blob: 195be3a1aa65e70b3a88c857c7c93f0d719f82aa [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/vk/GrVkUniformHandler.h"
#include "src/gpu/GrTexture.h"
#include "src/gpu/glsl/GrGLSLProgramBuilder.h"
#include "src/gpu/vk/GrVkGpu.h"
#include "src/gpu/vk/GrVkPipelineStateBuilder.h"
#include "src/gpu/vk/GrVkTexture.h"
// To determine whether a current offset is aligned, we can just 'and' the lowest bits with the
// alignment mask. A value of 0 means aligned, any other value is how many bytes past alignment we
// are. This works since all alignments are powers of 2. The mask is always (alignment - 1).
// This alignment mask will give correct alignments for using the std430 block layout. If you want
// the std140 alignment, you can use this, but then make sure if you have an array type it is
// aligned to 16 bytes (i.e. has mask of 0xF).
// These are designated in the Vulkan spec, section 14.5.4 "Offset and Stride Assignment".
// https://www.khronos.org/registry/vulkan/specs/1.0-wsi_extensions/html/vkspec.html#interfaces-resources-layout
static uint32_t grsltype_to_alignment_mask(GrSLType type) {
switch(type) {
case kByte_GrSLType: // fall through
case kUByte_GrSLType:
return 0x0;
case kByte2_GrSLType: // fall through
case kUByte2_GrSLType:
return 0x1;
case kByte3_GrSLType: // fall through
case kByte4_GrSLType:
case kUByte3_GrSLType:
case kUByte4_GrSLType:
return 0x3;
case kShort_GrSLType: // fall through
case kUShort_GrSLType:
return 0x1;
case kShort2_GrSLType: // fall through
case kUShort2_GrSLType:
return 0x3;
case kShort3_GrSLType: // fall through
case kShort4_GrSLType:
case kUShort3_GrSLType:
case kUShort4_GrSLType:
return 0x7;
case kInt_GrSLType:
case kUint_GrSLType:
return 0x3;
case kInt2_GrSLType:
case kUint2_GrSLType:
return 0x7;
case kInt3_GrSLType:
case kUint3_GrSLType:
case kInt4_GrSLType:
case kUint4_GrSLType:
return 0xF;
case kHalf_GrSLType: // fall through
case kFloat_GrSLType:
return 0x3;
case kHalf2_GrSLType: // fall through
case kFloat2_GrSLType:
return 0x7;
case kHalf3_GrSLType: // fall through
case kFloat3_GrSLType:
return 0xF;
case kHalf4_GrSLType: // fall through
case kFloat4_GrSLType:
return 0xF;
case kHalf2x2_GrSLType: // fall through
case kFloat2x2_GrSLType:
return 0x7;
case kHalf3x3_GrSLType: // fall through
case kFloat3x3_GrSLType:
return 0xF;
case kHalf4x4_GrSLType: // fall through
case kFloat4x4_GrSLType:
return 0xF;
// This query is only valid for certain types.
