blob: 40d7b7b4069d636603ee4816af6c26dbec774712 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/sksl/codegen/SkSLCPPCodeGenerator.h"
#include "src/sksl/SkSLAnalysis.h"
#include "src/sksl/SkSLCPPUniformCTypes.h"
#include "src/sksl/SkSLCompiler.h"
#include "src/sksl/codegen/SkSLHCodeGenerator.h"
#include "src/sksl/ir/SkSLEnum.h"
#include <algorithm>
#if defined(SKSL_STANDALONE) || GR_TEST_UTILS
namespace SkSL {
static bool needs_uniform_var(const Variable& var) {
return (var.modifiers().fFlags & Modifiers::kUniform_Flag);
}
CPPCodeGenerator::CPPCodeGenerator(const Context* context, const Program* program,
ErrorReporter* errors, String name, OutputStream* out)
: INHERITED(context, program, errors, out)
, fName(std::move(name))
, fFullName(String::printf("Gr%s", fName.c_str()))
, fSectionAndParameterHelper(program, *errors) {
fLineEnding = "\n";
}
void CPPCodeGenerator::writef(const char* s, va_list va) {
static constexpr int BUFFER_SIZE = 1024;
va_list copy;
va_copy(copy, va);
char buffer[BUFFER_SIZE];
int length = std::vsnprintf(buffer, BUFFER_SIZE, s, va);
if (length < BUFFER_SIZE) {
fOut->write(buffer, length);
} else {
std::unique_ptr<char[]> heap(new char[length + 1]);
vsprintf(heap.get(), s, copy);
fOut->write(heap.get(), length);
}
va_end(copy);
}
void CPPCodeGenerator::writef(const char* s, ...) {
va_list va;
va_start(va, s);
this->writef(s, va);
va_end(va);
}
void CPPCodeGenerator::writeHeader() {
}
bool CPPCodeGenerator::usesPrecisionModifiers() const {
return false;
}
String CPPCodeGenerator::getTypeName(const Type& type) {
return String(type.name());
}
void CPPCodeGenerator::writeBinaryExpression(const BinaryExpression& b,
Precedence parentPrecedence) {
const Expression& left = *b.left();
const Expression& right = *b.right();
Operator op = b.getOperator();
if (op.kind() == Token::Kind::TK_PERCENT) {
// need to use "%%" instead of "%" b/c the code will be inside of a printf
Precedence precedence = op.getBinaryPrecedence();
if (precedence >= parentPrecedence) {
this->write("(");
}
this->writeExpression(left, precedence);
this->write(" %% ");
this->writeExpression(right, precedence);
if (precedence >= parentPrecedence) {
this->write(")");
}
} else {
INHERITED::writeBinaryExpression(b, parentPrecedence);
}
}
static String default_value(const Type& type) {
if (type.isBoolean()) {
return "false";
}
switch (type.typeKind()) {
case Type::TypeKind::kScalar: return "0";
case Type::TypeKind::kVector: return type.name() + "(0)";
case Type::TypeKind::kMatrix: return type.name() + "(1)";
default: SK_ABORT("unsupported default_value type");
}
}
static String default_value(const Variable& var) {
if (var.modifiers().fLayout.fCType == SkSL::Layout::CType::kSkPMColor4f) {
return "{SK_FloatNaN, SK_FloatNaN, SK_FloatNaN, SK_FloatNaN}";
}
return default_value(var.type());
}
static bool is_private(const Variable& var) {
const Modifiers& modifiers = var.modifiers();
return !(modifiers.fFlags & Modifiers::kUniform_Flag) &&
!(modifiers.fFlags & Modifiers::kIn_Flag) &&
var.storage() == Variable::Storage::kGlobal &&
modifiers.fLayout.fBuiltin == -1;
}
static bool is_uniform_in(const Variable& var) {
const Modifiers& modifiers = var.modifiers();
return (modifiers.fFlags & Modifiers::kUniform_Flag) &&
(modifiers.fFlags & Modifiers::kIn_Flag);
}
String CPPCodeGenerator::formatRuntimeValue(const Type& type,
const Layout& layout,
const String& cppCode,
std::vector<String>* formatArgs) {
if (type.isArray()) {
String result("[");
const char* separator = "";
for (int i = 0; i < type.columns(); i++) {
result += separator + this->formatRuntimeValue(type.componentType(), layout,
"(" + cppCode + ")[" + to_string(i) +
"]", formatArgs);
separator = ",";
}
result += "]";
return result;
}
if (type.isFloat()) {
formatArgs->push_back(cppCode);
return "%f";
}
if (type == *fContext.fTypes.fInt) {
formatArgs->push_back(cppCode);
return "%d";
}
if (type == *fContext.fTypes.fBool) {
formatArgs->push_back("(" + cppCode + " ? \"true\" : \"false\")");
return "%s";
}
if (type == *fContext.fTypes.fFloat2 || type == *fContext.fTypes.fHalf2) {
formatArgs->push_back(cppCode + ".fX");
formatArgs->push_back(cppCode + ".fY");
return type.name() + "(%f, %f)";
}
if (type == *fContext.fTypes.fFloat3 || type == *fContext.fTypes.fHalf3) {
formatArgs->push_back(cppCode + ".fX");
formatArgs->push_back(cppCode + ".fY");
formatArgs->push_back(cppCode + ".fZ");
return type.name() + "(%f, %f, %f)";
}
if (type == *fContext.fTypes.fFloat4 || type == *fContext.fTypes.fHalf4) {
switch (layout.fCType) {
case Layout::CType::kSkPMColor4f:
formatArgs->push_back(cppCode + ".fR");
formatArgs->push_back(cppCode + ".fG");
formatArgs->push_back(cppCode + ".fB");
formatArgs->push_back(cppCode + ".fA");
break;
case Layout::CType::kSkV4:
formatArgs->push_back(cppCode + ".x");
formatArgs->push_back(cppCode + ".y");
formatArgs->push_back(cppCode + ".z");
formatArgs->push_back(cppCode + ".w");
break;
case Layout::CType::kSkRect:
case Layout::CType::kDefault:
formatArgs->push_back(cppCode + ".left()");
formatArgs->push_back(cppCode + ".top()");
formatArgs->push_back(cppCode + ".right()");
formatArgs->push_back(cppCode + ".bottom()");
break;
default:
SkASSERT(false);
}
return type.name() + "(%f, %f, %f, %f)";
}
if (type.isMatrix()) {
SkASSERT(type.componentType() == *fContext.fTypes.fFloat ||
type.componentType() == *fContext.fTypes.fHalf);
String format = type.name() + "(";
for (int c = 0; c < type.columns(); ++c) {
for (int r = 0; r < type.rows(); ++r) {
formatArgs->push_back(String::printf("%s.rc(%d, %d)", cppCode.c_str(), r, c));
format += "%f, ";
}
}
// Replace trailing ", " with ")".
