blob: edb0f76475d379090ae04a8f65836369a4a4bbd8 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#define SK_OPTS_NS skslc_standalone
#include "src/opts/SkChecksum_opts.h"
#include "src/opts/SkVM_opts.h"
#include "src/gpu/GrShaderUtils.h"
#include "src/sksl/SkSLCompiler.h"
#include "src/sksl/SkSLDehydrator.h"
#include "src/sksl/SkSLFileOutputStream.h"
#include "src/sksl/SkSLIRGenerator.h"
#include "src/sksl/SkSLStringStream.h"
#include "src/sksl/SkSLUtil.h"
#include "src/sksl/codegen/SkSLPipelineStageCodeGenerator.h"
#include "src/sksl/codegen/SkSLVMCodeGenerator.h"
#include "src/sksl/ir/SkSLUnresolvedFunction.h"
#include "spirv-tools/libspirv.hpp"
#include <fstream>
#include <limits.h>
#include <stdarg.h>
#include <stdio.h>
void SkDebugf(const char format[], ...) {
va_list args;
va_start(args, format);
vfprintf(stderr, format, args);
va_end(args);
}
namespace SkOpts {
decltype(hash_fn) hash_fn = skslc_standalone::hash_fn;
decltype(interpret_skvm) interpret_skvm = skslc_standalone::interpret_skvm;
}
enum class ResultCode {
kSuccess = 0,
kCompileError = 1,
kInputError = 2,
kOutputError = 3,
kConfigurationError = 4,
};
static std::unique_ptr<SkWStream> as_SkWStream(SkSL::OutputStream& s) {
struct Adapter : public SkWStream {
public:
Adapter(SkSL::OutputStream& out) : fOut(out), fBytesWritten(0) {}
bool write(const void* buffer, size_t size) override {
fOut.write(buffer, size);
fBytesWritten += size;
return true;
}
void flush() override {}
size_t bytesWritten() const override { return fBytesWritten; }
private:
SkSL::OutputStream& fOut;
size_t fBytesWritten;
};
return std::make_unique<Adapter>(s);
}
// Given the path to a file (e.g. src/gpu/effects/GrFooFragmentProcessor.fp) and the expected
// filename prefix and suffix (e.g. "Gr" and ".fp"), returns the "base name" of the
// file (in this case, 'FooFragmentProcessor'). If no match, returns the empty string.
static SkSL::String base_name(const SkSL::String& fpPath, const char* prefix, const char* suffix) {
SkSL::String result;
const char* end = &*fpPath.end();
const char* fileName = end;
// back up until we find a slash
while (fileName != fpPath && '/' != *(fileName - 1) && '\\' != *(fileName - 1)) {
--fileName;
}
if (!strncmp(fileName, prefix, strlen(prefix)) &&
!strncmp(end - strlen(suffix), suffix, strlen(suffix))) {
result.append(fileName + strlen(prefix), end - fileName - strlen(prefix) - strlen(suffix));
}
return result;
}
// Given a string containing an SkSL program, searches for a #pragma settings comment, like so:
// /*#pragma settings Default Sharpen*/
// The passed-in Settings object will be updated accordingly. Any number of options can be provided.
static bool detect_shader_settings(const SkSL::String& text,
SkSL::Program::Settings* settings,
const SkSL::ShaderCapsClass** caps) {
using Factory = SkSL::ShaderCapsFactory;
// Find a matching comment and isolate the name portion.
static constexpr char kPragmaSettings[] = "/*#pragma settings ";
const char* settingsPtr = strstr(text.c_str(), kPragmaSettings);
if (settingsPtr != nullptr) {
// Subtract one here in order to preserve the leading space, which is necessary to allow
// consumeSuffix to find the first item.
settingsPtr += strlen(kPragmaSettings) - 1;
const char* settingsEnd = strstr(settingsPtr, "*/");
if (settingsEnd != nullptr) {
SkSL::String settingsText{settingsPtr, size_t(settingsEnd - settingsPtr)};
// Apply settings as requested. Since they can come in any order, repeat until we've
// consumed them all.
