
GrPerspQuad::MakeFromRect(rect, localMatrix), localQuadType);
}
std::unique_ptr<GrDrawOp> MakePerEdgeWithLocalRect(GrRecordingContext* context,
GrPaint&& paint,
GrAAType aaType,
GrQuadAAFlags edgeAA,
const SkMatrix& viewMatrix,
const SkRect& rect,
const SkRect& localRect,
const GrUserStencilSettings* stencilSettings) {
GrQuadType dstQuadType = GrQuadTypeForTransformedRect(viewMatrix);
return FillRectOp::Make(context, std::move(paint), aaType, edgeAA, stencilSettings,
GrPerspQuad::MakeFromRect(rect, viewMatrix), dstQuadType,
GrPerspQuad(localRect), GrQuadType::kRect);
}
std::unique_ptr<GrDrawOp> MakePerEdgeQuad(GrRecordingContext* context,
GrPaint&& paint,
GrAAType aaType,
GrQuadAAFlags edgeAA,
const SkMatrix& viewMatrix,
const SkPoint quad[4],
const SkPoint localQuad[4],
const GrUserStencilSettings* stencilSettings) {
GrQuadType deviceType = GrQuadTypeForPoints(quad, viewMatrix);
GrQuadType localType = GrQuadTypeForPoints(localQuad ? localQuad : quad, SkMatrix::I());
return FillRectOp::Make(context, std::move(paint), aaType, edgeAA, stencilSettings,
GrPerspQuad::MakeFromSkQuad(quad, viewMatrix), deviceType,
GrPerspQuad::MakeFromSkQuad(localQuad ? localQuad : quad,
SkMatrix::I()), localType);
}
std::unique_ptr<GrDrawOp> MakeSet(GrRecordingContext* context,
GrPaint&& paint,
GrAAType aaType,
const SkMatrix& viewMatrix,
const GrRenderTargetContext::QuadSetEntry quads[],
int cnt,
const GrUserStencilSettings* stencilSettings) {
// First make a draw op for the first quad in the set
SkASSERT(cnt > 0);
GrQuadType deviceQuadType = GrQuadTypeForTransformedRect(viewMatrix);
paint.setColor4f(quads[0].fColor);
std::unique_ptr<GrDrawOp> op = FillRectOp::Make(context, std::move(paint), aaType,
quads[0].fAAFlags, stencilSettings,
GrPerspQuad::MakeFromRect(quads[0].fRect, viewMatrix), deviceQuadType,
GrPerspQuad::MakeFromRect(quads[0].fRect, quads[0].fLocalMatrix),
GrQuadTypeForTransformedRect(quads[0].fLocalMatrix));
auto* fillRects = op->cast<FillRectOp>();
// Accumulate remaining quads similar to onCombineIfPossible() without creating an op
for (int i = 1; i < cnt; ++i) {
GrPerspQuad deviceQuad = GrPerspQuad::MakeFromRect(quads[i].fRect, viewMatrix);
GrAAType resolvedAA;
GrQuadAAFlags resolvedEdgeFlags;
GrResolveAATypeForQuad(aaType, quads[i].fAAFlags, deviceQuad, deviceQuadType,
&resolvedAA, &resolvedEdgeFlags);
fillRects->addQuad(deviceQuad,
GrPerspQuad::MakeFromRect(quads[i].fRect, quads[i].fLocalMatrix),
GrQuadTypeForTransformedRect(quads[i].fLocalMatrix), quads[i].fColor,
resolvedEdgeFlags,resolvedAA);
}
return op;
}
std::unique_ptr<GrDrawOp> Make(GrRecordingContext* context,
GrPaint&& paint,
GrAAType aaType,
const SkMatrix& viewMatrix,
const SkRect& rect,
const GrUserStencilSettings* stencil) {
return MakePerEdge(context, std::move(paint), aaType,
aaType == GrAAType::kCoverage ? GrQuadAAFlags::kAll : GrQuadAAFlags::kNone,
viewMatrix, rect, stencil);
}
std::unique_ptr<GrDrawOp> MakeWithLocalMatrix(GrRecordingContext* context,
GrPaint&& paint,
GrAAType aaType,
const SkMatrix& viewMatrix,
const SkMatrix& localMatrix,
const SkRect& rect,