format.pop_back();
format.back() = ')';
return format;
}
if (type.isEnum()) {
formatArgs->push_back("(int) " + cppCode);
return "%d";
}
if (type == *fContext.fTypes.fInt4 ||
type == *fContext.fTypes.fShort4) {
formatArgs->push_back(cppCode + ".left()");
formatArgs->push_back(cppCode + ".top()");
formatArgs->push_back(cppCode + ".right()");
formatArgs->push_back(cppCode + ".bottom()");
return type.name() + "(%d, %d, %d, %d)";
}
SkDEBUGFAILF("unsupported runtime value type '%s'\n", String(type.name()).c_str());
return "";
}
void CPPCodeGenerator::writeRuntimeValue(const Type& type, const Layout& layout,
const String& cppCode) {
this->write(this->formatRuntimeValue(type, layout, cppCode, &fFormatArgs));
}
void CPPCodeGenerator::writeVarInitializer(const Variable& var, const Expression& value) {
if (is_private(var)) {
this->writeRuntimeValue(var.type(), var.modifiers().fLayout, String(var.name()));
} else {
this->writeExpression(value, Precedence::kTopLevel);
}
}
void CPPCodeGenerator::writeIntLiteral(const IntLiteral& i) {
this->write(to_string(i.value()));
}
void CPPCodeGenerator::writeSwizzle(const Swizzle& swizzle) {
if (fCPPMode) {
// no support for multiple swizzle components yet
SkASSERT(swizzle.components().size() == 1);
this->writeExpression(*swizzle.base(), Precedence::kPostfix);
switch (swizzle.components()[0]) {
case 0: this->write(".left()"); break;
case 1: this->write(".top()"); break;
case 2: this->write(".right()"); break;
case 3: this->write(".bottom()"); break;
}
} else {
INHERITED::writeSwizzle(swizzle);
}
}
void CPPCodeGenerator::writeVariableReference(const VariableReference& ref) {
if (fCPPMode) {
this->write(ref.variable()->name());
return;
}
switch (ref.variable()->modifiers().fLayout.fBuiltin) {
case SK_MAIN_COORDS_BUILTIN:
this->write("%s");
fFormatArgs.push_back(String("args.fSampleCoord"));
fAccessSampleCoordsDirectly = true;
break;
default:
const Variable& var = *ref.variable();
if (var.modifiers().fFlags & Modifiers::kUniform_Flag) {
this->write("%s");
String name(var.name());
String varCode = String::printf("args.fUniformHandler->getUniformCStr(%sVar)",
HCodeGenerator::FieldName(name.c_str()).c_str());
String code;
if (var.modifiers().fLayout.fWhen.length()) {
code = String::printf("%sVar.isValid() ? %s : \"%s\"",
HCodeGenerator::FieldName(name.c_str()).c_str(),
varCode.c_str(),
default_value(var.type()).c_str());
} else {
code = varCode;
}
fFormatArgs.push_back(code);
} else if (SectionAndParameterHelper::IsParameter(var)) {
String name(var.name());
this->writeRuntimeValue(var.type(), var.modifiers().fLayout,
String::printf("_outer.%s", name.c_str()).c_str());
} else {
this->write(var.name());
}
}
}
void CPPCodeGenerator::writeIfStatement(const IfStatement& s) {
if (s.isStatic()) {
this->write("@");
}
INHERITED::writeIfStatement(s);
}
void CPPCodeGenerator::writeReturnStatement(const ReturnStatement& s) {
INHERITED::writeReturnStatement(s);
}
void CPPCodeGenerator::writeSwitchStatement(const SwitchStatement& s) {
if (s.isStatic()) {
this->write("@");
}
INHERITED::writeSwitchStatement(s);
}
int CPPCodeGenerator::getChildFPIndex(const Variable& var) const {
int index = 0;
for (const ProgramElement* p : fProgram.elements()) {
if (p->is<GlobalVarDeclaration>()) {
const VarDeclaration& decl =
p->as<GlobalVarDeclaration>().declaration()->as<VarDeclaration>();
if (&decl.var() == &var) {
return index;
} else if (decl.var().type().isFragmentProcessor()) {
++index;
}
}
}
SkDEBUGFAIL("child fragment processor not found");
return 0;
}
String CPPCodeGenerator::getSampleVarName(const char* prefix, int sampleCounter) {
return String::printf("%s%d", prefix, sampleCounter);
}
void CPPCodeGenerator::writeFunctionCall(const FunctionCall& c) {
const FunctionDeclaration& function = c.function();
const ExpressionArray& arguments = c.arguments();
if (function.isBuiltin() && function.name() == "sample") {
int sampleCounter = fSampleCounter++;
// Validity checks that are detected by function definition in sksl_fp.inc
SkASSERT(arguments.size() >= 1 && arguments.size() <= 3);
SkASSERT(arguments[0]->type().isFragmentProcessor());
// Actually fail during compilation if arguments with valid types are
// provided that are not variable references, since sample() is a
// special function that impacts code emission.
if (!arguments[0]->is<VariableReference>()) {
fErrors.error(arguments[0]->fOffset,
"sample()'s fragmentProcessor argument must be a variable reference\n");
return;
}
const Variable& child = *arguments[0]->as<VariableReference>().variable();
// Start a new extra emit code section so that the emitted child processor can depend on
// sksl variables defined in earlier sksl code.
this->newExtraEmitCodeBlock();
// inputColor is an optional argument that always appears last
String inputColor;
if (arguments.back()->type().name() == "half4") {
// Use the invokeChild() variant that accepts an input color, so convert the 2nd
// argument's expression into C++ code that produces sksl stored in an SkString.
