blob: 9c86befc2520bef33bd638ef11cd6c0ab13b7bdd [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
// This is a GPU-backend specific test.
#include "include/core/SkTypes.h"
#include "include/gpu/GrDirectContext.h"
#include "include/private/SkChecksum.h"
#include "include/utils/SkRandom.h"
#include "src/gpu/GrAutoLocaleSetter.h"
#include "src/gpu/GrDirectContextPriv.h"
#include "src/gpu/GrDrawOpTest.h"
#include "src/gpu/GrDrawingManager.h"
#include "src/gpu/GrPipeline.h"
#include "src/gpu/GrProxyProvider.h"
#include "src/gpu/GrXferProcessor.h"
#include "src/gpu/effects/GrBlendFragmentProcessor.h"
#include "src/gpu/effects/GrPorterDuffXferProcessor.h"
#include "src/gpu/effects/generated/GrConfigConversionEffect.h"
#include "src/gpu/glsl/GrGLSLFragmentProcessor.h"
#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
#include "src/gpu/glsl/GrGLSLProgramBuilder.h"
#include "src/gpu/ops/GrDrawOp.h"
#include "tests/Test.h"
#include "tools/gpu/GrContextFactory.h"
#ifdef SK_GL
#include "src/gpu/gl/GrGLGpu.h"
#endif
/*
* A simple processor which just tries to insert a massive key and verify that it can retrieve the
* whole thing correctly
*/
static const uint32_t kMaxKeySize = 1024;
class GLBigKeyProcessor : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs& args) override {
args.fFragBuilder->codeAppendf("return half4(1);\n");
}
static void GenKey(const GrProcessor&, const GrShaderCaps&, GrProcessorKeyBuilder* b) {
for (uint32_t i = 0; i < kMaxKeySize; i++) {
b->add32(i);
}
}
private:
using INHERITED = GrGLSLFragmentProcessor;
};
class BigKeyProcessor : public GrFragmentProcessor {
public:
static std::unique_ptr<GrFragmentProcessor> Make() {
return std::unique_ptr<GrFragmentProcessor>(new BigKeyProcessor);
}
const char* name() const override { return "Big_Ole_Key"; }
std::unique_ptr<GrGLSLFragmentProcessor> onMakeProgramImpl() const override {
return std::make_unique<GLBigKeyProcessor>();
}
std::unique_ptr<GrFragmentProcessor> clone() const override { return Make(); }
private:
BigKeyProcessor() : INHERITED(kBigKeyProcessor_ClassID, kNone_OptimizationFlags) { }
void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override {
GLBigKeyProcessor::GenKey(*this, caps, b);
}
bool onIsEqual(const GrFragmentProcessor&) const override { return true; }
GR_DECLARE_FRAGMENT_PROCESSOR_TEST
using INHERITED = GrFragmentProcessor;
};
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(BigKeyProcessor);
#if GR_TEST_UTILS
std::unique_ptr<GrFragmentProcessor> BigKeyProcessor::TestCreate(GrProcessorTestData*) {
return BigKeyProcessor::Make();
}
#endif
//////////////////////////////////////////////////////////////////////////////
class BlockInputFragmentProcessor : public GrFragmentProcessor {
public:
static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp) {
return std::unique_ptr<GrFragmentProcessor>(new BlockInputFragmentProcessor(std::move(fp)));
}
const char* name() const override { return "Block_Input"; }
std::unique_ptr<GrGLSLFragmentProcessor> onMakeProgramImpl() const override {
return std::make_unique<GLFP>();
}
std::unique_ptr<GrFragmentProcessor> clone() const override {
return Make(this->childProcessor(0)->clone());
}
private:
class GLFP : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs& args) override {
SkString temp = this->invokeChild(0, args);
args.fFragBuilder->codeAppendf("return %s;", temp.c_str());
}
private:
using INHERITED = GrGLSLFragmentProcessor;
};
BlockInputFragmentProcessor(std::unique_ptr<GrFragmentProcessor> child)
: INHERITED(kBlockInputFragmentProcessor_ClassID, kNone_OptimizationFlags) {
this->registerChild(std::move(child));
}
void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override {}
bool onIsEqual(const GrFragmentProcessor&) const override { return true; }
using INHERITED = GrFragmentProcessor;
};
//////////////////////////////////////////////////////////////////////////////
/*
* Begin test code
*/
static const int kRenderTargetHeight = 1;
static const int kRenderTargetWidth = 1;
static std::unique_ptr<GrSurfaceDrawContext> random_surface_draw_context(
GrRecordingContext* rContext,
SkRandom* random,
const GrCaps* caps) {
GrSurfaceOrigin origin = random->nextBool() ? kTopLeft_GrSurfaceOrigin
: kBottomLeft_GrSurfaceOrigin;
GrColorType ct = GrColorType::kRGBA_8888;
const GrBackendFormat format = caps->getDefaultBackendFormat(ct, GrRenderable::kYes);
int sampleCnt = random->nextBool() ? caps->getRenderTargetSampleCount(2, format) : 1;
// Above could be 0 if msaa isn't supported.
