blob: 3c18723ae4827591b4f5cfff6c8671766c197b89 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/vk/GrVkCaps.h"
#include <memory>
#include "include/gpu/GrBackendSurface.h"
#include "include/gpu/vk/GrVkBackendContext.h"
#include "include/gpu/vk/GrVkExtensions.h"
#include "src/core/SkCompressedDataUtils.h"
#include "src/gpu/GrBackendUtils.h"
#include "src/gpu/GrProgramDesc.h"
#include "src/gpu/GrRenderTarget.h"
#include "src/gpu/GrRenderTargetProxy.h"
#include "src/gpu/GrShaderCaps.h"
#include "src/gpu/GrStencilSettings.h"
#include "src/gpu/GrUtil.h"
#include "src/gpu/SkGr.h"
#include "src/gpu/vk/GrVkGpu.h"
#include "src/gpu/vk/GrVkInterface.h"
#include "src/gpu/vk/GrVkRenderTarget.h"
#include "src/gpu/vk/GrVkTexture.h"
#include "src/gpu/vk/GrVkUniformHandler.h"
#include "src/gpu/vk/GrVkUtil.h"
#ifdef SK_BUILD_FOR_ANDROID
#include <sys/system_properties.h>
#endif
GrVkCaps::GrVkCaps(const GrContextOptions& contextOptions, const GrVkInterface* vkInterface,
VkPhysicalDevice physDev, const VkPhysicalDeviceFeatures2& features,
uint32_t instanceVersion, uint32_t physicalDeviceVersion,
const GrVkExtensions& extensions, GrProtected isProtected)
: INHERITED(contextOptions) {
/**************************************************************************
* GrCaps fields
**************************************************************************/
fMipmapSupport = true; // always available in Vulkan
fNPOTTextureTileSupport = true; // always available in Vulkan
fReuseScratchTextures = true; //TODO: figure this out
fGpuTracingSupport = false; //TODO: figure this out
fOversizedStencilSupport = false; //TODO: figure this out
fDrawInstancedSupport = true;
fSemaphoreSupport = true; // always available in Vulkan
fFenceSyncSupport = true; // always available in Vulkan
fCrossContextTextureSupport = true;
fHalfFloatVertexAttributeSupport = true;
// We always copy in/out of a transfer buffer so it's trivial to support row bytes.
fReadPixelsRowBytesSupport = true;
fWritePixelsRowBytesSupport = true;
fTransferFromBufferToTextureSupport = true;
fTransferFromSurfaceToBufferSupport = true;
fMaxRenderTargetSize = 4096; // minimum required by spec
fMaxTextureSize = 4096; // minimum required by spec
fDynamicStateArrayGeometryProcessorTextureSupport = true;
fTextureBarrierSupport = true;
fShaderCaps.reset(new GrShaderCaps(contextOptions));
this->init(contextOptions, vkInterface, physDev, features, physicalDeviceVersion, extensions,
isProtected);
}
namespace {
/**
* This comes from section 37.1.6 of the Vulkan spec. Format is
* (<bits>|<tag>)_<block_size>_<texels_per_block>.
*/
enum class FormatCompatibilityClass {
k8_1_1,
k16_2_1,
k24_3_1,
k32_4_1,
k64_8_1,
kBC1_RGB_8_16_1,
kBC1_RGBA_8_16,
kETC2_RGB_8_16,
};
} // anonymous namespace
static FormatCompatibilityClass format_compatibility_class(VkFormat format) {
switch (format) {
case VK_FORMAT_B8G8R8A8_UNORM:
case VK_FORMAT_R8G8B8A8_UNORM:
case VK_FORMAT_A2B10G10R10_UNORM_PACK32:
case VK_FORMAT_A2R10G10B10_UNORM_PACK32:
case VK_FORMAT_R8G8B8A8_SRGB:
case VK_FORMAT_R16G16_UNORM:
case VK_FORMAT_R16G16_SFLOAT:
return FormatCompatibilityClass::k32_4_1;
case VK_FORMAT_R8_UNORM:
return FormatCompatibilityClass::k8_1_1;
case VK_FORMAT_R5G6B5_UNORM_PACK16:
case VK_FORMAT_R16_SFLOAT:
case VK_FORMAT_R8G8_UNORM:
case VK_FORMAT_B4G4R4A4_UNORM_PACK16:
case VK_FORMAT_R4G4B4A4_UNORM_PACK16:
case VK_FORMAT_R16_UNORM:
return FormatCompatibilityClass::k16_2_1;
case VK_FORMAT_R16G16B16A16_SFLOAT:
case VK_FORMAT_R16G16B16A16_UNORM:
return FormatCompatibilityClass::k64_8_1;
case VK_FORMAT_R8G8B8_UNORM:
return FormatCompatibilityClass::k24_3_1;
case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK:
return FormatCompatibilityClass::kETC2_RGB_8_16;
case VK_FORMAT_BC1_RGB_UNORM_BLOCK:
return FormatCompatibilityClass::kBC1_RGB_8_16_1;
case VK_FORMAT_BC1_RGBA_UNORM_BLOCK:
return FormatCompatibilityClass::kBC1_RGBA_8_16;
default:
SK_ABORT("Unsupported VkFormat");
}
}
bool GrVkCaps::canCopyImage(VkFormat dstFormat, int dstSampleCnt, bool dstHasYcbcr,
VkFormat srcFormat, int srcSampleCnt, bool srcHasYcbcr) const {
if ((dstSampleCnt > 1 || srcSampleCnt > 1) && dstSampleCnt != srcSampleCnt) {
return false;
}
if (dstHasYcbcr || srcHasYcbcr) {
return false;
}
// We require that all Vulkan GrSurfaces have been created with transfer_dst and transfer_src
// as image usage flags.
return format_compatibility_class(srcFormat) == format_compatibility_class(dstFormat);
}
bool GrVkCaps::canCopyAsBlit(VkFormat dstFormat, int dstSampleCnt, bool dstIsLinear,
bool dstHasYcbcr, VkFormat srcFormat, int srcSampleCnt,
bool srcIsLinear, bool srcHasYcbcr) const {
// We require that all vulkan GrSurfaces have been created with transfer_dst and transfer_src
// as image usage flags.
if (!this->formatCanBeDstofBlit(dstFormat, dstIsLinear) ||
!this->formatCanBeSrcofBlit(srcFormat, srcIsLinear)) {
return false;
}
// We cannot blit images that are multisampled. Will need to figure out if we can blit the
// resolved msaa though.
if (dstSampleCnt > 1 || srcSampleCnt > 1) {
return false;
}
if (dstHasYcbcr || srcHasYcbcr) {
return false;
}
return true;
}
bool GrVkCaps::canCopyAsResolve(VkFormat dstFormat, int dstSampleCnt, bool dstHasYcbcr,
VkFormat srcFormat, int srcSampleCnt, bool srcHasYcbcr) const {
// The src surface must be multisampled.
if (srcSampleCnt <= 1) {
return false;
}
// The dst must not be multisampled.
if (dstSampleCnt > 1) {
return false;
}
// Surfaces must have the same format.
if (srcFormat != dstFormat) {
return false;
}
if (dstHasYcbcr || srcHasYcbcr) {
return false;
}
return true;
}
bool GrVkCaps::onCanCopySurface(const GrSurfaceProxy* dst, const GrSurfaceProxy* src,
const SkIRect& srcRect, const SkIPoint& dstPoint) const {
if (src->isProtected() == GrProtected::kYes && dst->isProtected() != GrProtected::kYes) {
return false;
}
// TODO: Figure out a way to track if we've wrapped a linear texture in a proxy (e.g.
// PromiseImage which won't get instantiated right away. Does this need a similar thing like the
// tracking of external or rectangle textures in GL? For now we don't create linear textures
// internally, and I don't believe anyone is wrapping them.
bool srcIsLinear = false;
bool dstIsLinear = false;
int dstSampleCnt = 0;
int srcSampleCnt = 0;
if (const GrRenderTargetProxy* rtProxy = dst->asRenderTargetProxy()) {
// Copying to or from render targets that wrap a secondary command buffer is not allowed
// since they would require us to know the VkImage, which we don't have, as well as need us
// to stop and start the VkRenderPass which we don't have access to.
if (rtProxy->wrapsVkSecondaryCB()) {
return false;
}
if (this->preferDiscardableMSAAAttachment() && dst->asTextureProxy() &&
rtProxy->supportsVkInputAttachment()) {
dstSampleCnt = 1;
} else {
dstSampleCnt = rtProxy->numSamples();
}
}
if (const GrRenderTargetProxy* rtProxy = src->asRenderTargetProxy()) {
// Copying to or from render targets that wrap a secondary command buffer is not allowed
// since they would require us to know the VkImage, which we don't have, as well as need us
// to stop and start the VkRenderPass which we don't have access to.