String inputColorName = this->getSampleVarName("_input", sampleCounter);
addExtraEmitCodeLine(convertSKSLExpressionToCPP(*arguments.back(), inputColorName));
// invokeChild() needs a char* and a pre-pended comma
inputColor = ", " + inputColorName + ".c_str()";
}
// If coords are present, they're float2. They appear right after the fp.
String inputCoord;
if (arguments.size() > 1) {
if (arguments[1]->type().name() == "float2") {
// Invoking child with explicit coordinates at this call site
inputCoord = this->getSampleVarName("_coords", sampleCounter);
addExtraEmitCodeLine(convertSKSLExpressionToCPP(*arguments[1], inputCoord));
inputCoord.append(".c_str()");
}
}
if (!inputCoord.empty()) {
inputCoord = ", " + inputCoord;
}
// Write the output handling after the possible input handling
String childName = this->getSampleVarName("_sample", sampleCounter);
String childIndexStr = to_string(this->getChildFPIndex(child));
addExtraEmitCodeLine("SkString " + childName + " = this->invokeChild(" + childIndexStr +
inputColor + ", args" + inputCoord + ");");
this->write("%s");
fFormatArgs.push_back(childName + ".c_str()");
return;
}
if (function.isBuiltin()) {
INHERITED::writeFunctionCall(c);
} else {
this->write("%s");
fFormatArgs.push_back((String(function.name()) + "_name.c_str()").c_str());
this->write("(");
const char* separator = "";
for (const auto& arg : arguments) {
this->write(separator);
separator = ", ";
this->writeExpression(*arg, Precedence::kSequence);
}
this->write(")");
}
}
static const char* glsltype_string(const Context& context, const Type& type) {
// If a new GrSL type is added, this function will need to be updated.
static_assert(kGrSLTypeCount == 49);
if (type == *context.fTypes.fVoid ) { return "kVoid_GrSLType"; }
if (type == *context.fTypes.fBool ) { return "kBool_GrSLType"; }
if (type == *context.fTypes.fBool2 ) { return "kBool2_GrSLType"; }
if (type == *context.fTypes.fBool3 ) { return "kBool3_GrSLType"; }
if (type == *context.fTypes.fBool4 ) { return "kBool4_GrSLType"; }
if (type == *context.fTypes.fShort ) { return "kShort_GrSLType"; }
if (type == *context.fTypes.fShort2 ) { return "kShort2_GrSLType"; }
if (type == *context.fTypes.fShort3 ) { return "kShort3_GrSLType"; }
if (type == *context.fTypes.fShort4 ) { return "kShort4_GrSLType"; }
if (type == *context.fTypes.fUShort ) { return "kUShort_GrSLType"; }
if (type == *context.fTypes.fUShort2 ) { return "kUShort2_GrSLType"; }
if (type == *context.fTypes.fUShort3 ) { return "kUShort3_GrSLType"; }
if (type == *context.fTypes.fUShort4 ) { return "kUShort4_GrSLType"; }
if (type == *context.fTypes.fFloat ) { return "kFloat_GrSLType"; }
if (type == *context.fTypes.fFloat2 ) { return "kFloat2_GrSLType"; }
if (type == *context.fTypes.fFloat3 ) { return "kFloat3_GrSLType"; }
if (type == *context.fTypes.fFloat4 ) { return "kFloat4_GrSLType"; }
if (type == *context.fTypes.fFloat2x2) { return "kFloat2x2_GrSLType"; }
if (type == *context.fTypes.fFloat3x3) { return "kFloat3x3_GrSLType"; }
if (type == *context.fTypes.fFloat4x4) { return "kFloat4x4_GrSLType"; }
if (type == *context.fTypes.fHalf ) { return "kHalf_GrSLType"; }
if (type == *context.fTypes.fHalf2 ) { return "kHalf2_GrSLType"; }
if (type == *context.fTypes.fHalf3 ) { return "kHalf3_GrSLType"; }
if (type == *context.fTypes.fHalf4 ) { return "kHalf4_GrSLType"; }
if (type == *context.fTypes.fHalf2x2 ) { return "kHalf2x2_GrSLType"; }
if (type == *context.fTypes.fHalf3x3 ) { return "kHalf3x3_GrSLType"; }
if (type == *context.fTypes.fHalf4x4 ) { return "kHalf4x4_GrSLType"; }
if (type == *context.fTypes.fInt ) { return "kInt_GrSLType"; }
if (type == *context.fTypes.fInt2 ) { return "kInt2_GrSLType"; }
if (type == *context.fTypes.fInt3 ) { return "kInt3_GrSLType"; }
if (type == *context.fTypes.fInt4 ) { return "kInt4_GrSLType"; }
if (type == *context.fTypes.fUInt ) { return "kUint_GrSLType"; }
if (type == *context.fTypes.fUInt2 ) { return "kUint2_GrSLType"; }
if (type == *context.fTypes.fUInt3 ) { return "kUint3_GrSLType"; }
if (type == *context.fTypes.fUInt4 ) { return "kUint4_GrSLType"; }
if (type.isEnum()) { return "kInt_GrSLType"; }
SkDEBUGFAILF("unsupported type: %s", type.description().c_str());
return nullptr;
}
void CPPCodeGenerator::prepareHelperFunction(const FunctionDeclaration& decl) {
if (decl.isBuiltin() || decl.isMain()) {
return;
}
String funcName(decl.name());
this->addExtraEmitCodeLine(
String::printf("SkString %s_name = fragBuilder->getMangledFunctionName(\"%s\");",
funcName.c_str(),
funcName.c_str()));
String args = String::printf("const GrShaderVar %s_args[] = { ", funcName.c_str());
const char* separator = "";
for (const Variable* param : decl.parameters()) {
String paramName(param->name());
args.appendf("%sGrShaderVar(\"%s\", %s)", separator, paramName.c_str(),
glsltype_string(fContext, param->type()));
separator = ", ";
}
args += " };";
this->addExtraEmitCodeLine(args.c_str());
}
void CPPCodeGenerator::prototypeHelperFunction(const FunctionDeclaration& decl) {