sampleCnt = std::max(1, sampleCnt);
return GrSurfaceDrawContext::Make(
rContext, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kExact,
{kRenderTargetWidth, kRenderTargetHeight}, SkSurfaceProps(), sampleCnt,
GrMipmapped::kNo, GrProtected::kNo, origin);
}
#if GR_TEST_UTILS
static void set_random_xpf(GrPaint* paint, GrProcessorTestData* d) {
paint->setXPFactory(GrXPFactoryTestFactory::Get(d));
}
static std::unique_ptr<GrFragmentProcessor> create_random_proc_tree(GrProcessorTestData* d,
int minLevels, int maxLevels) {
SkASSERT(1 <= minLevels);
SkASSERT(minLevels <= maxLevels);
// Return a leaf node if maxLevels is 1 or if we randomly chose to terminate.
// If returning a leaf node, make sure that it doesn't have children (e.g. another
// GrComposeEffect)
const float terminateProbability = 0.3f;
if (1 == minLevels) {
bool terminate = (1 == maxLevels) || (d->fRandom->nextF() < terminateProbability);
if (terminate) {
std::unique_ptr<GrFragmentProcessor> fp;
while (true) {
fp = GrFragmentProcessorTestFactory::Make(d);
if (!fp) {
return nullptr;
}
if (0 == fp->numNonNullChildProcessors()) {
break;
}
}
return fp;
}
}
// If we didn't terminate, choose either the left or right subtree to fulfill
// the minLevels requirement of this tree; the other child can have as few levels as it wants.
// Also choose a random xfer mode.
if (minLevels > 1) {
--minLevels;
}
auto minLevelsChild = create_random_proc_tree(d, minLevels, maxLevels - 1);
std::unique_ptr<GrFragmentProcessor> otherChild(create_random_proc_tree(d, 1, maxLevels - 1));
if (!minLevelsChild || !otherChild) {
return nullptr;
}
SkBlendMode mode = static_cast<SkBlendMode>(d->fRandom->nextRangeU(0,
(int)SkBlendMode::kLastMode));
std::unique_ptr<GrFragmentProcessor> fp;
if (d->fRandom->nextF() < 0.5f) {
fp = GrBlendFragmentProcessor::Make(std::move(minLevelsChild), std::move(otherChild), mode);
SkASSERT(fp);
} else {
fp = GrBlendFragmentProcessor::Make(std::move(otherChild), std::move(minLevelsChild), mode);
SkASSERT(fp);
}
return fp;
}
static void set_random_color_coverage_stages(GrPaint* paint,
GrProcessorTestData* d,
int maxStages,
int maxTreeLevels) {
// Randomly choose to either create a linear pipeline of procs or create one proc tree
const float procTreeProbability = 0.5f;
if (d->fRandom->nextF() < procTreeProbability) {
std::unique_ptr<GrFragmentProcessor> fp(create_random_proc_tree(d, 2, maxTreeLevels));
if (fp) {
paint->setColorFragmentProcessor(std::move(fp));
}
} else {
if (maxStages >= 1) {
if (std::unique_ptr<GrFragmentProcessor> fp = GrFragmentProcessorTestFactory::Make(d)) {
paint->setColorFragmentProcessor(std::move(fp));
}
}
if (maxStages >= 2) {
if (std::unique_ptr<GrFragmentProcessor> fp = GrFragmentProcessorTestFactory::Make(d)) {
paint->setCoverageFragmentProcessor(std::move(fp));
}
}
}
}
#endif