if (rtProxy->wrapsVkSecondaryCB()) {
return false;
}
if (this->preferDiscardableMSAAAttachment() && src->asTextureProxy() &&
rtProxy->supportsVkInputAttachment()) {
srcSampleCnt = 1;
} else {
srcSampleCnt = rtProxy->numSamples();
}
}
SkASSERT((dstSampleCnt > 0) == SkToBool(dst->asRenderTargetProxy()));
SkASSERT((srcSampleCnt > 0) == SkToBool(src->asRenderTargetProxy()));
bool dstHasYcbcr = false;
if (auto ycbcr = dst->backendFormat().getVkYcbcrConversionInfo()) {
if (ycbcr->isValid()) {
dstHasYcbcr = true;
}
}
bool srcHasYcbcr = false;
if (auto ycbcr = src->backendFormat().getVkYcbcrConversionInfo()) {
if (ycbcr->isValid()) {
srcHasYcbcr = true;
}
}
VkFormat dstFormat, srcFormat;
SkAssertResult(dst->backendFormat().asVkFormat(&dstFormat));
SkAssertResult(src->backendFormat().asVkFormat(&srcFormat));
return this->canCopyImage(dstFormat, dstSampleCnt, dstHasYcbcr,
srcFormat, srcSampleCnt, srcHasYcbcr) ||
this->canCopyAsBlit(dstFormat, dstSampleCnt, dstIsLinear, dstHasYcbcr,
srcFormat, srcSampleCnt, srcIsLinear, srcHasYcbcr) ||
this->canCopyAsResolve(dstFormat, dstSampleCnt, dstHasYcbcr,
srcFormat, srcSampleCnt, srcHasYcbcr);
}
template<typename T> T* get_extension_feature_struct(const VkPhysicalDeviceFeatures2& features,
VkStructureType type) {
// All Vulkan structs that could be part of the features chain will start with the
// structure type followed by the pNext pointer. We cast to the CommonVulkanHeader
// so we can get access to the pNext for the next struct.
struct CommonVulkanHeader {
VkStructureType sType;
void* pNext;
};
void* pNext = features.pNext;
while (pNext) {
CommonVulkanHeader* header = static_cast<CommonVulkanHeader*>(pNext);
if (header->sType == type) {
return static_cast<T*>(pNext);
}
pNext = header->pNext;
}
return nullptr;
}
void GrVkCaps::init(const GrContextOptions& contextOptions, const GrVkInterface* vkInterface,
VkPhysicalDevice physDev, const VkPhysicalDeviceFeatures2& features,
uint32_t physicalDeviceVersion, const GrVkExtensions& extensions,
GrProtected isProtected) {
VkPhysicalDeviceProperties properties;
GR_VK_CALL(vkInterface, GetPhysicalDeviceProperties(physDev, &properties));
VkPhysicalDeviceMemoryProperties memoryProperties;
GR_VK_CALL(vkInterface, GetPhysicalDeviceMemoryProperties(physDev, &memoryProperties));
SkASSERT(physicalDeviceVersion <= properties.apiVersion);
if (extensions.hasExtension(VK_KHR_SWAPCHAIN_EXTENSION_NAME, 1)) {
fSupportsSwapchain = true;
}
if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
extensions.hasExtension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 1)) {
fSupportsPhysicalDeviceProperties2 = true;
}
if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
extensions.hasExtension(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME, 1)) {
fSupportsMemoryRequirements2 = true;
}
if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
extensions.hasExtension(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME, 1)) {
fSupportsBindMemory2 = true;
}
if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
extensions.hasExtension(VK_KHR_MAINTENANCE1_EXTENSION_NAME, 1)) {
fSupportsMaintenance1 = true;
}
if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
extensions.hasExtension(VK_KHR_MAINTENANCE2_EXTENSION_NAME, 1)) {
fSupportsMaintenance2 = true;
}
if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
extensions.hasExtension(VK_KHR_MAINTENANCE3_EXTENSION_NAME, 1)) {
fSupportsMaintenance3 = true;
}
if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
(extensions.hasExtension(VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME, 1) &&
this->supportsMemoryRequirements2())) {
fSupportsDedicatedAllocation = true;
}
if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
(extensions.hasExtension(VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME, 1) &&
this->supportsPhysicalDeviceProperties2() &&
extensions.hasExtension(VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME, 1) &&
this->supportsDedicatedAllocation())) {
fSupportsExternalMemory = true;
}
#ifdef SK_BUILD_FOR_ANDROID
// Currently Adreno devices are not supporting the QUEUE_FAMILY_FOREIGN_EXTENSION, so until they
// do we don't explicitly require it here even the spec says it is required.
if (extensions.hasExtension(
VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME, 2) &&
/* extensions.hasExtension(VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME, 1) &&*/
this->supportsExternalMemory() &&
this->supportsBindMemory2()) {
fSupportsAndroidHWBExternalMemory = true;
fSupportsAHardwareBufferImages = true;
}
#endif
auto ycbcrFeatures =
get_extension_feature_struct<VkPhysicalDeviceSamplerYcbcrConversionFeatures>(
features, VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES);
if (ycbcrFeatures && ycbcrFeatures->samplerYcbcrConversion &&
(physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
(extensions.hasExtension(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME, 1) &&
this->supportsMaintenance1() && this->supportsBindMemory2() &&
this->supportsMemoryRequirements2() && this->supportsPhysicalDeviceProperties2()))) {
fSupportsYcbcrConversion = true;
}
// We always push back the default GrVkYcbcrConversionInfo so that the case of no conversion
// will return a key of 0.
fYcbcrInfos.push_back(GrVkYcbcrConversionInfo());
if ((isProtected == GrProtected::kYes) &&
(physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0))) {
fSupportsProtectedMemory = true;
fAvoidUpdateBuffers = true;
fShouldAlwaysUseDedicatedImageMemory = true;
}
fMaxInputAttachmentDescriptors = properties.limits.maxDescriptorSetInputAttachments;
// On desktop GPUs we have found that this does not provide much benefit. The perf results show
// a mix of regressions, some improvements, and lots of no changes. Thus it is no worth enabling
// this (especially with the rendering artifacts) on desktop.
//
// On Adreno devices we were expecting to see perf gains. But instead there were actually a lot
// of perf regressions and only a few perf wins. This needs some follow up with qualcomm since
// we do expect this to be a big win on tilers.
//
// On ARM devices we are seeing an average perf win of around 50%-60% across the board.
if (kARM_VkVendor == properties.vendorID) {
fPreferDiscardableMSAAAttachment = true;
}
this->initGrCaps(vkInterface, physDev, properties, memoryProperties, features, extensions);
this->initShaderCaps(properties, features);
if (kQualcomm_VkVendor == properties.vendorID) {
// A "clear" load for atlases runs faster on QC than a "discard" load followed by a
// scissored clear.
// On NVIDIA and Intel, the discard load followed by clear is faster.
// TODO: Evaluate on ARM, Imagination, and ATI.
fPreferFullscreenClears = true;
}
if (properties.vendorID == kNvidia_VkVendor || properties.vendorID == kAMD_VkVendor) {
// On discrete GPUs it can be faster to read gpu only memory compared to memory that is also
// mappable on the host.
fGpuOnlyBuffersMorePerformant = true;
// On discrete GPUs we try to use special DEVICE_LOCAL and HOST_VISIBLE memory for our
// cpu write, gpu read buffers. This memory is not ideal to be kept persistently mapped.
// Some discrete GPUs do not expose this special memory, however we still disable
// persistently mapped buffers for all of them since most GPUs with updated drivers do
// expose it. If this becomes an issue we can try to be more fine grained.
fShouldPersistentlyMapCpuToGpuBuffers = false;
}
if (kQualcomm_VkVendor == properties.vendorID) {
// On Qualcomm it looks like using vkCmdUpdateBuffer is slower than using a transfer buffer
// even for small sizes.
fAvoidUpdateBuffers = true;
}
if (kQualcomm_VkVendor == properties.vendorID) {
// Adreno devices don't support push constants well
fMaxPushConstantsSize = 0;
}
fNativeDrawIndirectSupport = features.features.drawIndirectFirstInstance;
if (properties.vendorID == kQualcomm_VkVendor) {
// Indirect draws seem slow on QC. Disable until we can investigate. http://skbug.com/11139
fNativeDrawIndirectSupport = false;
}
if (fNativeDrawIndirectSupport) {
fMaxDrawIndirectDrawCount = properties.limits.maxDrawIndirectCount;
SkASSERT(fMaxDrawIndirectDrawCount == 1 || features.features.multiDrawIndirect);
}
#ifdef SK_BUILD_FOR_UNIX
if (kNvidia_VkVendor == properties.vendorID) {
// On nvidia linux we see a big perf regression when not using dedicated image allocations.
fShouldAlwaysUseDedicatedImageMemory = true;
}
#endif
this->initFormatTable(vkInterface, physDev, properties);
this->initStencilFormat(vkInterface, physDev);
if (contextOptions.fMaxCachedVulkanSecondaryCommandBuffers >= 0) {
fMaxPerPoolCachedSecondaryCommandBuffers =
contextOptions.fMaxCachedVulkanSecondaryCommandBuffers;
}
if (!contextOptions.fDisableDriverCorrectnessWorkarounds) {
this->applyDriverCorrectnessWorkarounds(properties);
}
this->finishInitialization(contextOptions);
}
void GrVkCaps::applyDriverCorrectnessWorkarounds(const VkPhysicalDeviceProperties& properties) {
#if defined(SK_BUILD_FOR_WIN)
if (kNvidia_VkVendor == properties.vendorID || kIntel_VkVendor == properties.vendorID) {
fMustSyncCommandBuffersWithQueue = true;
}
#elif defined(SK_BUILD_FOR_ANDROID)
if (kImagination_VkVendor == properties.vendorID) {
fMustSyncCommandBuffersWithQueue = true;
}
#endif
// Defaults to zero since all our workaround checks that use this consider things "fixed" once
// above a certain api level. So this will just default to it being less which will enable
// workarounds.