String funcName(decl.name());
this->addExtraEmitCodeLine(String::printf(
"fragBuilder->emitFunctionPrototype(%s, %s_name.c_str(), {%s_args, %zu});",
glsltype_string(fContext, decl.returnType()),
funcName.c_str(),
funcName.c_str(),
decl.parameters().size()));
}
void CPPCodeGenerator::writeFunction(const FunctionDefinition& f) {
const FunctionDeclaration& decl = f.declaration();
if (decl.isBuiltin()) {
return;
}
fFunctionHeader.clear();
OutputStream* oldOut = fOut;
StringStream buffer;
fOut = &buffer;
if (decl.isMain()) {
fInMain = true;
for (const std::unique_ptr<Statement>& s : f.body()->as<Block>().children()) {
this->writeStatement(*s);
this->writeLine();
}
fInMain = false;
fOut = oldOut;
this->write(fFunctionHeader);
this->write(buffer.str());
} else {
for (const std::unique_ptr<Statement>& s : f.body()->as<Block>().children()) {
this->writeStatement(*s);
this->writeLine();
}
fOut = oldOut;
String funcName(decl.name());
String funcImpl;
if (!fFormatArgs.empty()) {
this->addExtraEmitCodeLine("const String " + funcName + "_impl = String::printf(" +
assembleCodeAndFormatArgPrintf(buffer.str()).c_str() + ");");
funcImpl = String::printf(" %s_impl.c_str()", funcName.c_str());
} else {
funcImpl = "\nR\"SkSL(" + buffer.str() + ")SkSL\"";
}
this->addExtraEmitCodeLine(String::printf(
"fragBuilder->emitFunction(%s, %s_name.c_str(), {%s_args, %zu},%s);",
glsltype_string(fContext, decl.returnType()),
funcName.c_str(),
funcName.c_str(),
decl.parameters().size(),
funcImpl.c_str()));
}
}
void CPPCodeGenerator::writeSetting(const Setting& s) {
this->write("sk_Caps.");
this->write(s.name());
}
bool CPPCodeGenerator::writeSection(const char* name, const char* prefix) {
const Section* s = fSectionAndParameterHelper.getSection(name);
if (s) {
this->write(prefix);
this->write(s->text());
return true;
}
return false;
}
void CPPCodeGenerator::writeProgramElement(const ProgramElement& p) {
switch (p.kind()) {
case ProgramElement::Kind::kSection:
return;
case ProgramElement::Kind::kGlobalVar: {
const GlobalVarDeclaration& decl = p.as<GlobalVarDeclaration>();
const Variable& var = decl.declaration()->as<VarDeclaration>().var();
if (var.modifiers().fFlags & (Modifiers::kIn_Flag | Modifiers::kUniform_Flag) ||
-1 != var.modifiers().fLayout.fBuiltin) {
return;
}
break;
}
case ProgramElement::Kind::kFunctionPrototype: {
// Function prototypes are handled at the C++ level (in writeEmitCode).
// We don't want prototypes to be emitted inside the FP's main() function.
return;
}
default:
break;
}
INHERITED::writeProgramElement(p);
}
void CPPCodeGenerator::addUniform(const Variable& var) {
if (!needs_uniform_var(var)) {
return;
}
if (var.modifiers().fLayout.fWhen.length()) {
this->writef(" if (%s) {\n ", String(var.modifiers().fLayout.fWhen).c_str());
}
String name(var.name());
if (!var.type().isArray()) {
this->writef(" %sVar = args.fUniformHandler->addUniform(&_outer, "
"kFragment_GrShaderFlag, %s, \"%s\");\n",
HCodeGenerator::FieldName(name.c_str()).c_str(),
glsltype_string(fContext, var.type()),
name.c_str());
} else {
this->writef(" %sVar = args.fUniformHandler->addUniformArray(&_outer, "
"kFragment_GrShaderFlag, %s, \"%s\", %d);\n",
HCodeGenerator::FieldName(name.c_str()).c_str(),
glsltype_string(fContext, var.type().componentType()),
name.c_str(),
var.type().columns());
}
if (var.modifiers().fLayout.fWhen.length()) {
this->write(" }\n");
}
}
void CPPCodeGenerator::writeInputVars() {
}
void CPPCodeGenerator::writePrivateVars() {
for (const ProgramElement* p : fProgram.elements()) {
if (p->is<GlobalVarDeclaration>()) {
const GlobalVarDeclaration& global = p->as<GlobalVarDeclaration>();
const Variable& var = global.declaration()->as<VarDeclaration>().var();
if (is_private(var)) {
if (var.type().isFragmentProcessor()) {
fErrors.error(global.fOffset,
"fragmentProcessor variables must be declared 'in'");
return;
}
this->writef("%s %s = %s;\n",
HCodeGenerator::FieldType(fContext, var.type(),
var.modifiers().fLayout).c_str(),
String(var.name()).c_str(),
default_value(var).c_str());
}
}
}
}
void CPPCodeGenerator::writePrivateVarValues() {
for (const ProgramElement* p : fProgram.elements()) {
if (p->is<GlobalVarDeclaration>()) {
const GlobalVarDeclaration& global = p->as<GlobalVarDeclaration>();
const VarDeclaration& decl = global.declaration()->as<VarDeclaration>();
if (is_private(decl.var()) && decl.value()) {
this->writef("%s = ", String(decl.var().name()).c_str());
fCPPMode = true;
this->writeExpression(*decl.value(), Precedence::kAssignment);
fCPPMode = false;
this->write(";\n");
}
}
}
}
static bool is_accessible(const Variable& var) {
const Type& type = var.type();
return !type.isFragmentProcessor() &&
Type::TypeKind::kOther != type.typeKind();
}
void CPPCodeGenerator::newExtraEmitCodeBlock() {
// This should only be called when emitting SKSL for emitCode(), which can be detected if the
// cpp buffer is not null, and the cpp buffer is not the current output.