case kVoid_GrSLType:
case kBool_GrSLType:
case kBool2_GrSLType:
case kBool3_GrSLType:
case kBool4_GrSLType:
case kTexture2DSampler_GrSLType:
case kTextureExternalSampler_GrSLType:
case kTexture2DRectSampler_GrSLType:
case kSampler_GrSLType:
case kTexture2D_GrSLType:
case kInput_GrSLType:
break;
}
SK_ABORT("Unexpected type");
}
/** Returns the size in bytes taken up in vulkanbuffers for GrSLTypes. */
static inline uint32_t grsltype_to_vk_size(GrSLType type, int layout) {
switch(type) {
case kByte_GrSLType:
return sizeof(int8_t);
case kByte2_GrSLType:
return 2 * sizeof(int8_t);
case kByte3_GrSLType:
return 3 * sizeof(int8_t);
case kByte4_GrSLType:
return 4 * sizeof(int8_t);
case kUByte_GrSLType:
return sizeof(uint8_t);
case kUByte2_GrSLType:
return 2 * sizeof(uint8_t);
case kUByte3_GrSLType:
return 3 * sizeof(uint8_t);
case kUByte4_GrSLType:
return 4 * sizeof(uint8_t);
case kShort_GrSLType:
return sizeof(int16_t);
case kShort2_GrSLType:
return 2 * sizeof(int16_t);
case kShort3_GrSLType:
return 3 * sizeof(int16_t);
case kShort4_GrSLType:
return 4 * sizeof(int16_t);
case kUShort_GrSLType:
return sizeof(uint16_t);
case kUShort2_GrSLType:
return 2 * sizeof(uint16_t);
case kUShort3_GrSLType:
return 3 * sizeof(uint16_t);
case kUShort4_GrSLType:
return 4 * sizeof(uint16_t);
case kHalf_GrSLType: // fall through
case kFloat_GrSLType:
return sizeof(float);
case kHalf2_GrSLType: // fall through
case kFloat2_GrSLType:
return 2 * sizeof(float);
case kHalf3_GrSLType: // fall through
case kFloat3_GrSLType:
return 3 * sizeof(float);
case kHalf4_GrSLType: // fall through
case kFloat4_GrSLType:
return 4 * sizeof(float);
case kInt_GrSLType: // fall through
case kUint_GrSLType:
return sizeof(int32_t);
case kInt2_GrSLType: // fall through
case kUint2_GrSLType:
return 2 * sizeof(int32_t);
case kInt3_GrSLType: // fall through
case kUint3_GrSLType:
return 3 * sizeof(int32_t);
case kInt4_GrSLType: // fall through
case kUint4_GrSLType:
return 4 * sizeof(int32_t);
case kHalf2x2_GrSLType: // fall through
case kFloat2x2_GrSLType:
if (layout == GrVkUniformHandler::kStd430Layout) {
return 4 * sizeof(float);
} else {
return 8 * sizeof(float);
}
case kHalf3x3_GrSLType: // fall through
case kFloat3x3_GrSLType:
return 12 * sizeof(float);
case kHalf4x4_GrSLType: // fall through
case kFloat4x4_GrSLType:
return 16 * sizeof(float);
// This query is only valid for certain types.
case kVoid_GrSLType:
case kBool_GrSLType:
case kBool2_GrSLType:
case kBool3_GrSLType:
case kBool4_GrSLType:
case kTexture2DSampler_GrSLType:
case kTextureExternalSampler_GrSLType:
case kTexture2DRectSampler_GrSLType:
case kSampler_GrSLType:
case kTexture2D_GrSLType:
case kInput_GrSLType:
break;
}
SK_ABORT("Unexpected type");
}
// Given the current offset into the ubo data, calculate the offset for the uniform we're trying to
// add taking into consideration all alignment requirements. The uniformOffset is set to the offset
// for the new uniform, and currentOffset is updated to be the offset to the end of the new uniform.
static uint32_t get_aligned_offset(uint32_t* currentOffset,
GrSLType type,
int arrayCount,
int layout) {
uint32_t alignmentMask = grsltype_to_alignment_mask(type);
// For std140 layout we must make arrays align to 16 bytes.