int androidAPIVersion = 0;
#if defined(SK_BUILD_FOR_ANDROID)
char androidAPIVersionStr[PROP_VALUE_MAX];
int strLength = __system_property_get("ro.build.version.sdk", androidAPIVersionStr);
// Defaults to zero since most checks care if it is greater than a specific value. So this will
// just default to it being less.
androidAPIVersion = (strLength == 0) ? 0 : atoi(androidAPIVersionStr);
#endif
// Protected memory features have problems in Android P and earlier.
if (fSupportsProtectedMemory && (kQualcomm_VkVendor == properties.vendorID)) {
if (androidAPIVersion <= 28) {
fSupportsProtectedMemory = false;
}
}
// On Mali galaxy s7 we see lots of rendering issues when we suballocate VkImages.
if (kARM_VkVendor == properties.vendorID && androidAPIVersion <= 28) {
fShouldAlwaysUseDedicatedImageMemory = true;
}
// On Mali galaxy s7 and s9 we see lots of rendering issues with image filters dropping out when
// using only primary command buffers. We also see issues on the P30 running android 28.
if (kARM_VkVendor == properties.vendorID && androidAPIVersion <= 28) {
fPreferPrimaryOverSecondaryCommandBuffers = false;
// If we are using secondary command buffers our code isn't setup to insert barriers into
// the secondary cb so we need to disable support for them.
fTextureBarrierSupport = false;
fBlendEquationSupport = kBasic_BlendEquationSupport;
}
// We've seen numerous driver bugs on qualcomm devices running on android P (api 28) or earlier
// when trying to using discardable msaa attachments and loading from resolve. So we disable the
// feature for those devices.
if (properties.vendorID == kQualcomm_VkVendor && androidAPIVersion <= 28) {
fPreferDiscardableMSAAAttachment = false;
}
// On Mali G series GPUs, applying transfer functions in the fragment shader with half-floats
// produces answers that are much less accurate than expected/required. This forces full floats
// for some intermediate values to get acceptable results.
if (kARM_VkVendor == properties.vendorID) {
fShaderCaps->fColorSpaceMathNeedsFloat = true;
}
// On various devices, when calling vkCmdClearAttachments on a primary command buffer, it
// corrupts the bound buffers on the command buffer. As a workaround we invalidate our knowledge
// of bound buffers so that we will rebind them on the next draw.
if (kQualcomm_VkVendor == properties.vendorID || kAMD_VkVendor == properties.vendorID) {
fMustInvalidatePrimaryCmdBufferStateAfterClearAttachments = true;
}
// On Qualcomm and Arm the gpu resolves an area larger than the render pass bounds when using
// discardable msaa attachments. This causes the resolve to resolve uninitialized data from the
// msaa image into the resolve image.
if (kQualcomm_VkVendor == properties.vendorID || kARM_VkVendor == properties.vendorID) {
fMustLoadFullImageWithDiscardableMSAA = true;
}
#ifdef SK_BUILD_FOR_UNIX
if (kIntel_VkVendor == properties.vendorID) {
// At least on our linux Debug Intel HD405 bot we are seeing issues doing read pixels with
// non-conherent memory. It seems like the device is not properly honoring the
// vkInvalidateMappedMemoryRanges calls correctly. Other linux intel devices seem to work
// okay. However, since I'm not sure how to target a specific intel devices or driver
// version I am going to stop all intel linux from using non-coherent memory. Currently we
// are not shipping anything on these platforms and the only real thing that will regress is
// read backs. If we find later we do care about this performance we can come back to figure
// out how to do a more narrow workaround.
fMustUseCoherentHostVisibleMemory = true;
}
#endif
////////////////////////////////////////////////////////////////////////////
// GrCaps workarounds
////////////////////////////////////////////////////////////////////////////
#ifdef SK_BUILD_FOR_ANDROID
// MSAA CCPR was slow on Android. http://skbug.com/9676
fDriverDisableMSAAClipAtlas = true;
#endif
if (kARM_VkVendor == properties.vendorID) {
fAvoidWritePixelsFastPath = true; // bugs.skia.org/8064
}
// AMD advertises support for MAX_UINT vertex input attributes, but in reality only supports 32.
if (kAMD_VkVendor == properties.vendorID) {
fMaxVertexAttributes = std::min(fMaxVertexAttributes, 32);
}
// Adreno devices fail when trying to read the dest using an input attachment and texture
// barriers.
if (kQualcomm_VkVendor == properties.vendorID) {
fTextureBarrierSupport = false;
}
// On ARM indirect draws are broken on Android 9 and earlier. This was tested on a P30 and
// Mate 20x running android 9.
if (properties.vendorID == kARM_VkVendor && androidAPIVersion <= 28) {
fNativeDrawIndirectSupport = false;
}
////////////////////////////////////////////////////////////////////////////
// GrShaderCaps workarounds
////////////////////////////////////////////////////////////////////////////
if (kImagination_VkVendor == properties.vendorID) {
fShaderCaps->fAtan2ImplementedAsAtanYOverX = true;
}
}
void GrVkCaps::initGrCaps(const GrVkInterface* vkInterface,
VkPhysicalDevice physDev,
const VkPhysicalDeviceProperties& properties,
const VkPhysicalDeviceMemoryProperties& memoryProperties,
const VkPhysicalDeviceFeatures2& features,
const GrVkExtensions& extensions) {
// So GPUs, like AMD, are reporting MAX_INT support vertex attributes. In general, there is no
// need for us ever to support that amount, and it makes tests which tests all the vertex
// attribs timeout looping over that many. For now, we'll cap this at 64 max and can raise it if
// we ever find that need.
static const uint32_t kMaxVertexAttributes = 64;
fMaxVertexAttributes = std::min(properties.limits.maxVertexInputAttributes, kMaxVertexAttributes);
// GrCaps::fSampleLocationsSupport refers to the ability to *query* the sample locations (not
// program them). For now we just set this to true if the device uses standard locations, and
// return the standard locations back when queried.
if (properties.limits.standardSampleLocations) {
fSampleLocationsSupport = true;
}
// See skbug.com/10346
#if 0
if (extensions.hasExtension(VK_EXT_SAMPLE_LOCATIONS_EXTENSION_NAME, 1)) {
// We "disable" multisample by colocating all samples at pixel center.
fMultisampleDisableSupport = true;
}
#endif
if (extensions.hasExtension(VK_EXT_CONSERVATIVE_RASTERIZATION_EXTENSION_NAME, 1)) {
fConservativeRasterSupport = true;
}
fWireframeSupport = true;
// We could actually query and get a max size for each config, however maxImageDimension2D will
// give the minimum max size across all configs. So for simplicity we will use that for now.
fMaxRenderTargetSize = std::min(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX);
fMaxTextureSize = std::min(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX);
if (fDriverBugWorkarounds.max_texture_size_limit_4096) {
fMaxTextureSize = std::min(fMaxTextureSize, 4096);
}
// TODO: check if RT's larger than 4k incur a performance cost on ARM.
fMaxPreferredRenderTargetSize = fMaxRenderTargetSize;
fMaxPushConstantsSize = std::min(properties.limits.maxPushConstantsSize, (uint32_t)INT_MAX);
// Assuming since we will always map in the end to upload the data we might as well just map
// from the get go. There is no hard data to suggest this is faster or slower.
fBufferMapThreshold = 0;
fMapBufferFlags = kCanMap_MapFlag | kSubset_MapFlag | kAsyncRead_MapFlag;
fOversizedStencilSupport = true;
if (extensions.hasExtension(VK_EXT_BLEND_OPERATION_ADVANCED_EXTENSION_NAME, 2) &&
this->supportsPhysicalDeviceProperties2()) {
VkPhysicalDeviceBlendOperationAdvancedPropertiesEXT blendProps;
blendProps.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_PROPERTIES_EXT;
blendProps.pNext = nullptr;
VkPhysicalDeviceProperties2 props;
props.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
props.pNext = &blendProps;
GR_VK_CALL(vkInterface, GetPhysicalDeviceProperties2(physDev, &props));
if (blendProps.advancedBlendAllOperations == VK_TRUE) {
fShaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kAutomatic_AdvBlendEqInteraction;
auto blendFeatures =
get_extension_feature_struct<VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT>(
features,
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_FEATURES_EXT);
if (blendFeatures && blendFeatures->advancedBlendCoherentOperations == VK_TRUE) {
fBlendEquationSupport = kAdvancedCoherent_BlendEquationSupport;
} else {
fBlendEquationSupport = kAdvanced_BlendEquationSupport;
}
}
}
if (kARM_VkVendor == properties.vendorID) {
fShouldCollapseSrcOverToSrcWhenAble = true;
}
// We're seeing vkCmdClearAttachments take a lot of cpu time when clearing the color attachment.
