blob: 5727c4e9233cb6bcf9af698c84e71638972e2375 [file] [log] [blame]
/*
* Copyright 2021 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/vk/GrVkBuffer.h"
#include "include/gpu/GrDirectContext.h"
#include "src/gpu/GrDirectContextPriv.h"
#include "src/gpu/GrResourceProvider.h"
#include "src/gpu/vk/GrVkDescriptorSet.h"
#include "src/gpu/vk/GrVkGpu.h"
#include "src/gpu/vk/GrVkMemory.h"
#include "src/gpu/vk/GrVkUtil.h"
#define VK_CALL(GPU, X) GR_VK_CALL(GPU->vkInterface(), X)
GrVkBuffer::GrVkBuffer(GrVkGpu* gpu,
size_t sizeInBytes,
GrGpuBufferType bufferType,
GrAccessPattern accessPattern,
VkBuffer buffer,
const GrVkAlloc& alloc,
const GrVkDescriptorSet* uniformDescriptorSet)
: GrGpuBuffer(gpu, sizeInBytes, bufferType, accessPattern)
, fBuffer(buffer)
, fAlloc(alloc)
, fUniformDescriptorSet(uniformDescriptorSet) {
// We always require dynamic buffers to be mappable
SkASSERT(accessPattern != kDynamic_GrAccessPattern || this->isVkMappable());
SkASSERT(bufferType != GrGpuBufferType::kUniform || uniformDescriptorSet);
this->registerWithCache(SkBudgeted::kYes);
}
static const GrVkDescriptorSet* make_uniform_desc_set(GrVkGpu* gpu, VkBuffer buffer, size_t size) {
const GrVkDescriptorSet* descriptorSet = gpu->resourceProvider().getUniformDescriptorSet();
if (!descriptorSet) {
return nullptr;
}
VkDescriptorBufferInfo bufferInfo;
memset(&bufferInfo, 0, sizeof(VkDescriptorBufferInfo));
bufferInfo.buffer = buffer;
bufferInfo.offset = 0;
bufferInfo.range = size;
VkWriteDescriptorSet descriptorWrite;
memset(&descriptorWrite, 0, sizeof(VkWriteDescriptorSet));
descriptorWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptorWrite.pNext = nullptr;
descriptorWrite.dstSet = *descriptorSet->descriptorSet();
descriptorWrite.dstBinding = GrVkUniformHandler::kUniformBinding;
descriptorWrite.dstArrayElement = 0;
descriptorWrite.descriptorCount = 1;
descriptorWrite.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
descriptorWrite.pImageInfo = nullptr;
descriptorWrite.pBufferInfo = &bufferInfo;
descriptorWrite.pTexelBufferView = nullptr;
GR_VK_CALL(gpu->vkInterface(),
UpdateDescriptorSets(gpu->device(), 1, &descriptorWrite, 0, nullptr));
return descriptorSet;
}
sk_sp<GrVkBuffer> GrVkBuffer::Make(GrVkGpu* gpu,
size_t size,
GrGpuBufferType bufferType,
GrAccessPattern accessPattern) {
VkBuffer buffer;
GrVkAlloc alloc;
// The only time we don't require mappable buffers is when we have a static access pattern and
// we're on a device where gpu only memory has faster reads on the gpu than memory that is also
// mappable on the cpu. Protected memory always uses mappable buffers.