SkASSERT(fCPPBuffer && fCPPBuffer != fOut);
// Start a new block as an empty string
fExtraEmitCodeBlocks.push_back("");
// Mark its location in the output buffer, uses ${\d} for the token since ${} will not occur in
// valid sksl and makes detection trivial.
this->writef("${%zu}", fExtraEmitCodeBlocks.size() - 1);
}
void CPPCodeGenerator::addExtraEmitCodeLine(const String& toAppend) {
SkASSERT(fExtraEmitCodeBlocks.size() > 0);
String& currentBlock = fExtraEmitCodeBlocks[fExtraEmitCodeBlocks.size() - 1];
// Automatically add indentation and newline
currentBlock += " " + toAppend + "\n";
}
void CPPCodeGenerator::flushEmittedCode() {
if (fCPPBuffer == nullptr) {
// Not actually within writeEmitCode() so nothing to flush
return;
}
StringStream* skslBuffer = static_cast<StringStream*>(fOut);
String sksl = skslBuffer->str();
// Empty the accumulation buffer since its current contents are consumed.
skslBuffer->reset();
// Switch to the cpp buffer
fOut = fCPPBuffer;
// Iterate through the sksl, keeping track of where the last statement ended (e.g. the latest
// encountered ';', '{', or '}'). If an extra emit code block token is encountered then the
// code from 0 to last statement end is sent to writeCodeAppend, the extra code block is
// appended to the cpp buffer, and then the sksl string is trimmed to start where the last
// statement left off (minus the encountered token).
size_t i = 0;
int flushPoint = -1;
int tokenStart = -1;
while (i < sksl.size()) {
if (tokenStart >= 0) {
// Looking for the end of the token
if (sksl[i] == '}') {
// Must append the sksl from 0 to flushPoint (inclusive) then the extra code
// accumulated in the block with index parsed from chars [tokenStart+2, i-1]
String toFlush = String(sksl.c_str(), flushPoint + 1);
// writeCodeAppend automatically removes the format args that it consumed, so
// fFormatArgs will be in a valid state for any future sksl
this->writeCodeAppend(toFlush);
SKSL_INT codeBlock;
SkAssertResult(
stoi(skstd::string_view(sksl.c_str() + tokenStart + 2, i - tokenStart - 2),
&codeBlock));
SkASSERT((size_t)codeBlock < fExtraEmitCodeBlocks.size());
if (fExtraEmitCodeBlocks[codeBlock].size() > 0) {
this->write(fExtraEmitCodeBlocks[codeBlock].c_str());
}
// Now reset the sksl buffer to start after the flush point, but remove the token.
String compacted = String(sksl.c_str() + flushPoint + 1,
tokenStart - flushPoint - 1);
if (i < sksl.size() - 1) {
compacted += String(sksl.c_str() + i + 1, sksl.size() - i - 1);
}
sksl = compacted;
// And reset iteration
i = -1;
flushPoint = -1;
tokenStart = -1;
}
} else {
// Looking for the start of extra emit block tokens, and tracking when statements end
if (sksl[i] == ';' || sksl[i] == '{' || sksl[i] == '}') {
flushPoint = i;
} else if (i < sksl.size() - 1 && sksl[i] == '$' && sksl[i + 1] == '{') {
// found an extra emit code block token
tokenStart = i++;
}
}
i++;
}
// Once we've gone through the sksl string to this point, there are no remaining extra emit
// code blocks to interleave, so append the remainder as usual.
this->writeCodeAppend(sksl);
// After appending, switch back to the emptied sksl buffer and reset the extra code blocks
fOut = skslBuffer;
fExtraEmitCodeBlocks.clear();
}
String CPPCodeGenerator::assembleCodeAndFormatArgPrintf(const String& code) {
// Count % format specifiers.
size_t argCount = 0;
for (size_t index = 0; index < code.size(); ++index) {
if ('%' == code[index]) {
if (index == code.size() - 1) {
SkDEBUGFAIL("found a dangling format specifier at the end of a string");
break;
}
if (code[index + 1] == '%') {
// %% indicates a literal % sign, not a format argument. Skip over the next
// character to avoid mistakenly counting that one as an argument.
++index;
} else {
// Count the format argument that we found.
++argCount;
}
}
}
// Assemble the printf arguments.
String result = String::printf("R\"SkSL(%s)SkSL\"\n", code.c_str());
for (size_t i = 0; i < argCount; ++i) {
result += ", ";
result += fFormatArgs[i].c_str();
}
// argCount is equal to the number of fFormatArgs that were consumed, so they should be
// removed from the list.
if (argCount > 0) {
fFormatArgs.erase(fFormatArgs.begin(), fFormatArgs.begin() + argCount);
}
return result;
}
void CPPCodeGenerator::writeCodeAppend(const String& code) {
if (!code.empty()) {
this->write(" fragBuilder->codeAppendf(\n");
this->write(assembleCodeAndFormatArgPrintf(code));
this->write(");\n");
}
}
String CPPCodeGenerator::convertSKSLExpressionToCPP(const Expression& e,
const String& cppVar) {
// To do this conversion, we temporarily switch the sksl output stream
// to an empty stringstream and reset the format args to empty.
OutputStream* oldSKSL = fOut;
StringStream exprBuffer;
fOut = &exprBuffer;
std::vector<String> oldArgs(fFormatArgs);
fFormatArgs.clear();
// Convert the argument expression into a format string and args
this->writeExpression(e, Precedence::kTopLevel);
std::vector<String> newArgs(fFormatArgs);
String expr = exprBuffer.str();
// After generating, restore the original output stream and format args
fFormatArgs = oldArgs;
fOut = oldSKSL;
// The sksl written to exprBuffer is not processed by flushEmittedCode(), so any extra emit code
// block tokens won't get handled. So we need to strip them from the expression and stick them
// to the end of the original sksl stream.