// We really should only be getting in there for partial clears. So instead we will do all
// partial clears as draws.
if (kQualcomm_VkVendor == properties.vendorID) {
fPerformPartialClearsAsDraws = true;
}
}
void GrVkCaps::initShaderCaps(const VkPhysicalDeviceProperties& properties,
const VkPhysicalDeviceFeatures2& features) {
GrShaderCaps* shaderCaps = fShaderCaps.get();
shaderCaps->fVersionDeclString = "#version 330\n";
// Vulkan is based off ES 3.0 so the following should all be supported
shaderCaps->fUsesPrecisionModifiers = true;
shaderCaps->fFlatInterpolationSupport = true;
// Flat interpolation appears to be slow on Qualcomm GPUs. This was tested in GL and is assumed
// to be true with Vulkan as well.
shaderCaps->fPreferFlatInterpolation = kQualcomm_VkVendor != properties.vendorID;
shaderCaps->fSampleMaskSupport = true;
shaderCaps->fShaderDerivativeSupport = true;
// ARM GPUs calculate `matrix * vector` in SPIR-V at full precision, even when the inputs are
// RelaxedPrecision. Rewriting the multiply as a sum of vector*scalar fixes this. (skia:11769)
shaderCaps->fRewriteMatrixVectorMultiply = (kARM_VkVendor == properties.vendorID);
// FIXME: http://skbug.com/7733: Disable geometry shaders until Intel/Radeon GMs draw correctly.
// shaderCaps->fGeometryShaderSupport =
// shaderCaps->fGSInvocationsSupport = features.features.geometryShader;
shaderCaps->fDualSourceBlendingSupport = features.features.dualSrcBlend;
shaderCaps->fIntegerSupport = true;
shaderCaps->fNonsquareMatrixSupport = true;
shaderCaps->fVertexIDSupport = true;
shaderCaps->fBitManipulationSupport = true;
// Assume the minimum precisions mandated by the SPIR-V spec.
shaderCaps->fFloatIs32Bits = true;
shaderCaps->fHalfIs32Bits = false;
shaderCaps->fMaxFragmentSamplers = std::min(
std::min(properties.limits.maxPerStageDescriptorSampledImages,
properties.limits.maxPerStageDescriptorSamplers),
(uint32_t)INT_MAX);
}
bool stencil_format_supported(const GrVkInterface* interface,
VkPhysicalDevice physDev,
VkFormat format) {
VkFormatProperties props;
memset(&props, 0, sizeof(VkFormatProperties));
GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props));
return SkToBool(VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT & props.optimalTilingFeatures);
}
void GrVkCaps::initStencilFormat(const GrVkInterface* interface, VkPhysicalDevice physDev) {
if (stencil_format_supported(interface, physDev, VK_FORMAT_S8_UINT)) {
fPreferredStencilFormat = VK_FORMAT_S8_UINT;
} else if (stencil_format_supported(interface, physDev, VK_FORMAT_D24_UNORM_S8_UINT)) {
fPreferredStencilFormat = VK_FORMAT_D24_UNORM_S8_UINT;
} else {
SkASSERT(stencil_format_supported(interface, physDev, VK_FORMAT_D32_SFLOAT_S8_UINT));
fPreferredStencilFormat = VK_FORMAT_D32_SFLOAT_S8_UINT;
}
}
static bool format_is_srgb(VkFormat format) {
SkASSERT(GrVkFormatIsSupported(format));
switch (format) {
case VK_FORMAT_R8G8B8A8_SRGB:
return true;
default:
return false;
}
}
// These are all the valid VkFormats that we support in Skia. They are roughly ordered from most
// frequently used to least to improve look up times in arrays.
static constexpr VkFormat kVkFormats[] = {
VK_FORMAT_R8G8B8A8_UNORM,
VK_FORMAT_R8_UNORM,
VK_FORMAT_B8G8R8A8_UNORM,
VK_FORMAT_R5G6B5_UNORM_PACK16,
VK_FORMAT_R16G16B16A16_SFLOAT,
VK_FORMAT_R16_SFLOAT,
VK_FORMAT_R8G8B8_UNORM,
VK_FORMAT_R8G8_UNORM,
VK_FORMAT_A2B10G10R10_UNORM_PACK32,
VK_FORMAT_A2R10G10B10_UNORM_PACK32,
VK_FORMAT_B4G4R4A4_UNORM_PACK16,
VK_FORMAT_R4G4B4A4_UNORM_PACK16,
VK_FORMAT_R8G8B8A8_SRGB,
VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK,
VK_FORMAT_BC1_RGB_UNORM_BLOCK,
VK_FORMAT_BC1_RGBA_UNORM_BLOCK,
VK_FORMAT_R16_UNORM,
VK_FORMAT_R16G16_UNORM,
VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM,
VK_FORMAT_G8_B8R8_2PLANE_420_UNORM,
VK_FORMAT_R16G16B16A16_UNORM,
VK_FORMAT_R16G16_SFLOAT,
};
void GrVkCaps::setColorType(GrColorType colorType, std::initializer_list<VkFormat> formats) {
#ifdef SK_DEBUG
for (size_t i = 0; i < kNumVkFormats; ++i) {
const auto& formatInfo = fFormatTable[i];
for (int j = 0; j < formatInfo.fColorTypeInfoCount; ++j) {
const auto& ctInfo = formatInfo.fColorTypeInfos[j];
if (ctInfo.fColorType == colorType &&
!SkToBool(ctInfo.fFlags & ColorTypeInfo::kWrappedOnly_Flag)) {
bool found = false;
for (auto it = formats.begin(); it != formats.end(); ++it) {
if (kVkFormats[i] == *it) {
found = true;
}
}
SkASSERT(found);
}
}
}
#endif
int idx = static_cast<int>(colorType);
for (auto it = formats.begin(); it != formats.end(); ++it) {
const auto& info = this->getFormatInfo(*it);
for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
if (info.fColorTypeInfos[i].fColorType == colorType) {
fColorTypeToFormatTable[idx] = *it;
return;
}
}
}
}
const GrVkCaps::FormatInfo& GrVkCaps::getFormatInfo(VkFormat format) const {
GrVkCaps* nonConstThis = const_cast<GrVkCaps*>(this);
return nonConstThis->getFormatInfo(format);
}
GrVkCaps::FormatInfo& GrVkCaps::getFormatInfo(VkFormat format) {
static_assert(SK_ARRAY_COUNT(kVkFormats) == GrVkCaps::kNumVkFormats,
"Size of VkFormats array must match static value in header");
for (size_t i = 0; i < SK_ARRAY_COUNT(kVkFormats); ++i) {
if (kVkFormats[i] == format) {
return fFormatTable[i];
}
}
static FormatInfo kInvalidFormat;
return kInvalidFormat;
}
void GrVkCaps::initFormatTable(const GrVkInterface* interface, VkPhysicalDevice physDev,
const VkPhysicalDeviceProperties& properties) {
static_assert(SK_ARRAY_COUNT(kVkFormats) == GrVkCaps::kNumVkFormats,
"Size of VkFormats array must match static value in header");
std::fill_n(fColorTypeToFormatTable, kGrColorTypeCnt, VK_FORMAT_UNDEFINED);
// Go through all the formats and init their support surface and data GrColorTypes.
// Format: VK_FORMAT_R8G8B8A8_UNORM
{
constexpr VkFormat format = VK_FORMAT_R8G8B8A8_UNORM;
auto& info = this->getFormatInfo(format);
info.init(interface, physDev, properties, format);
if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
info.fColorTypeInfoCount = 2;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: VK_FORMAT_R8G8B8A8_UNORM, Surface: kRGBA_8888
{
constexpr GrColorType ct = GrColorType::kRGBA_8888;
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = ct;
ctInfo.fTransferColorType = ct;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
}
// Format: VK_FORMAT_R8G8B8A8_UNORM, Surface: kRGB_888x
{
constexpr GrColorType ct = GrColorType::kRGB_888x;
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = ct;
ctInfo.fTransferColorType = ct;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
ctInfo.fReadSwizzle = GrSwizzle::RGB1();
}
}
}
// Format: VK_FORMAT_R8_UNORM
{
constexpr VkFormat format = VK_FORMAT_R8_UNORM;
auto& info = this->getFormatInfo(format);
info.init(interface, physDev, properties, format);
if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
info.fColorTypeInfoCount = 2;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: VK_FORMAT_R8_UNORM, Surface: kAlpha_8
{
constexpr GrColorType ct = GrColorType::kAlpha_8;
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = ct;
ctInfo.fTransferColorType = ct;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
ctInfo.fReadSwizzle = GrSwizzle("000r");
ctInfo.fWriteSwizzle = GrSwizzle("a000");
}
// Format: VK_FORMAT_R8_UNORM, Surface: kGray_8
{
constexpr GrColorType ct = GrColorType::kGray_8;
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = ct;
ctInfo.fTransferColorType = ct;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
ctInfo.fReadSwizzle = GrSwizzle("rrr1");
}
}
}
// Format: VK_FORMAT_B8G8R8A8_UNORM
{
constexpr VkFormat format = VK_FORMAT_B8G8R8A8_UNORM;
auto& info = this->getFormatInfo(format);
info.init(interface, physDev, properties, format);
if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: VK_FORMAT_B8G8R8A8_UNORM, Surface: kBGRA_8888
{
constexpr GrColorType ct = GrColorType::kBGRA_8888;
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = ct;
ctInfo.fTransferColorType = ct;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
}
}
}
// Format: VK_FORMAT_R5G6B5_UNORM_PACK16
{
constexpr VkFormat format = VK_FORMAT_R5G6B5_UNORM_PACK16;
auto& info = this->getFormatInfo(format);
info.init(interface, physDev, properties, format);
if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: VK_FORMAT_R5G6B5_UNORM_PACK16, Surface: kBGR_565
{
constexpr GrColorType ct = GrColorType::kBGR_565;
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = ct;
ctInfo.fTransferColorType = ct;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
}
}
}
// Format: VK_FORMAT_R16G16B16A16_SFLOAT
{
constexpr VkFormat format = VK_FORMAT_R16G16B16A16_SFLOAT;
auto& info = this->getFormatInfo(format);
info.init(interface, physDev, properties, format);
if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
info.fColorTypeInfoCount = 2;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: VK_FORMAT_R16G16B16A16_SFLOAT, Surface: GrColorType::kRGBA_F16
{
constexpr GrColorType ct = GrColorType::kRGBA_F16;
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = ct;
ctInfo.fTransferColorType = ct;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
}
// Format: VK_FORMAT_R16G16B16A16_SFLOAT, Surface: GrColorType::kRGBA_F16_Clamped
{
constexpr GrColorType ct = GrColorType::kRGBA_F16_Clamped;
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = ct;
ctInfo.fTransferColorType = ct;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
}
}
}
// Format: VK_FORMAT_R16_SFLOAT
{
constexpr VkFormat format = VK_FORMAT_R16_SFLOAT;
auto& info = this->getFormatInfo(format);
info.init(interface, physDev, properties, format);
if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: VK_FORMAT_R16_SFLOAT, Surface: kAlpha_F16
{
constexpr GrColorType ct = GrColorType::kAlpha_F16;
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = ct;
ctInfo.fTransferColorType = ct;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
ctInfo.fReadSwizzle = GrSwizzle("000r");
ctInfo.fWriteSwizzle = GrSwizzle("a000");
}
}
}
// Format: VK_FORMAT_R8G8B8_UNORM
{
constexpr VkFormat format = VK_FORMAT_R8G8B8_UNORM;
auto& info = this->getFormatInfo(format);
info.init(interface, physDev, properties, format);
if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: VK_FORMAT_R8G8B8_UNORM, Surface: kRGB_888x
{
constexpr GrColorType ct = GrColorType::kRGB_888x;
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = ct;
// The Vulkan format is 3 bpp so we must convert to/from that when transferring.