for (;;) {
const size_t startingLength = settingsText.length();
if (settingsText.consumeSuffix(" AddAndTrueToLoopCondition")) {
static auto s_addAndTrueCaps = Factory::AddAndTrueToLoopCondition();
*caps = s_addAndTrueCaps.get();
}
if (settingsText.consumeSuffix(" BlendModesFailRandomlyForAllZeroVec")) {
static auto s_blendZeroCaps = Factory::BlendModesFailRandomlyForAllZeroVec();
*caps = s_blendZeroCaps.get();
}
if (settingsText.consumeSuffix(" CannotUseFractForNegativeValues")) {
static auto s_negativeFractCaps = Factory::CannotUseFractForNegativeValues();
*caps = s_negativeFractCaps.get();
}
if (settingsText.consumeSuffix(" CannotUseFragCoord")) {
static auto s_noFragCoordCaps = Factory::CannotUseFragCoord();
*caps = s_noFragCoordCaps.get();
}
if (settingsText.consumeSuffix(" CannotUseMinAndAbsTogether")) {
static auto s_minAbsCaps = Factory::CannotUseMinAndAbsTogether();
*caps = s_minAbsCaps.get();
}
if (settingsText.consumeSuffix(" Default")) {
static auto s_defaultCaps = Factory::Default();
*caps = s_defaultCaps.get();
}
if (settingsText.consumeSuffix(" EmulateAbsIntFunction")) {
static auto s_emulateAbsIntCaps = Factory::EmulateAbsIntFunction();
*caps = s_emulateAbsIntCaps.get();
}
if (settingsText.consumeSuffix(" GeometryShaderExtensionString")) {
static auto s_geometryExtCaps = Factory::GeometryShaderExtensionString();
*caps = s_geometryExtCaps.get();
}
if (settingsText.consumeSuffix(" GeometryShaderSupport")) {
static auto s_geometryShaderCaps = Factory::GeometryShaderSupport();
*caps = s_geometryShaderCaps.get();
}
if (settingsText.consumeSuffix(" GSInvocationsExtensionString")) {
static auto s_gsInvocationCaps = Factory::GSInvocationsExtensionString();
*caps = s_gsInvocationCaps.get();
}
if (settingsText.consumeSuffix(" IncompleteShortIntPrecision")) {
static auto s_incompleteShortIntCaps = Factory::IncompleteShortIntPrecision();
*caps = s_incompleteShortIntCaps.get();
}
if (settingsText.consumeSuffix(" MustGuardDivisionEvenAfterExplicitZeroCheck")) {
static auto s_div0Caps = Factory::MustGuardDivisionEvenAfterExplicitZeroCheck();
*caps = s_div0Caps.get();
}
if (settingsText.consumeSuffix(" MustForceNegatedAtanParamToFloat")) {
static auto s_negativeAtanCaps = Factory::MustForceNegatedAtanParamToFloat();
*caps = s_negativeAtanCaps.get();
}
if (settingsText.consumeSuffix(" MustForceNegatedLdexpParamToMultiply")) {
static auto s_negativeLdexpCaps =
Factory::MustForceNegatedLdexpParamToMultiply();
*caps = s_negativeLdexpCaps.get();
}
if (settingsText.consumeSuffix(" NoGSInvocationsSupport")) {
static auto s_noGSInvocations = Factory::NoGSInvocationsSupport();
*caps = s_noGSInvocations.get();
}
if (settingsText.consumeSuffix(" RemovePowWithConstantExponent")) {
static auto s_powCaps = Factory::RemovePowWithConstantExponent();
*caps = s_powCaps.get();
}
if (settingsText.consumeSuffix(" RewriteDoWhileLoops")) {
static auto s_rewriteLoopCaps = Factory::RewriteDoWhileLoops();
*caps = s_rewriteLoopCaps.get();
}
if (settingsText.consumeSuffix(" RewriteMatrixVectorMultiply")) {
static auto s_rewriteMatVecMulCaps = Factory::RewriteMatrixVectorMultiply();
*caps = s_rewriteMatVecMulCaps.get();
}
if (settingsText.consumeSuffix(" RewriteMatrixComparisons")) {
static auto s_rewriteMatrixComparisons = Factory::RewriteMatrixComparisons();
*caps = s_rewriteMatrixComparisons.get();
}
if (settingsText.consumeSuffix(" ShaderDerivativeExtensionString")) {
static auto s_derivativeCaps = Factory::ShaderDerivativeExtensionString();
*caps = s_derivativeCaps.get();
}
if (settingsText.consumeSuffix(" UnfoldShortCircuitAsTernary")) {
static auto s_ternaryCaps = Factory::UnfoldShortCircuitAsTernary();