#if !GR_TEST_UTILS
bool GrDrawingManager::ProgramUnitTest(GrDirectContext*, int) { return true; }
#else
bool GrDrawingManager::ProgramUnitTest(GrDirectContext* direct, int maxStages, int maxLevels) {
GrProxyProvider* proxyProvider = direct->priv().proxyProvider();
const GrCaps* caps = direct->priv().caps();
GrProcessorTestData::ViewInfo views[2];
// setup arbitrary textures
GrMipmapped mipMapped = GrMipmapped(caps->mipmapSupport());
{
static constexpr SkISize kDims = {34, 18};
const GrBackendFormat format = caps->getDefaultBackendFormat(GrColorType::kRGBA_8888,
GrRenderable::kYes);
auto proxy = proxyProvider->createProxy(format, kDims, GrRenderable::kYes, 1,
mipMapped, SkBackingFit::kExact, SkBudgeted::kNo,
GrProtected::kNo, GrInternalSurfaceFlags::kNone);
GrSwizzle swizzle = caps->getReadSwizzle(format, GrColorType::kRGBA_8888);
views[0] = {{std::move(proxy), kBottomLeft_GrSurfaceOrigin, swizzle},
GrColorType::kRGBA_8888, kPremul_SkAlphaType};
}
{
static constexpr SkISize kDims = {16, 22};
const GrBackendFormat format = caps->getDefaultBackendFormat(GrColorType::kAlpha_8,
GrRenderable::kNo);
auto proxy = proxyProvider->createProxy(format, kDims, GrRenderable::kNo, 1, mipMapped,
SkBackingFit::kExact, SkBudgeted::kNo,
GrProtected::kNo, GrInternalSurfaceFlags::kNone);
GrSwizzle swizzle = caps->getReadSwizzle(format, GrColorType::kAlpha_8);
views[1] = {{std::move(proxy), kTopLeft_GrSurfaceOrigin, swizzle},
GrColorType::kAlpha_8, kPremul_SkAlphaType};
}
if (!std::get<0>(views[0]) || !std::get<0>(views[1])) {
SkDebugf("Could not allocate textures for test");
return false;
}
SkRandom random;
static const int NUM_TESTS = 1024;
for (int t = 0; t < NUM_TESTS; t++) {
// setup random render target(can fail)
auto surfaceDrawContext = random_surface_draw_context(direct, &random, caps);
if (!surfaceDrawContext) {
SkDebugf("Could not allocate surfaceDrawContext");
return false;
}
GrPaint paint;
GrProcessorTestData ptd(&random, direct, /*maxTreeDepth=*/1, SK_ARRAY_COUNT(views), views);
set_random_color_coverage_stages(&paint, &ptd, maxStages, maxLevels);
set_random_xpf(&paint, &ptd);
GrDrawRandomOp(&random, surfaceDrawContext.get(), std::move(paint));
}
// Flush everything, test passes if flush is successful(ie, no asserts are hit, no crashes)
direct->flush(GrFlushInfo());
direct->submit(false);
// Validate that GrFPs work correctly without an input.
auto surfaceDrawContext = GrSurfaceDrawContext::Make(
direct, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kExact,
{kRenderTargetWidth, kRenderTargetHeight}, SkSurfaceProps());
if (!surfaceDrawContext) {
SkDebugf("Could not allocate a surfaceDrawContext");
return false;
}
int fpFactoryCnt = GrFragmentProcessorTestFactory::Count();
for (int i = 0; i < fpFactoryCnt; ++i) {
// Since FP factories internally randomize, call each 10 times.