ctInfo.fTransferColorType = GrColorType::kRGB_888;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
}
}
}
// Format: VK_FORMAT_R8G8_UNORM
{
constexpr VkFormat format = VK_FORMAT_R8G8_UNORM;
auto& info = this->getFormatInfo(format);
info.init(interface, physDev, properties, format);
if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: VK_FORMAT_R8G8_UNORM, Surface: kRG_88
{
constexpr GrColorType ct = GrColorType::kRG_88;
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = ct;
ctInfo.fTransferColorType = ct;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
}
}
}
// Format: VK_FORMAT_A2B10G10R10_UNORM_PACK32
{
constexpr VkFormat format = VK_FORMAT_A2B10G10R10_UNORM_PACK32;
auto& info = this->getFormatInfo(format);
info.init(interface, physDev, properties, format);
if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: VK_FORMAT_A2B10G10R10_UNORM_PACK32, Surface: kRGBA_1010102
{
constexpr GrColorType ct = GrColorType::kRGBA_1010102;
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = ct;
ctInfo.fTransferColorType = ct;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
}
}
}
// Format: VK_FORMAT_A2R10G10B10_UNORM_PACK32
{
constexpr VkFormat format = VK_FORMAT_A2R10G10B10_UNORM_PACK32;
auto& info = this->getFormatInfo(format);
info.init(interface, physDev, properties, format);
if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: VK_FORMAT_A2R10G10B10_UNORM_PACK32, Surface: kBGRA_1010102
{
constexpr GrColorType ct = GrColorType::kBGRA_1010102;
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = ct;
ctInfo.fTransferColorType = ct;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
}
}
}
// Format: VK_FORMAT_B4G4R4A4_UNORM_PACK16
{
constexpr VkFormat format = VK_FORMAT_B4G4R4A4_UNORM_PACK16;
auto& info = this->getFormatInfo(format);
info.init(interface, physDev, properties, format);
if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: VK_FORMAT_B4G4R4A4_UNORM_PACK16, Surface: kABGR_4444
{
constexpr GrColorType ct = GrColorType::kABGR_4444;
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = ct;
ctInfo.fTransferColorType = ct;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
ctInfo.fReadSwizzle = GrSwizzle::BGRA();
ctInfo.fWriteSwizzle = GrSwizzle::BGRA();
}
}
}
// Format: VK_FORMAT_R4G4B4A4_UNORM_PACK16
{
constexpr VkFormat format = VK_FORMAT_R4G4B4A4_UNORM_PACK16;
auto& info = this->getFormatInfo(format);
info.init(interface, physDev, properties, format);
if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: VK_FORMAT_R4G4B4A4_UNORM_PACK16, Surface: kABGR_4444
{
constexpr GrColorType ct = GrColorType::kABGR_4444;
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = ct;
ctInfo.fTransferColorType = ct;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
}
}
}
// Format: VK_FORMAT_R8G8B8A8_SRGB
{
constexpr VkFormat format = VK_FORMAT_R8G8B8A8_SRGB;
auto& info = this->getFormatInfo(format);
info.init(interface, physDev, properties, format);
if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: VK_FORMAT_R8G8B8A8_SRGB, Surface: kRGBA_8888_SRGB
{
constexpr GrColorType ct = GrColorType::kRGBA_8888_SRGB;
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = ct;
ctInfo.fTransferColorType = ct;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
}
}
}
// Format: VK_FORMAT_R16_UNORM
{
constexpr VkFormat format = VK_FORMAT_R16_UNORM;
auto& info = this->getFormatInfo(format);
info.init(interface, physDev, properties, format);
if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: VK_FORMAT_R16_UNORM, Surface: kAlpha_16
{
constexpr GrColorType ct = GrColorType::kAlpha_16;
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = ct;
ctInfo.fTransferColorType = ct;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
ctInfo.fReadSwizzle = GrSwizzle("000r");
ctInfo.fWriteSwizzle = GrSwizzle("a000");
}
}
}
// Format: VK_FORMAT_R16G16_UNORM
{
constexpr VkFormat format = VK_FORMAT_R16G16_UNORM;
auto& info = this->getFormatInfo(format);
info.init(interface, physDev, properties, format);
if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: VK_FORMAT_R16G16_UNORM, Surface: kRG_1616
{
constexpr GrColorType ct = GrColorType::kRG_1616;
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = ct;
ctInfo.fTransferColorType = ct;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
}
}
}
// Format: VK_FORMAT_R16G16B16A16_UNORM
{
constexpr VkFormat format = VK_FORMAT_R16G16B16A16_UNORM;
auto& info = this->getFormatInfo(format);
info.init(interface, physDev, properties, format);
if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: VK_FORMAT_R16G16B16A16_UNORM, Surface: kRGBA_16161616
{
constexpr GrColorType ct = GrColorType::kRGBA_16161616;
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = ct;
ctInfo.fTransferColorType = ct;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
}
}
}
// Format: VK_FORMAT_R16G16_SFLOAT
{
constexpr VkFormat format = VK_FORMAT_R16G16_SFLOAT;
auto& info = this->getFormatInfo(format);
info.init(interface, physDev, properties, format);
if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: VK_FORMAT_R16G16_SFLOAT, Surface: kRG_F16
{
constexpr GrColorType ct = GrColorType::kRG_F16;
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = ct;
ctInfo.fTransferColorType = ct;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
}
}
}
// Format: VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM
{
constexpr VkFormat format = VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM;
auto& info = this->getFormatInfo(format);
if (fSupportsYcbcrConversion) {
info.init(interface, physDev, properties, format);
}
if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM, Surface: kRGB_888x
{
constexpr GrColorType ct = GrColorType::kRGB_888x;
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = ct;
ctInfo.fTransferColorType = ct;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kWrappedOnly_Flag;
}
}
}
// Format: VK_FORMAT_G8_B8R8_2PLANE_420_UNORM
{
constexpr VkFormat format = VK_FORMAT_G8_B8R8_2PLANE_420_UNORM;
auto& info = this->getFormatInfo(format);
if (fSupportsYcbcrConversion) {
info.init(interface, physDev, properties, format);
}
if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: VK_FORMAT_G8_B8R8_2PLANE_420_UNORM, Surface: kRGB_888x
{
constexpr GrColorType ct = GrColorType::kRGB_888x;
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = ct;
ctInfo.fTransferColorType = ct;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kWrappedOnly_Flag;
}
}
}
// Format: VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK
{
constexpr VkFormat format = VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK;
auto& info = this->getFormatInfo(format);
info.init(interface, physDev, properties, format);
// Setting this to texel block size
// No supported GrColorTypes.
}
// Format: VK_FORMAT_BC1_RGB_UNORM_BLOCK
{
constexpr VkFormat format = VK_FORMAT_BC1_RGB_UNORM_BLOCK;
auto& info = this->getFormatInfo(format);
info.init(interface, physDev, properties, format);
// Setting this to texel block size
// No supported GrColorTypes.
}
// Format: VK_FORMAT_BC1_RGBA_UNORM_BLOCK
{
constexpr VkFormat format = VK_FORMAT_BC1_RGBA_UNORM_BLOCK;
auto& info = this->getFormatInfo(format);
info.init(interface, physDev, properties, format);
// Setting this to texel block size
// No supported GrColorTypes.
