blob: 7a269e9632e5514f1c6f68a218e2904b2fe43888 [file] [log] [blame]
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "tests/TestUtils.h"
#include "include/encode/SkPngEncoder.h"
#include "include/utils/SkBase64.h"
#include "src/core/SkAutoPixmapStorage.h"
#include "src/core/SkUtils.h"
#include "src/gpu/GrDirectContextPriv.h"
#include "src/gpu/GrDrawingManager.h"
#include "src/gpu/GrGpu.h"
#include "src/gpu/GrImageInfo.h"
#include "src/gpu/GrRecordingContextPriv.h"
#include "src/gpu/GrSurfaceContext.h"
#include "src/gpu/GrSurfaceProxy.h"
#include "src/gpu/GrTextureProxy.h"
#include "src/gpu/SkGr.h"
void TestReadPixels(skiatest::Reporter* reporter,
GrDirectContext* dContext,
GrSurfaceContext* srcContext,
uint32_t expectedPixelValues[],
const char* testName) {
int pixelCnt = srcContext->width() * srcContext->height();
SkImageInfo ii = SkImageInfo::Make(srcContext->dimensions(),
kRGBA_8888_SkColorType,
kPremul_SkAlphaType);
SkAutoPixmapStorage pm;
pm.alloc(ii);
pm.erase(SK_ColorTRANSPARENT);
bool read = srcContext->readPixels(dContext, pm, {0, 0});
if (!read) {
ERRORF(reporter, "%s: Error reading from texture.", testName);
}
for (int i = 0; i < pixelCnt; ++i) {
if (pm.addr32()[i] != expectedPixelValues[i]) {
ERRORF(reporter, "%s: Error, pixel value %d should be 0x%08x, got 0x%08x.",
testName, i, expectedPixelValues[i], pm.addr32()[i]);
break;
}
}
}
void TestWritePixels(skiatest::Reporter* reporter,
GrDirectContext* dContext,
GrSurfaceContext* dstContext,
bool expectedToWork,
const char* testName) {
SkImageInfo ii = SkImageInfo::Make(dstContext->dimensions(),
kRGBA_8888_SkColorType,
kPremul_SkAlphaType);
SkAutoPixmapStorage pm;
pm.alloc(ii);
for (int y = 0; y < dstContext->height(); ++y) {
for (int x = 0; x < dstContext->width(); ++x) {
*pm.writable_addr32(x, y) = SkColorToPremulGrColor(SkColorSetARGB(2*y, x, y, x + y));
}
}
bool write = dstContext->writePixels(dContext, pm, {0, 0});
if (!write) {
if (expectedToWork) {
ERRORF(reporter, "%s: Error writing to texture.", testName);
}
return;
}
if (write && !expectedToWork) {
ERRORF(reporter, "%s: writePixels succeeded when it wasn't supposed to.", testName);
return;
}
TestReadPixels(reporter, dContext, dstContext, pm.writable_addr32(0, 0), testName);
}
void TestCopyFromSurface(skiatest::Reporter* reporter,
GrDirectContext* dContext,
sk_sp<GrSurfaceProxy> proxy,
GrSurfaceOrigin origin,
GrColorType colorType,
uint32_t expectedPixelValues[],
const char* testName) {
auto copy = GrSurfaceProxy::Copy(dContext, std::move(proxy), origin, GrMipmapped::kNo,
SkBackingFit::kExact, SkBudgeted::kYes);
SkASSERT(copy && copy->asTextureProxy());
auto swizzle = dContext->priv().caps()->getReadSwizzle(copy->backendFormat(), colorType);
GrSurfaceProxyView view(std::move(copy), origin, swizzle);
auto dstContext = GrSurfaceContext::Make(dContext,
std::move(view),
{colorType, kPremul_SkAlphaType, nullptr});
SkASSERT(dstContext);
TestReadPixels(reporter, dContext, dstContext.get(), expectedPixelValues, testName);
}
bool BipmapToBase64DataURI(const SkBitmap& bitmap, SkString* dst) {
SkPixmap pm;
if (!bitmap.peekPixels(&pm)) {
dst->set("peekPixels failed");
return false;
}
// We're going to embed this PNG in a data URI, so make it as small as possible
SkPngEncoder::Options options;
options.fFilterFlags = SkPngEncoder::FilterFlag::kAll;
options.fZLibLevel = 9;
SkDynamicMemoryWStream wStream;
if (!SkPngEncoder::Encode(&wStream, pm, options)) {
dst->set("SkPngEncoder::Encode failed");
return false;
}
sk_sp<SkData> pngData = wStream.detachAsData();
size_t len = SkBase64::Encode(pngData->data(), pngData->size(), nullptr);
// The PNG can be almost arbitrarily large. We don't want to fill our logs with enormous URLs.