String exprFormat = "";
int tokenStart = -1;
for (size_t i = 0; i < expr.size(); i++) {
if (tokenStart >= 0) {
if (expr[i] == '}') {
// End of the token, so append the token to fOut
fOut->write(expr.c_str() + tokenStart, i - tokenStart + 1);
tokenStart = -1;
}
} else {
if (i < expr.size() - 1 && expr[i] == '$' && expr[i + 1] == '{') {
tokenStart = i++;
} else {
exprFormat += expr[i];
}
}
}
// Now build the final C++ code snippet from the format string and args
String cppExpr;
if (newArgs.empty()) {
// This was a static expression, so we can simplify the input
// color declaration in the emitted code to just a static string
cppExpr = "SkString " + cppVar + "(\"" + exprFormat + "\");";
} else if (newArgs.size() == 1 && exprFormat == "%s") {
// If the format expression is simply "%s", we can avoid an expensive call to printf.
// This happens fairly often in codegen so it is worth simplifying.
cppExpr = "SkString " + cppVar + "(" + newArgs[0] + ");";
} else {
// String formatting must occur dynamically, so have the C++ declaration
// use SkStringPrintf with the format args that were accumulated
// when the expression was written.
cppExpr = "SkString " + cppVar + " = SkStringPrintf(\"" + exprFormat + "\"";
for (size_t i = 0; i < newArgs.size(); i++) {
cppExpr += ", " + newArgs[i];
}
cppExpr += ");";
}
return cppExpr;
}
bool CPPCodeGenerator::writeEmitCode(std::vector<const Variable*>& uniforms) {
this->write(" void emitCode(EmitArgs& args) override {\n"
" GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;\n");
this->writef(" const %s& _outer = args.fFp.cast<%s>();\n"
" (void) _outer;\n",
fFullName.c_str(), fFullName.c_str());
for (const ProgramElement* p : fProgram.elements()) {
if (p->is<GlobalVarDeclaration>()) {
const GlobalVarDeclaration& global = p->as<GlobalVarDeclaration>();
const VarDeclaration& decl = global.declaration()->as<VarDeclaration>();
String nameString(decl.var().name());
const char* name = nameString.c_str();
if (SectionAndParameterHelper::IsParameter(decl.var()) &&
is_accessible(decl.var())) {
this->writef(" auto %s = _outer.%s;\n"
" (void) %s;\n",
name, name, name);
}
}
}
this->writePrivateVarValues();
for (const auto u : uniforms) {
this->addUniform(*u);
}
this->writeSection(kEmitCodeSection);
// Save original buffer as the CPP buffer for flushEmittedCode()
fCPPBuffer = fOut;
StringStream skslBuffer;
fOut = &skslBuffer;
this->newExtraEmitCodeBlock();
// Generate mangled names and argument lists for helper functions.
std::unordered_set<const FunctionDeclaration*> definedHelpers;
for (const ProgramElement* p : fProgram.elements()) {
if (p->is<FunctionDefinition>()) {
const FunctionDeclaration* decl = &p->as<FunctionDefinition>().declaration();
definedHelpers.insert(decl);
this->prepareHelperFunction(*decl);
}
}
// Emit prototypes for defined helper functions that originally had prototypes in the FP file.
// (If a function was prototyped but never defined, we skip it, since it wasn't prepared above.)
for (const ProgramElement* p : fProgram.elements()) {
if (p->is<FunctionPrototype>()) {
const FunctionDeclaration* decl = &p->as<FunctionPrototype>().declaration();
if (definedHelpers.find(decl) != definedHelpers.end()) {
this->prototypeHelperFunction(*decl);
}
}
}
bool result = INHERITED::generateCode();
this->flushEmittedCode();
// Then restore the original CPP buffer and close the function
fOut = fCPPBuffer;
fCPPBuffer = nullptr;
this->write(" }\n");
return result;
}
void CPPCodeGenerator::writeSetData(std::vector<const Variable*>& uniforms) {
const char* fullName = fFullName.c_str();
const Section* section = fSectionAndParameterHelper.getSection(kSetDataSection);
skstd::string_view pdman = section ? section->argument() : "pdman";
this->writef(" void onSetData(const GrGLSLProgramDataManager& %.*s, "
"const GrFragmentProcessor& _proc) override {\n",
(int)pdman.length(), pdman.data());
bool wroteProcessor = false;
for (const Variable* u : uniforms) {
if (is_uniform_in(*u)) {
if (!wroteProcessor) {
this->writef(" const %s& _outer = _proc.cast<%s>();\n", fullName, fullName);
wroteProcessor = true;
this->writef(" {\n");
}
const UniformCTypeMapper* mapper = UniformCTypeMapper::Get(fContext, *u);
SkASSERT(mapper);
bool conditionalUniform = u->modifiers().fLayout.fWhen != "";
String uniformName = u->name() + "Var";
String valueVar = "_outer." + u->name();
String indent = " "; // 8 by default, 12 when nested for conditional uniforms
if (conditionalUniform) {
// Add a pre-check to make sure the uniform was emitted
// before trying to send any data to the GPU
this->writef(" if (%s.isValid()) {\n", uniformName.c_str());
indent += " ";
}
this->writef("%s%s;\n",
indent.c_str(),
mapper->setUniform(String(pdman), uniformName, valueVar).c_str());
if (conditionalUniform) {
// Close the earlier precheck block
this->writef(" }\n");
}
}
}
if (wroteProcessor) {
this->writef(" }\n");
}
if (section) {
for (const ProgramElement* p : fProgram.elements()) {
if (p->is<GlobalVarDeclaration>()) {
const GlobalVarDeclaration& global = p->as<GlobalVarDeclaration>();