if (layout == GrVkUniformHandler::kStd140Layout && (arrayCount || type == kFloat2x2_GrSLType)) {
alignmentMask = 0xF;
}
uint32_t offsetDiff = *currentOffset & alignmentMask;
if (offsetDiff != 0) {
offsetDiff = alignmentMask - offsetDiff + 1;
}
int32_t uniformOffset = *currentOffset + offsetDiff;
SkASSERT(sizeof(float) == 4);
if (arrayCount) {
// TODO: this shouldn't be necessary for std430
uint32_t elementSize = std::max<uint32_t>(16, grsltype_to_vk_size(type, layout));
SkASSERT(0 == (elementSize & 0xF));
*currentOffset = uniformOffset + elementSize * arrayCount;
} else {
*currentOffset = uniformOffset + grsltype_to_vk_size(type, layout);
}
return uniformOffset;
}
GrVkUniformHandler::~GrVkUniformHandler() {
for (VkUniformInfo& sampler : fSamplers.items()) {
if (sampler.fImmutableSampler) {
sampler.fImmutableSampler->unref();
sampler.fImmutableSampler = nullptr;
}
}
}
GrGLSLUniformHandler::UniformHandle GrVkUniformHandler::internalAddUniformArray(
const GrFragmentProcessor* owner,
uint32_t visibility,
GrSLType type,
const char* name,
bool mangleName,
int arrayCount,
const char** outName) {
SkASSERT(name && strlen(name));
SkASSERT(GrSLTypeCanBeUniformValue(type));
// TODO this is a bit hacky, lets think of a better way. Basically we need to be able to use
// the uniform view matrix name in the GP, and the GP is immutable so it has to tell the PB
// exactly what name it wants to use for the uniform view matrix. If we prefix anythings, then
// the names will mismatch. I think the correct solution is to have all GPs which need the
// uniform view matrix, they should upload the view matrix in their setData along with regular
// uniforms.
char prefix = 'u';
if ('u' == name[0] || !strncmp(name, GR_NO_MANGLE_PREFIX, strlen(GR_NO_MANGLE_PREFIX))) {
prefix = '\0';
}
SkString resolvedName = fProgramBuilder->nameVariable(prefix, name, mangleName);
uint32_t offsets[kLayoutCount];
for (int layout = 0; layout < kLayoutCount; ++layout) {
offsets[layout] = get_aligned_offset(&fCurrentOffsets[layout], type, arrayCount, layout);
}
VkUniformInfo& uni = fUniforms.push_back(VkUniformInfo{
{
GrShaderVar{std::move(resolvedName), type, GrShaderVar::TypeModifier::None, arrayCount},
visibility, owner, SkString(name)
},
{offsets[0], offsets[1]}, nullptr
});
if (outName) {
*outName = uni.fVariable.c_str();
}
return GrGLSLUniformHandler::UniformHandle(fUniforms.count() - 1);
}
GrGLSLUniformHandler::SamplerHandle GrVkUniformHandler::addSampler(
const GrBackendFormat& backendFormat, GrSamplerState state, const GrSwizzle& swizzle,
const char* name, const GrShaderCaps* shaderCaps) {
SkASSERT(name && strlen(name));
const char prefix = 'u';
SkString mangleName = fProgramBuilder->nameVariable(prefix, name, /*mangle=*/true);
SkString layoutQualifier;
layoutQualifier.appendf("set=%d, binding=%d", kSamplerDescSet, fSamplers.count());
VkUniformInfo& info = fSamplers.push_back(VkUniformInfo{
{
GrShaderVar{std::move(mangleName),
GrSLCombinedSamplerTypeForTextureType(backendFormat.textureType()),
GrShaderVar::TypeModifier::Uniform, GrShaderVar::kNonArray,
std::move(layoutQualifier), SkString()},
kFragment_GrShaderFlag, nullptr, SkString(name)
},
{0, 0}, nullptr
});
// Check if we are dealing with an external texture and store the needed information if so.