bool requiresMappable = gpu->protectedContext() ||
accessPattern == kDynamic_GrAccessPattern ||
accessPattern == kStream_GrAccessPattern ||
!gpu->vkCaps().gpuOnlyBuffersMorePerformant();
using BufferUsage = GrVkMemoryAllocator::BufferUsage;
BufferUsage allocUsage;
// create the buffer object
VkBufferCreateInfo bufInfo;
memset(&bufInfo, 0, sizeof(VkBufferCreateInfo));
bufInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufInfo.flags = 0;
bufInfo.size = size;
switch (bufferType) {
case GrGpuBufferType::kVertex:
bufInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
allocUsage = requiresMappable ? BufferUsage::kCpuWritesGpuReads : BufferUsage::kGpuOnly;
break;
case GrGpuBufferType::kIndex:
bufInfo.usage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT;
allocUsage = requiresMappable ? BufferUsage::kCpuWritesGpuReads : BufferUsage::kGpuOnly;
break;
case GrGpuBufferType::kDrawIndirect:
bufInfo.usage = VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT;
allocUsage = requiresMappable ? BufferUsage::kCpuWritesGpuReads : BufferUsage::kGpuOnly;
break;
case GrGpuBufferType::kUniform:
bufInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
allocUsage = BufferUsage::kCpuWritesGpuReads;
break;
case GrGpuBufferType::kXferCpuToGpu:
bufInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
allocUsage = BufferUsage::kTransfersFromCpuToGpu;
break;
case GrGpuBufferType::kXferGpuToCpu:
bufInfo.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT;
allocUsage = BufferUsage::kTransfersFromGpuToCpu;
break;
}
// We may not always get a mappable buffer for non dynamic access buffers. Thus we set the
// transfer dst usage bit in case we need to do a copy to write data.
// TODO: It doesn't really hurt setting this extra usage flag, but maybe we can narrow the scope
// of buffers we set it on more than just not dynamic.
if (!requiresMappable) {
bufInfo.usage |= VK_BUFFER_USAGE_TRANSFER_DST_BIT;
}
bufInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
bufInfo.queueFamilyIndexCount = 0;
bufInfo.pQueueFamilyIndices = nullptr;
VkResult err;
err = VK_CALL(gpu, CreateBuffer(gpu->device(), &bufInfo, nullptr, &buffer));
if (err) {
return nullptr;
}
if (!GrVkMemory::AllocAndBindBufferMemory(gpu, buffer, allocUsage, &alloc)) {
VK_CALL(gpu, DestroyBuffer(gpu->device(), buffer, nullptr));
return nullptr;
}
// If this is a uniform buffer we must setup a descriptor set
const GrVkDescriptorSet* uniformDescSet = nullptr;
if (bufferType == GrGpuBufferType::kUniform) {
uniformDescSet = make_uniform_desc_set(gpu, buffer, size);
if (!uniformDescSet) {
VK_CALL(gpu, DestroyBuffer(gpu->device(), buffer, nullptr));
GrVkMemory::FreeBufferMemory(gpu, alloc);
return nullptr;
}
}
return sk_sp<GrVkBuffer>(new GrVkBuffer(gpu, size, bufferType, accessPattern, buffer, alloc,
uniformDescSet));
}
void GrVkBuffer::vkMap(size_t size) {
SkASSERT(!fMapPtr);
if (this->isVkMappable()) {
// Not every buffer will use command buffer usage refs and instead the command buffer just
// holds normal refs. Systems higher up in Ganesh should be making sure not to reuse a
// buffer that currently has a ref held by something else. However, we do need to make sure
// there isn't a buffer with just a command buffer usage that is trying to be mapped.
SkASSERT(this->internalHasNoCommandBufferUsages());
SkASSERT(fAlloc.fSize > 0);
SkASSERT(fAlloc.fSize >= size);
fMapPtr = GrVkMemory::MapAlloc(this->getVkGpu(), fAlloc);
if (fMapPtr && this->intendedType() == GrGpuBufferType::kXferGpuToCpu) {
GrVkMemory::InvalidateMappedAlloc(this->getVkGpu(), fAlloc, 0, size);
}
}
}
void GrVkBuffer::vkUnmap(size_t size) {
SkASSERT(fMapPtr && this->isVkMappable());
SkASSERT(fAlloc.fSize > 0);
SkASSERT(fAlloc.fSize >= size);
GrVkGpu* gpu = this->getVkGpu();
GrVkMemory::FlushMappedAlloc(gpu, fAlloc, 0, size);
GrVkMemory::UnmapAlloc(gpu, fAlloc);
}
static VkAccessFlags buffer_type_to_access_flags(GrGpuBufferType type) {
switch (type) {
case GrGpuBufferType::kIndex:
return VK_ACCESS_INDEX_READ_BIT;
case GrGpuBufferType::kVertex:
return VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT;
default:
// This helper is only called for static buffers so we should only ever see index or
// vertex buffers types
SkUNREACHABLE;
}
}
void GrVkBuffer::copyCpuDataToGpuBuffer(const void* src, size_t size) {
SkASSERT(src);
GrVkGpu* gpu = this->getVkGpu();
// We should never call this method in protected contexts.