// Infra says these can be pretty big, as long as we're only outputting them on failure.
static const size_t kMaxBase64Length = 1024 * 1024;
if (len > kMaxBase64Length) {
dst->printf("Encoded image too large (%u bytes)", static_cast<uint32_t>(len));
return false;
}
dst->resize(len);
SkBase64::Encode(pngData->data(), pngData->size(), dst->writable_str());
dst->prepend("data:image/png;base64,");
return true;
}
static bool compare_colors(int x, int y,
const float rgbaA[],
const float rgbaB[],
const float tolRGBA[4],
std::function<ComparePixmapsErrorReporter>& error) {
float diffs[4];
bool bad = false;
for (int i = 0; i < 4; ++i) {
diffs[i] = rgbaB[i] - rgbaA[i];
if (std::abs(diffs[i]) > std::abs(tolRGBA[i])) {
bad = true;
}
}
if (bad) {
error(x, y, diffs);
return false;
}
return true;
}
bool ComparePixels(const GrCPixmap& a,
const GrCPixmap& b,
const float tolRGBA[4],
std::function<ComparePixmapsErrorReporter>& error) {
if (a.dimensions() != b.dimensions()) {
static constexpr float kEmptyDiffs[4] = {};
error(-1, -1, kEmptyDiffs);
return false;
}
SkAlphaType floatAlphaType = a.alphaType();
// If one is premul and the other is unpremul we do the comparison in premul space.
if ((a.alphaType() == kPremul_SkAlphaType || b.alphaType() == kPremul_SkAlphaType) &&
(a.alphaType() == kUnpremul_SkAlphaType || b.alphaType() == kUnpremul_SkAlphaType)) {
floatAlphaType = kPremul_SkAlphaType;
}
sk_sp<SkColorSpace> floatCS;
if (SkColorSpace::Equals(a.colorSpace(), b.colorSpace())) {
floatCS = a.refColorSpace();
} else {
floatCS = SkColorSpace::MakeSRGBLinear();
}
GrImageInfo floatInfo(GrColorType::kRGBA_F32,
floatAlphaType,
std::move(floatCS),
a.dimensions());
GrPixmap floatA = GrPixmap::Allocate(floatInfo);
GrPixmap floatB = GrPixmap::Allocate(floatInfo);
SkAssertResult(GrConvertPixels(floatA, a));
SkAssertResult(GrConvertPixels(floatB, b));
SkASSERT(floatA.rowBytes() == floatB.rowBytes());
auto at = [rb = floatA.rowBytes()](const void* base, int x, int y) {
return SkTAddOffset<const float>(base, y*rb + x*sizeof(float)*4);
};
for (int y = 0; y < floatA.height(); ++y) {
for (int x = 0; x < floatA.width(); ++x) {
const float* rgbaA = at(floatA.addr(), x, y);
const float* rgbaB = at(floatB.addr(), x, y);
if (!compare_colors(x, y, rgbaA, rgbaB, tolRGBA, error)) {
return false;
}
}
}
return true;
}
bool CheckSolidPixels(const SkColor4f& col,
const SkPixmap& pixmap,
const float tolRGBA[4],
std::function<ComparePixmapsErrorReporter>& error) {
size_t floatBpp = GrColorTypeBytesPerPixel(GrColorType::kRGBA_F32);