const VarDeclaration& decl = global.declaration()->as<VarDeclaration>();
const Variable& variable = decl.var();
String nameString(variable.name());
const char* name = nameString.c_str();
if (needs_uniform_var(variable)) {
this->writef(" UniformHandle& %s = %sVar;\n"
" (void) %s;\n",
name, HCodeGenerator::FieldName(name).c_str(), name);
} else if (SectionAndParameterHelper::IsParameter(variable) &&
!variable.type().isFragmentProcessor()) {
if (!wroteProcessor) {
this->writef(" const %s& _outer = _proc.cast<%s>();\n", fullName,
fullName);
wroteProcessor = true;
}
if (!variable.type().isFragmentProcessor()) {
this->writef(" auto %s = _outer.%s;\n"
" (void) %s;\n",
name, name, name);
}
}
}
}
this->writeSection(kSetDataSection);
}
this->write(" }\n");
}
void CPPCodeGenerator::writeClone() {
if (!this->writeSection(kCloneSection)) {
if (fSectionAndParameterHelper.getSection(kFieldsSection)) {
fErrors.error(/*offset=*/0, "fragment processors with custom @fields must also have a "
"custom @clone");
}
this->writef("%s::%s(const %s& src)\n"
": INHERITED(k%s_ClassID, src.optimizationFlags())", fFullName.c_str(),
fFullName.c_str(), fFullName.c_str(), fFullName.c_str());
for (const Variable* param : fSectionAndParameterHelper.getParameters()) {
String fieldName = HCodeGenerator::FieldName(String(param->name()).c_str());
if (!param->type().isFragmentProcessor()) {
this->writef("\n, %s(src.%s)",
fieldName.c_str(),
fieldName.c_str());
}
}
this->writef(" {\n");
this->writef(" this->cloneAndRegisterAllChildProcessors(src);\n");
if (fAccessSampleCoordsDirectly) {
this->writef(" this->setUsesSampleCoordsDirectly();\n");
}
this->write("}\n");
this->writef("std::unique_ptr<GrFragmentProcessor> %s::clone() const {\n",
fFullName.c_str());
this->writef(" return std::make_unique<%s>(*this);\n",
fFullName.c_str());
this->write("}\n");
}
}
void CPPCodeGenerator::writeDumpInfo() {
this->writef("#if GR_TEST_UTILS\n"
"SkString %s::onDumpInfo() const {\n", fFullName.c_str());
if (!this->writeSection(kDumpInfoSection)) {
if (fSectionAndParameterHelper.getSection(kFieldsSection)) {
fErrors.error(/*offset=*/0, "fragment processors with custom @fields must also have a "
"custom @dumpInfo");
}
String formatString;
std::vector<String> argumentList;
for (const Variable* param : fSectionAndParameterHelper.getParameters()) {
// dumpInfo() doesn't need to log child FPs.
if (param->type().isFragmentProcessor()) {
continue;
}
// Add this field onto the format string and argument list.
String fieldName = HCodeGenerator::FieldName(String(param->name()).c_str());
String runtimeValue = this->formatRuntimeValue(param->type(),
param->modifiers().fLayout,
String(param->name()),
&argumentList);
formatString.appendf("%s%s=%s",
formatString.empty() ? "" : ", ",
fieldName.c_str(),
runtimeValue.c_str());
}
if (!formatString.empty()) {
// Emit the finished format string and associated arguments.
this->writef(" return SkStringPrintf(\"(%s)\"", formatString.c_str());
for (const String& argument : argumentList) {
this->writef(", %s", argument.c_str());
}
this->write(");");
} else {
// No fields to dump at all; just return an empty string.
this->write(" return SkString();");
}
}
this->write("\n"
"}\n"
"#endif\n");
}
void CPPCodeGenerator::writeTest() {
const Section* test = fSectionAndParameterHelper.getSection(kTestCodeSection);
if (test) {
this->writef(
"GR_DEFINE_FRAGMENT_PROCESSOR_TEST(%s);\n"
"#if GR_TEST_UTILS\n"
"std::unique_ptr<GrFragmentProcessor> %s::TestCreate(GrProcessorTestData* %.*s) "
"{\n",
fFullName.c_str(),
fFullName.c_str(),
(int)test->argument().length(),
test->argument().data());
this->writeSection(kTestCodeSection);
this->write("}\n"
"#endif\n");
}
}
static int bits_needed(uint32_t v) {
int bits = 1;
while (v >= (1u << bits)) {
bits++;
}
return bits;
}
void CPPCodeGenerator::writeGetKey() {
auto bitsForEnum = [&](const Type& type) {
for (const ProgramElement* e : fProgram.elements()) {
if (!e->is<Enum>() || type.name() != e->as<Enum>().typeName()) {
continue;
}
SKSL_INT minVal = 0, maxVal = 0;
auto gatherEnumRange = [&](skstd::string_view, SKSL_INT value) {
minVal = std::min(minVal, value);
maxVal = std::max(maxVal, value);
};
e->as<Enum>().foreach(gatherEnumRange);
if (minVal < 0) {
// Found a negative value in the enum, just use 32 bits
return 32;
}
SkASSERT(SkTFitsIn<uint32_t>(maxVal));
return bits_needed(maxVal);
}
SK_ABORT("Didn't find declaring element for enum type!");
return 32;
};
this->writef("void %s::onGetGLSLProcessorKey(const GrShaderCaps& caps, "
"GrProcessorKeyBuilder* b) const {\n",
fFullName.c_str());
for (const ProgramElement* p : fProgram.elements()) {
if (p->is<GlobalVarDeclaration>()) {
const GlobalVarDeclaration& global = p->as<GlobalVarDeclaration>();
const VarDeclaration& decl = global.declaration()->as<VarDeclaration>();
const Variable& var = decl.var();
const Type& varType = var.type();
String nameString(var.name());
const char* name = nameString.c_str();
if (var.modifiers().fLayout.fFlags & Layout::kKey_Flag) {
if (var.modifiers().fFlags & Modifiers::kUniform_Flag) {