const GrUserStencilSettings* stencil) {
return MakePerEdgeWithLocalMatrix(context, std::move(paint), aaType,
aaType == GrAAType::kCoverage ? GrQuadAAFlags::kAll : GrQuadAAFlags::kNone,
viewMatrix, localMatrix, rect, stencil);
}
std::unique_ptr<GrDrawOp> MakeWithLocalRect(GrRecordingContext* context,
GrPaint&& paint,
GrAAType aaType,
const SkMatrix& viewMatrix,
const SkRect& rect,
const SkRect& localRect,
const GrUserStencilSettings* stencil) {
return MakePerEdgeWithLocalRect(context, std::move(paint), aaType,
aaType == GrAAType::kCoverage ? GrQuadAAFlags::kAll : GrQuadAAFlags::kNone,
viewMatrix, rect, localRect, stencil);
}
} // namespace GrFillRectOp
#if GR_TEST_UTILS
#include "GrDrawOpTest.h"
#include "SkGr.h"
GR_DRAW_OP_TEST_DEFINE(FillRectOp) {
SkMatrix viewMatrix = GrTest::TestMatrixInvertible(random);
SkRect rect = GrTest::TestRect(random);
GrAAType aaType = GrAAType::kNone;
if (random->nextBool()) {
aaType = (fsaaType == GrFSAAType::kUnifiedMSAA) ? GrAAType::kMSAA : GrAAType::kCoverage;
}
const GrUserStencilSettings* stencil = random->nextBool() ? nullptr
: GrGetRandomStencil(random, context);
GrQuadAAFlags aaFlags = GrQuadAAFlags::kNone;
aaFlags |= random->nextBool() ? GrQuadAAFlags::kLeft : GrQuadAAFlags::kNone;
aaFlags |= random->nextBool() ? GrQuadAAFlags::kTop : GrQuadAAFlags::kNone;
aaFlags |= random->nextBool() ? GrQuadAAFlags::kRight : GrQuadAAFlags::kNone;
aaFlags |= random->nextBool() ? GrQuadAAFlags::kBottom : GrQuadAAFlags::kNone;
if (random->nextBool()) {
if (random->nextBool()) {
if (random->nextBool()) {
// Local matrix with a set op
uint32_t extraQuadCt = random->nextRangeU(1, 4);
SkTArray<GrRenderTargetContext::QuadSetEntry> quads(extraQuadCt + 1);
quads.push_back(
{rect, SkPMColor4f::FromBytes_RGBA(SkColorToPremulGrColor(random->nextU())),
GrTest::TestMatrixInvertible(random), aaFlags});
for (uint32_t i = 0; i < extraQuadCt; ++i) {
GrQuadAAFlags aaFlags = GrQuadAAFlags::kNone;
aaFlags |= random->nextBool() ? GrQuadAAFlags::kLeft : GrQuadAAFlags::kNone;
aaFlags |= random->nextBool() ? GrQuadAAFlags::kTop : GrQuadAAFlags::kNone;
aaFlags |= random->nextBool() ? GrQuadAAFlags::kRight : GrQuadAAFlags::kNone;
aaFlags |= random->nextBool() ? GrQuadAAFlags::kBottom : GrQuadAAFlags::kNone;
quads.push_back(
{GrTest::TestRect(random),
SkPMColor4f::FromBytes_RGBA(SkColorToPremulGrColor(random->nextU())),
GrTest::TestMatrixInvertible(random), aaFlags});
}
return GrFillRectOp::MakeSet(context, std::move(paint), aaType, viewMatrix,
quads.begin(), quads.count(), stencil);
} else {
// Single local matrix
SkMatrix localMatrix = GrTest::TestMatrixInvertible(random);
return GrFillRectOp::MakePerEdgeWithLocalMatrix(context, std::move(paint), aaType,
aaFlags, viewMatrix, localMatrix,
rect, stencil);
}
} else {
// Pass local rect directly
SkRect localRect = GrTest::TestRect(random);
return GrFillRectOp::MakePerEdgeWithLocalRect(context, std::move(paint), aaType,
aaFlags, viewMatrix, rect, localRect,
stencil);
}
} else {
// The simplest constructor
return GrFillRectOp::MakePerEdge(context, std::move(paint), aaType, aaFlags, viewMatrix,
rect, stencil);
}
}
#endif