// First convert 'col' to be compatible with 'pixmap'
GrPixmap colorPixmap;
{
sk_sp<SkColorSpace> srcCS = SkColorSpace::MakeSRGBLinear();
GrImageInfo srcInfo(GrColorType::kRGBA_F32,
kUnpremul_SkAlphaType,
std::move(srcCS),
{1, 1});
GrCPixmap srcPixmap(srcInfo, col.vec(), floatBpp);
GrImageInfo dstInfo =
srcInfo.makeAlphaType(pixmap.alphaType()).makeColorSpace(pixmap.refColorSpace());
colorPixmap = GrPixmap::Allocate(dstInfo);
SkAssertResult(GrConvertPixels(colorPixmap, srcPixmap));
}
size_t floatRowBytes = floatBpp * pixmap.width();
std::unique_ptr<char[]> floatB(new char[floatRowBytes * pixmap.height()]);
// Then convert 'pixmap' to RGBA_F32
GrPixmap f32Pixmap = GrPixmap::Allocate(pixmap.info().makeColorType(kRGBA_F32_SkColorType));
SkAssertResult(GrConvertPixels(f32Pixmap, pixmap));
for (int y = 0; y < f32Pixmap.height(); ++y) {
for (int x = 0; x < f32Pixmap.width(); ++x) {
auto rgbaA = SkTAddOffset<const float>(f32Pixmap.addr(),
f32Pixmap.rowBytes()*y + floatBpp*x);
auto rgbaB = static_cast<const float*>(colorPixmap.addr());
if (!compare_colors(x, y, rgbaA, rgbaB, tolRGBA, error)) {
return false;
}
}
}
return true;
}
void CheckSingleThreadedProxyRefs(skiatest::Reporter* reporter,
GrSurfaceProxy* proxy,
int32_t expectedProxyRefs,
int32_t expectedBackingRefs) {
int32_t actualBackingRefs = proxy->testingOnly_getBackingRefCnt();
REPORTER_ASSERT(reporter, proxy->refCntGreaterThan(expectedProxyRefs - 1) &&
!proxy->refCntGreaterThan(expectedProxyRefs));
REPORTER_ASSERT(reporter, actualBackingRefs == expectedBackingRefs);
}
#include "src/utils/SkCharToGlyphCache.h"
static SkGlyphID hash_to_glyph(uint32_t value) {
return SkToU16(((value >> 16) ^ value) & 0xFFFF);
}
namespace {
class UnicharGen {
SkUnichar fU;
const int fStep;
public:
UnicharGen(int step) : fU(0), fStep(step) {}
SkUnichar next() {
fU += fStep;
return fU;
}
};
} // namespace
DEF_TEST(chartoglyph_cache, reporter) {
SkCharToGlyphCache cache;
const int step = 3;
UnicharGen gen(step);
for (int i = 0; i < 500; ++i) {
SkUnichar c = gen.next();
SkGlyphID glyph = hash_to_glyph(c);
int index = cache.findGlyphIndex(c);
if (index >= 0) {
index = cache.findGlyphIndex(c);
}
REPORTER_ASSERT(reporter, index < 0);
cache.insertCharAndGlyph(~index, c, glyph);
UnicharGen gen2(step);
for (int j = 0; j <= i; ++j) {
c = gen2.next();
glyph = hash_to_glyph(c);
index = cache.findGlyphIndex(c);
if ((unsigned)index != glyph) {
index = cache.findGlyphIndex(c);
}
REPORTER_ASSERT(reporter, (unsigned)index == glyph);
}
}
}