*caps = s_ternaryCaps.get();
}
if (settingsText.consumeSuffix(" UsesPrecisionModifiers")) {
static auto s_precisionCaps = Factory::UsesPrecisionModifiers();
*caps = s_precisionCaps.get();
}
if (settingsText.consumeSuffix(" Version110")) {
static auto s_version110Caps = Factory::Version110();
*caps = s_version110Caps.get();
}
if (settingsText.consumeSuffix(" Version450Core")) {
static auto s_version450CoreCaps = Factory::Version450Core();
*caps = s_version450CoreCaps.get();
}
if (settingsText.consumeSuffix(" ForceHighPrecision")) {
settings->fForceHighPrecision = true;
}
if (settingsText.consumeSuffix(" NoInline")) {
settings->fInlineThreshold = 0;
}
if (settingsText.consumeSuffix(" InlineThresholdMax")) {
settings->fInlineThreshold = INT_MAX;
}
if (settingsText.consumeSuffix(" Sharpen")) {
settings->fSharpenTextures = true;
}
if (settingsText.empty()) {
break;
}
if (settingsText.length() == startingLength) {
printf("Unrecognized #pragma settings: %s\n", settingsText.c_str());
return false;
}
}
}
}
return true;
}
/**
* Displays a usage banner; used when the command line arguments don't make sense.
*/
static void show_usage() {
printf("usage: skslc <input> <output> <flags>\n"
" skslc <worklist>\n"
"\n"
"Allowed flags:\n"
"--settings: honor embedded /*#pragma settings*/ comments.\n"
"--nosettings: ignore /*#pragma settings*/ comments\n");
}
/**
* Handle a single input.
*/
ResultCode processCommand(std::vector<SkSL::String>& args) {
bool honorSettings = true;
if (args.size() == 4) {
// Handle four-argument case: `skslc in.sksl out.glsl --settings`
const SkSL::String& settingsArg = args[3];
if (settingsArg == "--settings") {
honorSettings = true;
} else if (settingsArg == "--nosettings") {
honorSettings = false;
} else {
printf("unrecognized flag: %s\n\n", settingsArg.c_str());
show_usage();
return ResultCode::kInputError;
}
} else if (args.size() != 3) {
show_usage();
return ResultCode::kInputError;
}
SkSL::ProgramKind kind;
const SkSL::String& inputPath = args[1];
if (inputPath.ends_with(".vert")) {
kind = SkSL::ProgramKind::kVertex;
} else if (inputPath.ends_with(".frag") || inputPath.ends_with(".sksl")) {
kind = SkSL::ProgramKind::kFragment;
} else if (inputPath.ends_with(".geom")) {
kind = SkSL::ProgramKind::kGeometry;
} else if (inputPath.ends_with(".rtb")) {
kind = SkSL::ProgramKind::kRuntimeBlender;
} else if (inputPath.ends_with(".rtcf")) {
kind = SkSL::ProgramKind::kRuntimeColorFilter;
} else if (inputPath.ends_with(".rts")) {
kind = SkSL::ProgramKind::kRuntimeShader;
} else {
printf("input filename must end in '.vert', '.frag', '.geom', '.rtb', '.rtcf', "
"'.rts', or '.sksl'\n");
return ResultCode::kInputError;
}
std::ifstream in(inputPath);
SkSL::String text((std::istreambuf_iterator<char>(in)),
std::istreambuf_iterator<char>());
if (in.rdstate()) {
printf("error reading '%s'\n", inputPath.c_str());
return ResultCode::kInputError;
}
SkSL::Program::Settings settings;
const SkSL::ShaderCapsClass* caps = &SkSL::standaloneCaps;
if (honorSettings) {
if (!detect_shader_settings(text, &settings, &caps)) {
return ResultCode::kInputError;
}
}
// This tells the compiler where the rt-flip uniform will live should it be required. For
// testing purposes we don't care where that is, but the compiler will report an error if we
// leave them at their default invalid values.
settings.fRTFlipOffset = 32;
settings.fRTFlipSet = 0;
settings.fRTFlipBinding = 0;
const SkSL::String& outputPath = args[2];
auto emitCompileError = [&](SkSL::FileOutputStream& out, const char* errorText) {
// Overwrite the compiler output, if any, with an error message.