}
////////////////////////////////////////////////////////////////////////////
// Map GrColorTypes (used for creating GrSurfaces) to VkFormats. The order in which the formats
// are passed into the setColorType function indicates the priority in selecting which format
// we use for a given GrcolorType.
this->setColorType(GrColorType::kAlpha_8, { VK_FORMAT_R8_UNORM });
this->setColorType(GrColorType::kBGR_565, { VK_FORMAT_R5G6B5_UNORM_PACK16 });
this->setColorType(GrColorType::kABGR_4444, { VK_FORMAT_R4G4B4A4_UNORM_PACK16,
VK_FORMAT_B4G4R4A4_UNORM_PACK16 });
this->setColorType(GrColorType::kRGBA_8888, { VK_FORMAT_R8G8B8A8_UNORM });
this->setColorType(GrColorType::kRGBA_8888_SRGB, { VK_FORMAT_R8G8B8A8_SRGB });
this->setColorType(GrColorType::kRGB_888x, { VK_FORMAT_R8G8B8_UNORM,
VK_FORMAT_R8G8B8A8_UNORM });
this->setColorType(GrColorType::kRG_88, { VK_FORMAT_R8G8_UNORM });
this->setColorType(GrColorType::kBGRA_8888, { VK_FORMAT_B8G8R8A8_UNORM });
this->setColorType(GrColorType::kRGBA_1010102, { VK_FORMAT_A2B10G10R10_UNORM_PACK32 });
this->setColorType(GrColorType::kBGRA_1010102, { VK_FORMAT_A2R10G10B10_UNORM_PACK32 });
this->setColorType(GrColorType::kGray_8, { VK_FORMAT_R8_UNORM });
this->setColorType(GrColorType::kAlpha_F16, { VK_FORMAT_R16_SFLOAT });
this->setColorType(GrColorType::kRGBA_F16, { VK_FORMAT_R16G16B16A16_SFLOAT });
this->setColorType(GrColorType::kRGBA_F16_Clamped, { VK_FORMAT_R16G16B16A16_SFLOAT });
this->setColorType(GrColorType::kAlpha_16, { VK_FORMAT_R16_UNORM });
this->setColorType(GrColorType::kRG_1616, { VK_FORMAT_R16G16_UNORM });
this->setColorType(GrColorType::kRGBA_16161616, { VK_FORMAT_R16G16B16A16_UNORM });
this->setColorType(GrColorType::kRG_F16, { VK_FORMAT_R16G16_SFLOAT });
}
void GrVkCaps::FormatInfo::InitFormatFlags(VkFormatFeatureFlags vkFlags, uint16_t* flags) {
if (SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT & vkFlags) &&
SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT & vkFlags)) {
*flags = *flags | kTexturable_Flag;
// Ganesh assumes that all renderable surfaces are also texturable
if (SkToBool(VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT & vkFlags)) {
*flags = *flags | kRenderable_Flag;
}
}
// TODO: For Vk w/ VK_KHR_maintenance1 extension support, check
// VK_FORMAT_FEATURE_TRANSFER_[SRC|DST]_BIT_KHR explicitly to set copy flags
// Can do similar check for VK_KHR_sampler_ycbcr_conversion added bits
if (SkToBool(VK_FORMAT_FEATURE_BLIT_SRC_BIT & vkFlags)) {
*flags = *flags | kBlitSrc_Flag;
}
if (SkToBool(VK_FORMAT_FEATURE_BLIT_DST_BIT & vkFlags)) {
*flags = *flags | kBlitDst_Flag;
}
}
void GrVkCaps::FormatInfo::initSampleCounts(const GrVkInterface* interface,
VkPhysicalDevice physDev,
const VkPhysicalDeviceProperties& physProps,
VkFormat format) {
VkImageUsageFlags usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_TRANSFER_DST_BIT |
VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
VkImageFormatProperties properties;
GR_VK_CALL(interface, GetPhysicalDeviceImageFormatProperties(physDev,
format,
VK_IMAGE_TYPE_2D,
VK_IMAGE_TILING_OPTIMAL,
usage,
0, // createFlags
&properties));
VkSampleCountFlags flags = properties.sampleCounts;
if (flags & VK_SAMPLE_COUNT_1_BIT) {
fColorSampleCounts.push_back(1);
}
if (kImagination_VkVendor == physProps.vendorID) {
// MSAA does not work on imagination
return;
}
if (kIntel_VkVendor == physProps.vendorID) {
// MSAA doesn't work well on Intel GPUs chromium:527565, chromium:983926
return;
}
if (flags & VK_SAMPLE_COUNT_2_BIT) {
fColorSampleCounts.push_back(2);
}
if (flags & VK_SAMPLE_COUNT_4_BIT) {
fColorSampleCounts.push_back(4);
}
if (flags & VK_SAMPLE_COUNT_8_BIT) {
fColorSampleCounts.push_back(8);
}
if (flags & VK_SAMPLE_COUNT_16_BIT) {
fColorSampleCounts.push_back(16);
}
// Standard sample locations are not defined for more than 16 samples, and we don't need more
// than 16. Omit 32 and 64.
}
void GrVkCaps::FormatInfo::init(const GrVkInterface* interface,
VkPhysicalDevice physDev,
const VkPhysicalDeviceProperties& properties,
VkFormat format) {
VkFormatProperties props;
memset(&props, 0, sizeof(VkFormatProperties));
GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props));
InitFormatFlags(props.linearTilingFeatures, &fLinearFlags);
InitFormatFlags(props.optimalTilingFeatures, &fOptimalFlags);
if (fOptimalFlags & kRenderable_Flag) {
this->initSampleCounts(interface, physDev, properties, format);
}
}
// For many checks in caps, we need to know whether the GrBackendFormat is external or not. If it is
// external the VkFormat will be VK_NULL_HANDLE which is not handled by our various format
// capability checks.
static bool backend_format_is_external(const GrBackendFormat& format) {
const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo();
SkASSERT(ycbcrInfo);
// All external formats have a valid ycbcrInfo used for sampling and a non zero external format.
if (ycbcrInfo->isValid() && ycbcrInfo->fExternalFormat != 0) {
#ifdef SK_DEBUG
VkFormat vkFormat;
SkAssertResult(format.asVkFormat(&vkFormat));
SkASSERT(vkFormat == VK_NULL_HANDLE);
#endif
return true;
}
return false;
}
bool GrVkCaps::isFormatSRGB(const GrBackendFormat& format) const {
VkFormat vkFormat;
if (!format.asVkFormat(&vkFormat)) {
return false;
}
if (backend_format_is_external(format)) {
return false;
}
return format_is_srgb(vkFormat);
}
bool GrVkCaps::isFormatTexturable(const GrBackendFormat& format) const {
VkFormat vkFormat;
if (!format.asVkFormat(&vkFormat)) {
return false;
}
if (backend_format_is_external(format)) {
// We can always texture from an external format (assuming we have the ycbcr conversion
// info which we require to be passed in).
return true;
}
return this->isVkFormatTexturable(vkFormat);
}
bool GrVkCaps::isVkFormatTexturable(VkFormat format) const {
const FormatInfo& info = this->getFormatInfo(format);
return SkToBool(FormatInfo::kTexturable_Flag & info.fOptimalFlags);
}
bool GrVkCaps::isFormatAsColorTypeRenderable(GrColorType ct, const GrBackendFormat& format,
int sampleCount) const {
if (!this->isFormatRenderable(format, sampleCount)) {
return false;
}
VkFormat vkFormat;
if (!format.asVkFormat(&vkFormat)) {
return false;
}
const auto& info = this->getFormatInfo(vkFormat);
if (!SkToBool(info.colorTypeFlags(ct) & ColorTypeInfo::kRenderable_Flag)) {
return false;
}
return true;
}
bool GrVkCaps::isFormatRenderable(const GrBackendFormat& format, int sampleCount) const {
VkFormat vkFormat;
if (!format.asVkFormat(&vkFormat)) {
return false;
}
return this->isFormatRenderable(vkFormat, sampleCount);
}
bool GrVkCaps::isFormatRenderable(VkFormat format, int sampleCount) const {
return sampleCount <= this->maxRenderTargetSampleCount(format);
}
int GrVkCaps::getRenderTargetSampleCount(int requestedCount,
const GrBackendFormat& format) const {
VkFormat vkFormat;
if (!format.asVkFormat(&vkFormat)) {
return 0;
}
return this->getRenderTargetSampleCount(requestedCount, vkFormat);
}
int GrVkCaps::getRenderTargetSampleCount(int requestedCount, VkFormat format) const {
requestedCount = std::max(1, requestedCount);
const FormatInfo& info = this->getFormatInfo(format);
int count = info.fColorSampleCounts.count();
if (!count) {
return 0;
}
if (1 == requestedCount) {
SkASSERT(info.fColorSampleCounts.count() && info.fColorSampleCounts[0] == 1);
return 1;
}
for (int i = 0; i < count; ++i) {
if (info.fColorSampleCounts[i] >= requestedCount) {
return info.fColorSampleCounts[i];
}
}
return 0;
}
int GrVkCaps::maxRenderTargetSampleCount(const GrBackendFormat& format) const {
VkFormat vkFormat;
if (!format.asVkFormat(&vkFormat)) {
return 0;
}
return this->maxRenderTargetSampleCount(vkFormat);
}
int GrVkCaps::maxRenderTargetSampleCount(VkFormat format) const {
const FormatInfo& info = this->getFormatInfo(format);
const auto& table = info.fColorSampleCounts;
if (!table.count()) {
return 0;
}
return table[table.count() - 1];
}
static inline size_t align_to_4(size_t v) {
switch (v & 0b11) {
// v is already a multiple of 4.