auto ycbcrInfo = backendFormat.getVkYcbcrConversionInfo();
if (ycbcrInfo && ycbcrInfo->isValid()) {
GrVkGpu* gpu = static_cast<GrVkPipelineStateBuilder*>(fProgramBuilder)->gpu();
info.fImmutableSampler = gpu->resourceProvider().findOrCreateCompatibleSampler(
state, *ycbcrInfo);
if (!info.fImmutableSampler) {
return {};
}
}
fSamplerSwizzles.push_back(swizzle);
SkASSERT(fSamplerSwizzles.count() == fSamplers.count());
return GrGLSLUniformHandler::SamplerHandle(fSamplers.count() - 1);
}
GrGLSLUniformHandler::SamplerHandle GrVkUniformHandler::addInputSampler(const GrSwizzle& swizzle,
const char* name) {
SkASSERT(name && strlen(name));
SkASSERT(fInputUniform.fVariable.getType() == kVoid_GrSLType);
const char prefix = 'u';
SkString mangleName = fProgramBuilder->nameVariable(prefix, name, /*mangle=*/true);
SkString layoutQualifier;
layoutQualifier.appendf("input_attachment_index=%d, set=%d, binding=%d",
kDstInputAttachmentIndex, kInputDescSet, kInputBinding);
fInputUniform = {
GrShaderVar{std::move(mangleName), kInput_GrSLType, GrShaderVar::TypeModifier::Uniform,
GrShaderVar::kNonArray, std::move(layoutQualifier), SkString()},
kFragment_GrShaderFlag, nullptr, SkString(name)};
fInputSwizzle = swizzle;
return GrGLSLUniformHandler::SamplerHandle(0);
}
void GrVkUniformHandler::appendUniformDecls(GrShaderFlags visibility, SkString* out) const {
for (const VkUniformInfo& sampler : fSamplers.items()) {
SkASSERT(sampler.fVariable.getType() == kTexture2DSampler_GrSLType ||
sampler.fVariable.getType() == kTextureExternalSampler_GrSLType);
if (visibility == sampler.fVisibility) {
sampler.fVariable.appendDecl(fProgramBuilder->shaderCaps(), out);
out->append(";\n");
}
}
if (fInputUniform.fVariable.getType() == kInput_GrSLType) {
if (visibility == fInputUniform.fVisibility) {
SkASSERT(visibility == kFragment_GrShaderFlag);
fInputUniform.fVariable.appendDecl(fProgramBuilder->shaderCaps(), out);
out->append(";\n");
}
}
#ifdef SK_DEBUG
bool firstOffsetCheck = false;
for (const VkUniformInfo& localUniform : fUniforms.items()) {
if (!firstOffsetCheck) {
// Check to make sure we are starting our offset at 0 so the offset qualifier we
// set on each variable in the uniform block is valid.
SkASSERT(0 == localUniform.fOffsets[kStd140Layout] &&
0 == localUniform.fOffsets[kStd430Layout]);
firstOffsetCheck = true;
}
}
#endif
// At this point we determine whether we'll be using push constants based on the
// uniforms set so far. Later checks will use the internal bool we set here to
// keep things consistent.
this->determineIfUsePushConstants();
SkString uniformsString;
for (const VkUniformInfo& localUniform : fUniforms.items()) {
if (visibility & localUniform.fVisibility) {
if (GrSLTypeCanBeUniformValue(localUniform.fVariable.getType())) {
Layout layout = fUsePushConstants ? kStd430Layout : kStd140Layout;
uniformsString.appendf("layout(offset=%d) ", localUniform.fOffsets[layout]);
localUniform.fVariable.appendDecl(fProgramBuilder->shaderCaps(), &uniformsString);
uniformsString.append(";\n");
}
}
}
if (!uniformsString.isEmpty()) {
if (fUsePushConstants) {
out->append("layout (push_constant) ");
} else {
out->appendf("layout (set=%d, binding=%d) ",
kUniformBufferDescSet, kUniformBinding);
}
out->append("uniform uniformBuffer\n{\n");
out->appendf("%s\n};\n", uniformsString.c_str());
}
}
uint32_t GrVkUniformHandler::getRTHeightOffset() const {
Layout layout = fUsePushConstants ? kStd430Layout : kStd140Layout;
uint32_t currentOffset = fCurrentOffsets[layout];
return get_aligned_offset(&currentOffset, kFloat_GrSLType, 0, layout);
}
void GrVkUniformHandler::determineIfUsePushConstants() const {
// If flipY is enabled we may be adding the RTHeight uniform during compilation.
// We won't know that for sure until then but we need to make this determination now,
// so assume we will need it.
uint32_t pad = fFlipY ? sizeof(float) : 0;
fUsePushConstants = fCurrentOffsets[kStd430Layout] > 0 &&
fCurrentOffsets[kStd430Layout] + pad <= fProgramBuilder->caps()->maxPushConstantsSize();
}