for (int j = 0; j < 10; ++j) {
GrProcessorTestData ptd(&random, direct, /*maxTreeDepth=*/1, SK_ARRAY_COUNT(views),
views);
GrPaint paint;
paint.setXPFactory(GrPorterDuffXPFactory::Get(SkBlendMode::kSrc));
auto fp = GrFragmentProcessorTestFactory::MakeIdx(i, &ptd);
auto blockFP = BlockInputFragmentProcessor::Make(std::move(fp));
paint.setColorFragmentProcessor(std::move(blockFP));
GrDrawRandomOp(&random, surfaceDrawContext.get(), std::move(paint));
direct->flush(GrFlushInfo());
direct->submit(false);
}
}
return true;
}
#endif
static int get_programs_max_stages(const sk_gpu_test::ContextInfo& ctxInfo) {
int maxStages = 6;
#ifdef SK_GL
auto context = ctxInfo.directContext();
if (skiatest::IsGLContextType(ctxInfo.type())) {
GrGLGpu* gpu = static_cast<GrGLGpu*>(context->priv().getGpu());
if (kGLES_GrGLStandard == gpu->glStandard()) {
// We've had issues with driver crashes and HW limits being exceeded with many effects on
// Android devices. We have passes on ARM devices with the default number of stages.
// TODO When we run ES 3.00 GLSL in more places, test again
#ifdef SK_BUILD_FOR_ANDROID
if (gpu->ctxInfo().vendor() != GrGLVendor::kARM) {
maxStages = 1;
}
#endif
// On iOS we can exceed the maximum number of varyings. http://skbug.com/6627.
#ifdef SK_BUILD_FOR_IOS
maxStages = 3;
#endif
}
// On Angle D3D we will hit a limit of out variables if we use too many stages. This is
// particularly true on D3D9 with a low limit on varyings and the fact that every varying is
// packed as though it has 4 components.
if (ctxInfo.type() == sk_gpu_test::GrContextFactory::kANGLE_D3D9_ES2_ContextType) {
maxStages = 2;
} else if (ctxInfo.type() == sk_gpu_test::GrContextFactory::kANGLE_D3D11_ES2_ContextType) {
maxStages = 3;
}
}
#endif
return maxStages;
}
static int get_programs_max_levels(const sk_gpu_test::ContextInfo& ctxInfo) {
// A full tree with 5 levels (31 nodes) may cause a program that exceeds shader limits
// (e.g. uniform or varying limits); maxTreeLevels should be a number from 1 to 4 inclusive.
int maxTreeLevels = 4;
if (skiatest::IsGLContextType(ctxInfo.type())) {
// On iOS we can exceed the maximum number of varyings. http://skbug.com/6627.
#ifdef SK_BUILD_FOR_IOS
maxTreeLevels = 2;
#endif
#if defined(SK_BUILD_FOR_ANDROID) && defined(SK_GL)
GrGLGpu* gpu = static_cast<GrGLGpu*>(ctxInfo.directContext()->priv().getGpu());
// Tecno Spark 3 Pro with Power VR Rogue GE8300 will fail shader compiles with
// no message if the shader is particularly long.
if (gpu->ctxInfo().vendor() == GrGLVendor::kImagination) {
maxTreeLevels = 3;
}
#endif
if (ctxInfo.type() == sk_gpu_test::GrContextFactory::kANGLE_D3D9_ES2_ContextType ||
ctxInfo.type() == sk_gpu_test::GrContextFactory::kANGLE_D3D11_ES2_ContextType) {
// On Angle D3D we will hit a limit of out variables if we use too many stages.
maxTreeLevels = 2;
}
}
return maxTreeLevels;
}
static void test_programs(skiatest::Reporter* reporter, const sk_gpu_test::ContextInfo& ctxInfo) {
int maxStages = get_programs_max_stages(ctxInfo);
if (maxStages == 0) {
return;
}
int maxLevels = get_programs_max_levels(ctxInfo);
if (maxLevels == 0) {
return;
}
REPORTER_ASSERT(reporter, GrDrawingManager::ProgramUnitTest(ctxInfo.directContext(), maxStages,
maxLevels));
}
DEF_GPUTEST(Programs, reporter, options) {
// Set a locale that would cause shader compilation to fail because of , as decimal separator.
// skbug 3330
#ifdef SK_BUILD_FOR_WIN
GrAutoLocaleSetter als("sv-SE");
#else
GrAutoLocaleSetter als("sv_SE.UTF-8");
#endif
// We suppress prints to avoid spew
GrContextOptions opts = options;
opts.fSuppressPrints = true;
sk_gpu_test::GrContextFactory debugFactory(opts);
skiatest::RunWithGPUTestContexts(
test_programs, &sk_gpu_test::GrContextFactory::IsRenderingContext, reporter, opts);
}