out.close();
SkSL::FileOutputStream errorStream(outputPath);
errorStream.writeText("### Compilation failed:\n\n");
errorStream.writeText(errorText);
errorStream.close();
// Also emit the error directly to stdout.
puts(errorText);
};
auto compileProgram = [&](const auto& writeFn) -> ResultCode {
SkSL::FileOutputStream out(outputPath);
SkSL::Compiler compiler(caps);
if (!out.isValid()) {
printf("error writing '%s'\n", outputPath.c_str());
return ResultCode::kOutputError;
}
std::unique_ptr<SkSL::Program> program = compiler.convertProgram(kind, text, settings);
if (!program || !writeFn(compiler, *program, out)) {
emitCompileError(out, compiler.errorText().c_str());
return ResultCode::kCompileError;
}
if (!out.close()) {
printf("error writing '%s'\n", outputPath.c_str());
return ResultCode::kOutputError;
}
return ResultCode::kSuccess;
};
if (outputPath.ends_with(".spirv")) {
return compileProgram(
[](SkSL::Compiler& compiler, SkSL::Program& program, SkSL::OutputStream& out) {
return compiler.toSPIRV(program, out);
});
} else if (outputPath.ends_with(".asm.frag") || outputPath.ends_with(".asm.vert") ||
outputPath.ends_with(".asm.geom")) {
return compileProgram(
[](SkSL::Compiler& compiler, SkSL::Program& program, SkSL::OutputStream& out) {
// Compile program to SPIR-V assembly in a string-stream.
SkSL::StringStream assembly;
if (!compiler.toSPIRV(program, assembly)) {
return false;
}
// Convert the string-stream to a SPIR-V disassembly.
spvtools::SpirvTools tools(SPV_ENV_VULKAN_1_0);
const SkSL::String& spirv(assembly.str());
std::string disassembly;
if (!tools.Disassemble((const uint32_t*)spirv.data(),
spirv.size() / 4, &disassembly)) {
return false;
}
// Finally, write the disassembly to our output stream.
out.write(disassembly.data(), disassembly.size());
return true;
});
} else if (outputPath.ends_with(".glsl")) {
return compileProgram(
[](SkSL::Compiler& compiler, SkSL::Program& program, SkSL::OutputStream& out) {
return compiler.toGLSL(program, out);
});
} else if (outputPath.ends_with(".metal")) {
return compileProgram(
[](SkSL::Compiler& compiler, SkSL::Program& program, SkSL::OutputStream& out) {
return compiler.toMetal(program, out);
});
} else if (outputPath.ends_with(".skvm")) {
return compileProgram(
[](SkSL::Compiler&, SkSL::Program& program, SkSL::OutputStream& out) {
skvm::Builder builder{skvm::Features{}};
if (!SkSL::testingOnly_ProgramToSkVMShader(program, &builder)) {
return false;
}
std::unique_ptr<SkWStream> redirect = as_SkWStream(out);
builder.done().dump(redirect.get());
return true;
});
} else if (outputPath.ends_with(".stage")) {
return compileProgram(
[](SkSL::Compiler&, SkSL::Program& program, SkSL::OutputStream& out) {
class Callbacks : public SkSL::PipelineStage::Callbacks {
public:
using String = SkSL::String;
String getMangledName(const char* name) override {
return String(name) + "_0";
}
String declareUniform(const SkSL::VarDeclaration* decl) override {
fOutput += decl->description();
return String(decl->var().name());
}
void defineFunction(const char* decl,
const char* body,
bool /*isMain*/) override {
fOutput += String(decl) + "{" + body + "}";
}
void defineStruct(const char* definition) override {
fOutput += definition;
}
void declareGlobal(const char* declaration) override {
fOutput += declaration;
}
String sampleShader(int index, String coords) override {
return "sample(child_" + SkSL::to_string(index) + ", " + coords + ")";
}
String sampleColorFilter(int index, String color) override {
String result = "sample(child_" + SkSL::to_string(index);
if (!color.empty()) {
result += ", " + color;
}
result += ")";
return result;
}
String sampleBlender(int index, String src, String dst) override {
return "sample(child_" + SkSL::to_string(index) + ", " + src + ", " +
dst + ")";
}
String fOutput;
};
// The .stage output looks almost like valid SkSL, but not quite.
// The PipelineStageGenerator bridges the gap between the SkSL in `program`,
// and the C++ FP builder API (see GrSkSLFP). In that API, children don't need
// to be declared (so they don't emit declarations here). Children are sampled
// by index, not name - so all children here are just "child_N".