fErrors.error(var.fOffset, "layout(key) may not be specified on uniforms");
}
if (is_private(var)) {
this->writef(
"%s %s =",
HCodeGenerator::FieldType(fContext, varType, var.modifiers().fLayout)
.c_str(),
String(var.name()).c_str());
if (decl.value()) {
fCPPMode = true;
this->writeExpression(*decl.value(), Precedence::kAssignment);
fCPPMode = false;
} else {
this->writef("%s", default_value(var).c_str());
}
this->write(";\n");
}
if (var.modifiers().fLayout.fWhen.length()) {
this->writef("if (%s) {", String(var.modifiers().fLayout.fWhen).c_str());
}
if (varType == *fContext.fTypes.fHalf4) {
this->writef(" uint16_t red = SkFloatToHalf(%s.fR);\n",
HCodeGenerator::FieldName(name).c_str());
this->writef(" uint16_t green = SkFloatToHalf(%s.fG);\n",
HCodeGenerator::FieldName(name).c_str());
this->writef(" uint16_t blue = SkFloatToHalf(%s.fB);\n",
HCodeGenerator::FieldName(name).c_str());
this->writef(" uint16_t alpha = SkFloatToHalf(%s.fA);\n",
HCodeGenerator::FieldName(name).c_str());
this->writef(" b->add32(((uint32_t)red << 16) | green, \"%s.rg\");\n", name);
this->writef(" b->add32(((uint32_t)blue << 16) | alpha, \"%s.ba\");\n",
name);
} else if (varType == *fContext.fTypes.fHalf ||
varType == *fContext.fTypes.fFloat) {
this->writef(" b->add32(sk_bit_cast<uint32_t>(%s), \"%s\");\n",
HCodeGenerator::FieldName(name).c_str(), name);
} else if (varType.isBoolean()) {
this->writef(" b->addBool(%s, \"%s\");\n",
HCodeGenerator::FieldName(name).c_str(), name);
} else if (varType.isEnum()) {
this->writef(" b->addBits(%d, (uint32_t) %s, \"%s\");\n",
bitsForEnum(varType), HCodeGenerator::FieldName(name).c_str(),
name);
} else if (varType.isInteger()) {
this->writef(" b->add32((uint32_t) %s, \"%s\");\n",
HCodeGenerator::FieldName(name).c_str(), name);
} else {
SK_ABORT("NOT YET IMPLEMENTED: automatic key handling for %s\n",
varType.displayName().c_str());
}
if (var.modifiers().fLayout.fWhen.length()) {
this->write("}");
}
}
}
}
this->write("}\n");
}
bool CPPCodeGenerator::generateCode() {
std::vector<const Variable*> uniforms;
for (const ProgramElement* p : fProgram.elements()) {
if (p->is<GlobalVarDeclaration>()) {
const GlobalVarDeclaration& global = p->as<GlobalVarDeclaration>();
const VarDeclaration& decl = global.declaration()->as<VarDeclaration>();
if (decl.var().modifiers().fFlags & Modifiers::kUniform_Flag) {
uniforms.push_back(&decl.var());
}
if (is_uniform_in(decl.var())) {
// Validate the "uniform in" declarations to make sure they are fully supported,
// instead of generating surprising C++
const UniformCTypeMapper* mapper =
UniformCTypeMapper::Get(fContext, decl.var());
if (mapper == nullptr) {
fErrors.error(decl.fOffset, String(decl.var().name())
+ "'s type is not supported for use as a 'uniform in'");
return false;
}
}
}
}
const char* baseName = fName.c_str();
const char* fullName = fFullName.c_str();
this->writef("%s\n", HCodeGenerator::GetHeader(fProgram, fErrors).c_str());
this->writef(kFragmentProcessorHeader, fullName);
this->writef("#include \"%s.h\"\n\n", fullName);
this->writeSection(kCppSection);
this->writef("#include \"src/core/SkUtils.h\"\n"
"#include \"src/gpu/GrTexture.h\"\n"
"#include \"src/gpu/glsl/GrGLSLFragmentProcessor.h\"\n"
"#include \"src/gpu/glsl/GrGLSLFragmentShaderBuilder.h\"\n"
"#include \"src/gpu/glsl/GrGLSLProgramBuilder.h\"\n"
"#include \"src/sksl/SkSLCPP.h\"\n"
"#include \"src/sksl/SkSLUtil.h\"\n"
"class GrGLSL%s : public GrGLSLFragmentProcessor {\n"
"public:\n"
" GrGLSL%s() {}\n",
baseName, baseName);
bool result = this->writeEmitCode(uniforms);
this->write("private:\n");
this->writeSetData(uniforms);
this->writePrivateVars();
for (const auto& u : uniforms) {
if (needs_uniform_var(*u) && !(u->modifiers().fFlags & Modifiers::kIn_Flag)) {
this->writef(" UniformHandle %sVar;\n",
HCodeGenerator::FieldName(String(u->name()).c_str()).c_str());
}
}
for (const auto& param : fSectionAndParameterHelper.getParameters()) {
if (needs_uniform_var(*param)) {
this->writef(" UniformHandle %sVar;\n",
HCodeGenerator::FieldName(String(param->name()).c_str()).c_str());
}
}
this->writef("};\n"
"std::unique_ptr<GrGLSLFragmentProcessor> %s::onMakeProgramImpl() const {\n"
" return std::make_unique<GrGLSL%s>();\n"
"}\n",
fullName, baseName);
this->writeGetKey();
this->writef("bool %s::onIsEqual(const GrFragmentProcessor& other) const {\n"
" const %s& that = other.cast<%s>();\n"
" (void) that;\n",
fullName, fullName, fullName);
for (const auto& param : fSectionAndParameterHelper.getParameters()) {
if (param->type().isFragmentProcessor()) {
continue;
}
String nameString(param->name());
const char* name = nameString.c_str();
this->writef(" if (%s != that.%s) return false;\n",
HCodeGenerator::FieldName(name).c_str(),
HCodeGenerator::FieldName(name).c_str());
}
this->write(" return true;\n"
"}\n");
this->writeClone();
this->writeDumpInfo();
this->writeTest();
this->writeSection(kCppEndSection);
result &= 0 == fErrors.errorCount();
return result;
}
} // namespace SkSL
#endif // defined(SKSL_STANDALONE) || GR_TEST_UTILS