case 0: return v;
// v is a multiple of 2 but not 4.
case 2: return 2 * v;
// v is not a multiple of 2.
default: return 4 * v;
}
}
GrCaps::SupportedWrite GrVkCaps::supportedWritePixelsColorType(GrColorType surfaceColorType,
const GrBackendFormat& surfaceFormat,
GrColorType srcColorType) const {
VkFormat vkFormat;
if (!surfaceFormat.asVkFormat(&vkFormat)) {
return {GrColorType::kUnknown, 0};
}
// We don't support the ability to upload to external formats or formats that require a ycbcr
// sampler. In general these types of formats are only used for sampling in a shader.
if (backend_format_is_external(surfaceFormat) || GrVkFormatNeedsYcbcrSampler(vkFormat)) {
return {GrColorType::kUnknown, 0};
}
// The VkBufferImageCopy bufferOffset field must be both a multiple of 4 and of a single texel.
size_t offsetAlignment = align_to_4(GrVkFormatBytesPerBlock(vkFormat));
const auto& info = this->getFormatInfo(vkFormat);
for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
const auto& ctInfo = info.fColorTypeInfos[i];
if (ctInfo.fColorType == surfaceColorType) {
return {ctInfo.fTransferColorType, offsetAlignment};
}
}
return {GrColorType::kUnknown, 0};
}
GrCaps::SurfaceReadPixelsSupport GrVkCaps::surfaceSupportsReadPixels(
const GrSurface* surface) const {
if (surface->isProtected()) {
return SurfaceReadPixelsSupport::kUnsupported;
}
if (auto tex = static_cast<const GrVkTexture*>(surface->asTexture())) {
auto texAttachment = tex->textureAttachment();
// We can't directly read from a VkImage that has a ycbcr sampler.
if (texAttachment->ycbcrConversionInfo().isValid()) {
return SurfaceReadPixelsSupport::kCopyToTexture2D;
}
// We can't directly read from a compressed format
if (GrVkFormatIsCompressed(texAttachment->imageFormat())) {
return SurfaceReadPixelsSupport::kCopyToTexture2D;
}
return SurfaceReadPixelsSupport::kSupported;
} else if (auto rt = surface->asRenderTarget()) {
if (rt->numSamples() > 1) {
return SurfaceReadPixelsSupport::kCopyToTexture2D;
}
return SurfaceReadPixelsSupport::kSupported;
}
return SurfaceReadPixelsSupport::kUnsupported;
}
GrColorType GrVkCaps::transferColorType(VkFormat vkFormat, GrColorType surfaceColorType) const {
const auto& info = this->getFormatInfo(vkFormat);
for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
if (info.fColorTypeInfos[i].fColorType == surfaceColorType) {
return info.fColorTypeInfos[i].fTransferColorType;
}
}
return GrColorType::kUnknown;
}
bool GrVkCaps::onSurfaceSupportsWritePixels(const GrSurface* surface) const {
if (auto rt = surface->asRenderTarget()) {
return rt->numSamples() <= 1 && SkToBool(surface->asTexture());
}
// We can't write to a texture that has a ycbcr sampler.
if (auto tex = static_cast<const GrVkTexture*>(surface->asTexture())) {
// We can't directly read from a VkImage that has a ycbcr sampler.
if (tex->textureAttachment()->ycbcrConversionInfo().isValid()) {
return false;
}
}
return true;
}
bool GrVkCaps::onAreColorTypeAndFormatCompatible(GrColorType ct,
const GrBackendFormat& format) const {
VkFormat vkFormat;
if (!format.asVkFormat(&vkFormat)) {
return false;
}
const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo();
SkASSERT(ycbcrInfo);
if (ycbcrInfo->isValid() && !GrVkFormatNeedsYcbcrSampler(vkFormat)) {
// Format may be undefined for external images, which are required to have YCbCr conversion.
if (VK_FORMAT_UNDEFINED == vkFormat && ycbcrInfo->fExternalFormat != 0) {
return true;
}
return false;
}
const auto& info = this->getFormatInfo(vkFormat);
for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
if (info.fColorTypeInfos[i].fColorType == ct) {
return true;
}
}
return false;
}
GrBackendFormat GrVkCaps::onGetDefaultBackendFormat(GrColorType ct) const {
VkFormat format = this->getFormatFromColorType(ct);
if (format == VK_FORMAT_UNDEFINED) {
return {};
}
return GrBackendFormat::MakeVk(format);
}
GrBackendFormat GrVkCaps::getBackendFormatFromCompressionType(
SkImage::CompressionType compressionType) const {
switch (compressionType) {
case SkImage::CompressionType::kNone:
return {};
case SkImage::CompressionType::kETC2_RGB8_UNORM:
if (this->isVkFormatTexturable(VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK)) {
return GrBackendFormat::MakeVk(VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK);
}
return {};
case SkImage::CompressionType::kBC1_RGB8_UNORM:
if (this->isVkFormatTexturable(VK_FORMAT_BC1_RGB_UNORM_BLOCK)) {
return GrBackendFormat::MakeVk(VK_FORMAT_BC1_RGB_UNORM_BLOCK);
}
return {};
case SkImage::CompressionType::kBC1_RGBA8_UNORM:
if (this->isVkFormatTexturable(VK_FORMAT_BC1_RGBA_UNORM_BLOCK)) {
return GrBackendFormat::MakeVk(VK_FORMAT_BC1_RGBA_UNORM_BLOCK);
}
return {};
}
SkUNREACHABLE;
}
GrSwizzle GrVkCaps::onGetReadSwizzle(const GrBackendFormat& format, GrColorType colorType) const {
VkFormat vkFormat;
SkAssertResult(format.asVkFormat(&vkFormat));
const auto* ycbcrInfo = format.getVkYcbcrConversionInfo();
SkASSERT(ycbcrInfo);
if (ycbcrInfo->isValid() && ycbcrInfo->fExternalFormat != 0) {
// We allow these to work with any color type and never swizzle. See
// onAreColorTypeAndFormatCompatible.
return GrSwizzle{"rgba"};
}
const auto& info = this->getFormatInfo(vkFormat);
for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
const auto& ctInfo = info.fColorTypeInfos[i];
if (ctInfo.fColorType == colorType) {
return ctInfo.fReadSwizzle;
}
}
SkDEBUGFAILF("Illegal color type (%d) and format (%d) combination.",
(int)colorType, (int)vkFormat);
return {};
}
GrSwizzle GrVkCaps::getWriteSwizzle(const GrBackendFormat& format, GrColorType colorType) const {
VkFormat vkFormat;
SkAssertResult(format.asVkFormat(&vkFormat));
const auto& info = this->getFormatInfo(vkFormat);
for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
const auto& ctInfo = info.fColorTypeInfos[i];
if (ctInfo.fColorType == colorType) {
return ctInfo.fWriteSwizzle;
}
}
SkDEBUGFAILF("Illegal color type (%d) and format (%d) combination.",
(int)colorType, (int)vkFormat);
return {};
}
GrDstSampleFlags GrVkCaps::onGetDstSampleFlagsForProxy(const GrRenderTargetProxy* rt) const {
bool isMSAAWithResolve = rt->numSamples() > 1 && rt->asTextureProxy();
// TODO: Currently if we have an msaa rt with a resolve, the supportsVkInputAttachment call
// references whether the resolve is supported as an input attachment. We need to add a check to
// allow checking the color attachment (msaa or not) supports input attachment specifically.
if (!isMSAAWithResolve && rt->supportsVkInputAttachment()) {
return GrDstSampleFlags::kRequiresTextureBarrier | GrDstSampleFlags::kAsInputAttachment;
}
return GrDstSampleFlags::kNone;
}
uint64_t GrVkCaps::computeFormatKey(const GrBackendFormat& format) const {
VkFormat vkFormat;
SkAssertResult(format.asVkFormat(&vkFormat));
#ifdef SK_DEBUG
// We should never be trying to compute a key for an external format
const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo();
SkASSERT(ycbcrInfo);
SkASSERT(!ycbcrInfo->isValid() || ycbcrInfo->fExternalFormat == 0);
#endif
// A VkFormat has a size of 64 bits.
return (uint64_t)vkFormat;
}
GrCaps::SupportedRead GrVkCaps::onSupportedReadPixelsColorType(
GrColorType srcColorType, const GrBackendFormat& srcBackendFormat,
GrColorType dstColorType) const {
VkFormat vkFormat;
if (!srcBackendFormat.asVkFormat(&vkFormat)) {
return {GrColorType::kUnknown, 0};
}
if (GrVkFormatNeedsYcbcrSampler(vkFormat)) {
return {GrColorType::kUnknown, 0};
}
SkImage::CompressionType compression = GrBackendFormatToCompressionType(srcBackendFormat);
if (compression != SkImage::CompressionType::kNone) {
return { SkCompressionTypeIsOpaque(compression) ? GrColorType::kRGB_888x
: GrColorType::kRGBA_8888, 0 };
}
// The VkBufferImageCopy bufferOffset field must be both a multiple of 4 and of a single texel.
size_t offsetAlignment = align_to_4(GrVkFormatBytesPerBlock(vkFormat));
const auto& info = this->getFormatInfo(vkFormat);
for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
const auto& ctInfo = info.fColorTypeInfos[i];
if (ctInfo.fColorType == srcColorType) {
return {ctInfo.fTransferColorType, offsetAlignment};
}
}
return {GrColorType::kUnknown, 0};
}
int GrVkCaps::getFragmentUniformBinding() const {
return GrVkUniformHandler::kUniformBinding;
}
int GrVkCaps::getFragmentUniformSet() const {
return GrVkUniformHandler::kUniformBufferDescSet;
}
void GrVkCaps::addExtraSamplerKey(GrProcessorKeyBuilder* b,
GrSamplerState samplerState,
const GrBackendFormat& format) const {
const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo();
if (!ycbcrInfo) {
return;
}
GrVkSampler::Key key = GrVkSampler::GenerateKey(samplerState, *ycbcrInfo);
constexpr size_t numInts = (sizeof(key) + 3) / 4;
uint32_t tmp[numInts];
memcpy(tmp, &key, sizeof(key));
for (size_t i = 0; i < numInts; ++i) {
b->add32(tmp[i]);
}
}
/**
* For Vulkan we want to cache the entire VkPipeline for reuse of draws. The Desc here holds all
* the information needed to differentiate one pipeline from another.