// The input color and coords have names in the original SkSL (as parameters to
// main), but those are ignored here. References to those variables become
// "_coords" and "_inColor". At runtime, those variable names are irrelevant
// when the new SkSL is emitted inside the FP - references to those variables
// are replaced with strings from EmitArgs, and might be varyings or differently
// named parameters.
Callbacks callbacks;
SkSL::PipelineStage::ConvertProgram(program, "_coords", "_inColor",
"_canvasColor", &callbacks);
out.writeString(GrShaderUtils::PrettyPrint(callbacks.fOutput));
return true;
});
} else if (outputPath.ends_with(".dehydrated.sksl")) {
SkSL::FileOutputStream out(outputPath);
SkSL::Compiler compiler(caps);
if (!out.isValid()) {
printf("error writing '%s'\n", outputPath.c_str());
return ResultCode::kOutputError;
}
SkSL::LoadedModule module =
compiler.loadModule(kind, SkSL::Compiler::MakeModulePath(inputPath.c_str()),
/*base=*/nullptr, /*dehydrate=*/true);
SkSL::Dehydrator dehydrator;
dehydrator.write(*module.fSymbols);
dehydrator.write(module.fElements);
SkSL::String baseName = base_name(inputPath, "", ".sksl");
SkSL::StringStream buffer;
dehydrator.finish(buffer);
const SkSL::String& data = buffer.str();
out.printf("static uint8_t SKSL_INCLUDE_%s[] = {", baseName.c_str());
for (size_t i = 0; i < data.length(); ++i) {
out.printf("%s%d,", dehydrator.prefixAtOffset(i), uint8_t(data[i]));
}
out.printf("};\n");
out.printf("static constexpr size_t SKSL_INCLUDE_%s_LENGTH = sizeof(SKSL_INCLUDE_%s);\n",
baseName.c_str(), baseName.c_str());
if (!out.close()) {
printf("error writing '%s'\n", outputPath.c_str());
return ResultCode::kOutputError;
}
} else {
printf("expected output path to end with one of: .glsl, .metal, .spirv, .asm.frag, .skvm, "
".stage, .asm.vert, .asm.geom, .cpp, .h (got '%s')\n", outputPath.c_str());
return ResultCode::kConfigurationError;
}
return ResultCode::kSuccess;
}
/**
* Processes multiple inputs in a single invocation of skslc.
*/
ResultCode processWorklist(const char* worklistPath) {
SkSL::String inputPath(worklistPath);
if (!inputPath.ends_with(".worklist")) {
printf("expected .worklist file, found: %s\n\n", worklistPath);
show_usage();
return ResultCode::kConfigurationError;
}
// The worklist contains one line per argument to pass to skslc. When a blank line is reached,
// those arguments will be passed to `processCommand`.
auto resultCode = ResultCode::kSuccess;
std::vector<SkSL::String> args = {"skslc"};
std::ifstream in(worklistPath);
for (SkSL::String line; std::getline(in, line); ) {
if (in.rdstate()) {
printf("error reading '%s'\n", worklistPath);
return ResultCode::kInputError;
}
if (!line.empty()) {
// We found an argument. Remember it.
args.push_back(std::move(line));
} else {
// We found a blank line. If we have any arguments stored up, process them as a command.
if (!args.empty()) {
ResultCode outcome = processCommand(args);
resultCode = std::max(resultCode, outcome);
// Clear every argument except the first ("skslc").
args.resize(1);
}
}
}
// If the worklist ended with a list of arguments but no blank line, process those now.
if (args.size() > 1) {
ResultCode outcome = processCommand(args);
resultCode = std::max(resultCode, outcome);
}
// Return the "worst" status we encountered. For our purposes, compilation errors are the least
// serious, because they are expected to occur in unit tests. Other types of errors are not
// expected at all during a build.
return resultCode;
}
int main(int argc, const char** argv) {
if (argc == 2) {
// Worklists are the only two-argument case for skslc, and we don't intend to support
// nested worklists, so we can process them here.
return (int)processWorklist(argv[1]);
} else {
// Process non-worklist inputs.
std::vector<SkSL::String> args;
for (int index=0; index<argc; ++index) {
args.push_back(argv[index]);
}
return (int)processCommand(args);
}
}