SkASSERT(!gpu->protectedContext());
// The vulkan api restricts the use of vkCmdUpdateBuffer to updates that are less than or equal
// to 65536 bytes and a size the is 4 byte aligned.
if ((size <= 65536) && (0 == (size & 0x3)) && !gpu->vkCaps().avoidUpdateBuffers()) {
gpu->updateBuffer(sk_ref_sp(this), src, /*offset=*/0, size);
} else {
GrResourceProvider* resourceProvider = gpu->getContext()->priv().resourceProvider();
sk_sp<GrGpuBuffer> transferBuffer = resourceProvider->createBuffer(
size, GrGpuBufferType::kXferCpuToGpu, kDynamic_GrAccessPattern, src);
if (!transferBuffer) {
return;
}
gpu->copyBuffer(std::move(transferBuffer), sk_ref_sp(this), /*srcOffset=*/0,
/*dstOffset=*/0, size);
}
this->addMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT,
buffer_type_to_access_flags(this->intendedType()),
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT,
/*byRegion=*/false);
}
void GrVkBuffer::addMemoryBarrier(VkAccessFlags srcAccessMask,
VkAccessFlags dstAccesMask,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask,
bool byRegion) const {
VkBufferMemoryBarrier bufferMemoryBarrier = {
VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER, // sType
nullptr, // pNext
srcAccessMask, // srcAccessMask
dstAccesMask, // dstAccessMask
VK_QUEUE_FAMILY_IGNORED, // srcQueueFamilyIndex
VK_QUEUE_FAMILY_IGNORED, // dstQueueFamilyIndex
fBuffer, // buffer
0, // offset
this->size(), // size
};
// TODO: restrict to area of buffer we're interested in
this->getVkGpu()->addBufferMemoryBarrier(srcStageMask, dstStageMask, byRegion,
&bufferMemoryBarrier);
}
void GrVkBuffer::vkRelease() {
if (this->wasDestroyed()) {
return;
}
if (fMapPtr) {
this->vkUnmap(this->size());
fMapPtr = nullptr;
}
if (fUniformDescriptorSet) {
fUniformDescriptorSet->recycle();
fUniformDescriptorSet = nullptr;
}
SkASSERT(fBuffer);
SkASSERT(fAlloc.fMemory && fAlloc.fBackendMemory);
VK_CALL(this->getVkGpu(), DestroyBuffer(this->getVkGpu()->device(), fBuffer, nullptr));
fBuffer = VK_NULL_HANDLE;
GrVkMemory::FreeBufferMemory(this->getVkGpu(), fAlloc);
fAlloc.fMemory = VK_NULL_HANDLE;
fAlloc.fBackendMemory = 0;
}
void GrVkBuffer::onRelease() {
this->vkRelease();
this->GrGpuBuffer::onRelease();
}
void GrVkBuffer::onAbandon() {
this->vkRelease();
this->GrGpuBuffer::onAbandon();
}
void GrVkBuffer::onMap() {
if (!this->wasDestroyed()) {
this->vkMap(this->size());
}
}
void GrVkBuffer::onUnmap() {
if (!this->wasDestroyed()) {
this->vkUnmap(this->size());
}
}
bool GrVkBuffer::onUpdateData(const void* src, size_t srcSizeInBytes) {
if (this->wasDestroyed()) {
return false;
}
if (srcSizeInBytes > this->size()) {
return false;
}
if (this->isVkMappable()) {
this->vkMap(srcSizeInBytes);
if (!fMapPtr) {
return false;
}
memcpy(fMapPtr, src, srcSizeInBytes);
this->vkUnmap(srcSizeInBytes);
fMapPtr = nullptr;
} else {
this->copyCpuDataToGpuBuffer(src, srcSizeInBytes);
}
return true;
}
GrVkGpu* GrVkBuffer::getVkGpu() const {
SkASSERT(!this->wasDestroyed());
return static_cast<GrVkGpu*>(this->getGpu());
}
const VkDescriptorSet* GrVkBuffer::uniformDescriptorSet() const {
SkASSERT(fUniformDescriptorSet);
return fUniformDescriptorSet->descriptorSet();
}