*
* The GrProgramDesc contains all the information need to create the actual shaders for the
* pipeline.
*
* For Vulkan we need to add to the GrProgramDesc to include the rest of the state on the
* pipline. This includes stencil settings, blending information, render pass format, draw face
* information, and primitive type. Note that some state is set dynamically on the pipeline for
* each draw and thus is not included in this descriptor. This includes the viewport, scissor,
* and blend constant.
*/
GrProgramDesc GrVkCaps::makeDesc(GrRenderTarget* rt,
const GrProgramInfo& programInfo,
ProgramDescOverrideFlags overrideFlags) const {
GrProgramDesc desc;
GrProgramDesc::Build(&desc, programInfo, *this);
GrProcessorKeyBuilder b(desc.key());
// This will become part of the sheared off key used to persistently cache
// the SPIRV code. It needs to be added right after the base key so that,
// when the base-key is sheared off, the shearing code can include it in the
// reduced key (c.f. the +4s in the SkData::MakeWithCopy calls in
// GrVkPipelineStateBuilder.cpp).
b.add32(GrVkGpu::kShader_PersistentCacheKeyType);
GrVkRenderPass::SelfDependencyFlags selfDepFlags = GrVkRenderPass::SelfDependencyFlags::kNone;
if (programInfo.renderPassBarriers() & GrXferBarrierFlags::kBlend) {
selfDepFlags |= GrVkRenderPass::SelfDependencyFlags::kForNonCoherentAdvBlend;
}
if (programInfo.renderPassBarriers() & GrXferBarrierFlags::kTexture) {
selfDepFlags |= GrVkRenderPass::SelfDependencyFlags::kForInputAttachment;
}
bool needsResolve = programInfo.targetSupportsVkResolveLoad() &&
this->preferDiscardableMSAAAttachment();
bool forceLoadFromResolve =
overrideFlags & GrCaps::ProgramDescOverrideFlags::kVulkanHasResolveLoadSubpass;
SkASSERT(!forceLoadFromResolve || needsResolve);
GrVkRenderPass::LoadFromResolve loadFromResolve = GrVkRenderPass::LoadFromResolve::kNo;
if (needsResolve && (programInfo.colorLoadOp() == GrLoadOp::kLoad || forceLoadFromResolve)) {
loadFromResolve = GrVkRenderPass::LoadFromResolve::kLoad;
}
if (rt) {
GrVkRenderTarget* vkRT = (GrVkRenderTarget*) rt;
SkASSERT(!needsResolve || (vkRT->resolveAttachment() &&
vkRT->resolveAttachment()->supportsInputAttachmentUsage()));
bool needsStencil = programInfo.needsStencil() || programInfo.isStencilEnabled();
// TODO: support failure in getSimpleRenderPass
auto rp = vkRT->getSimpleRenderPass(needsResolve, needsStencil, selfDepFlags,
loadFromResolve);
SkASSERT(rp);
rp->genKey(&b);
#ifdef SK_DEBUG
if (!rp->isExternal()) {
// This is to ensure ReconstructAttachmentsDescriptor keeps matching
// getSimpleRenderPass' result
GrVkRenderPass::AttachmentsDescriptor attachmentsDescriptor;
GrVkRenderPass::AttachmentFlags attachmentFlags;
GrVkRenderTarget::ReconstructAttachmentsDescriptor(*this, programInfo,
&attachmentsDescriptor,
&attachmentFlags);
SkASSERT(rp->isCompatible(attachmentsDescriptor, attachmentFlags, selfDepFlags,
loadFromResolve));
}
#endif
} else {
GrVkRenderPass::AttachmentsDescriptor attachmentsDescriptor;
GrVkRenderPass::AttachmentFlags attachmentFlags;
GrVkRenderTarget::ReconstructAttachmentsDescriptor(*this, programInfo,
&attachmentsDescriptor,
&attachmentFlags);
// kExternal_AttachmentFlag is only set for wrapped secondary command buffers - which
// will always go through the above 'rt' path (i.e., we can always pass 0 as the final
// parameter to GenKey).
GrVkRenderPass::GenKey(&b, attachmentFlags, attachmentsDescriptor, selfDepFlags,
loadFromResolve, 0);
}
GrStencilSettings stencil = programInfo.nonGLStencilSettings();
stencil.genKey(&b, true);
programInfo.pipeline().genKey(&b, *this);
b.add32(programInfo.numSamples());
// Vulkan requires the full primitive type as part of its key
b.add32(programInfo.primitiveTypeKey());
b.flush();
return desc;
}
GrInternalSurfaceFlags GrVkCaps::getExtraSurfaceFlagsForDeferredRT() const {
// We always create vulkan RT with the input attachment flag;
return GrInternalSurfaceFlags::kVkRTSupportsInputAttachment;
}
VkShaderStageFlags GrVkCaps::getPushConstantStageFlags() const {
VkShaderStageFlags stageFlags = VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT;
if (this->shaderCaps()->geometryShaderSupport()) {
stageFlags |= VK_SHADER_STAGE_GEOMETRY_BIT;
}
return stageFlags;
}
#if GR_TEST_UTILS
std::vector<GrCaps::TestFormatColorTypeCombination> GrVkCaps::getTestingCombinations() const {
std::vector<GrCaps::TestFormatColorTypeCombination> combos = {
{ GrColorType::kAlpha_8, GrBackendFormat::MakeVk(VK_FORMAT_R8_UNORM) },
{ GrColorType::kBGR_565, GrBackendFormat::MakeVk(VK_FORMAT_R5G6B5_UNORM_PACK16) },
{ GrColorType::kABGR_4444, GrBackendFormat::MakeVk(VK_FORMAT_R4G4B4A4_UNORM_PACK16)},
{ GrColorType::kABGR_4444, GrBackendFormat::MakeVk(VK_FORMAT_B4G4R4A4_UNORM_PACK16)},
{ GrColorType::kRGBA_8888, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8A8_UNORM) },
{ GrColorType::kRGBA_8888_SRGB, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8A8_SRGB) },
{ GrColorType::kRGB_888x, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8A8_UNORM) },
{ GrColorType::kRGB_888x, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8_UNORM) },
{ GrColorType::kRG_88, GrBackendFormat::MakeVk(VK_FORMAT_R8G8_UNORM) },
{ GrColorType::kBGRA_8888, GrBackendFormat::MakeVk(VK_FORMAT_B8G8R8A8_UNORM) },
{ GrColorType::kRGBA_1010102, GrBackendFormat::MakeVk(VK_FORMAT_A2B10G10R10_UNORM_PACK32)},
{ GrColorType::kBGRA_1010102, GrBackendFormat::MakeVk(VK_FORMAT_A2R10G10B10_UNORM_PACK32)},
{ GrColorType::kGray_8, GrBackendFormat::MakeVk(VK_FORMAT_R8_UNORM) },
{ GrColorType::kAlpha_F16, GrBackendFormat::MakeVk(VK_FORMAT_R16_SFLOAT) },
{ GrColorType::kRGBA_F16, GrBackendFormat::MakeVk(VK_FORMAT_R16G16B16A16_SFLOAT) },
{ GrColorType::kRGBA_F16_Clamped, GrBackendFormat::MakeVk(VK_FORMAT_R16G16B16A16_SFLOAT) },
{ GrColorType::kAlpha_16, GrBackendFormat::MakeVk(VK_FORMAT_R16_UNORM) },
{ GrColorType::kRG_1616, GrBackendFormat::MakeVk(VK_FORMAT_R16G16_UNORM) },
{ GrColorType::kRGBA_16161616, GrBackendFormat::MakeVk(VK_FORMAT_R16G16B16A16_UNORM) },
{ GrColorType::kRG_F16, GrBackendFormat::MakeVk(VK_FORMAT_R16G16_SFLOAT) },
// These two compressed formats both have an effective colorType of kRGB_888x
{ GrColorType::kRGB_888x, GrBackendFormat::MakeVk(VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK)},
{ GrColorType::kRGB_888x, GrBackendFormat::MakeVk(VK_FORMAT_BC1_RGB_UNORM_BLOCK) },
{ GrColorType::kRGBA_8888, GrBackendFormat::MakeVk(VK_FORMAT_BC1_RGBA_UNORM_BLOCK) },
};
return combos;
}
#endif