blob: 6ae76f9b6ca5370cd71053047c08b8ad11c0d7ca [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/GrRenderTarget.h"
#include "src/gpu/GrRenderTargetPriv.h"
#include "src/gpu/GrShaderCaps.h"
#include "src/gpu/gl/GrGLGpu.h"
#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
#include "src/gpu/glsl/GrGLSLProgramBuilder.h"
#include "src/gpu/glsl/GrGLSLUniformHandler.h"
#include "src/gpu/glsl/GrGLSLVarying.h"
const char* GrGLSLFragmentShaderBuilder::kDstColorName = "_dstColor";
static const char* specific_layout_qualifier_name(GrBlendEquation equation) {
SkASSERT(GrBlendEquationIsAdvanced(equation));
static const char* kLayoutQualifierNames[] = {
"blend_support_screen",
"blend_support_overlay",
"blend_support_darken",
"blend_support_lighten",
"blend_support_colordodge",
"blend_support_colorburn",
"blend_support_hardlight",
"blend_support_softlight",
"blend_support_difference",
"blend_support_exclusion",
"blend_support_multiply",
"blend_support_hsl_hue",
"blend_support_hsl_saturation",
"blend_support_hsl_color",
"blend_support_hsl_luminosity"
};
return kLayoutQualifierNames[equation - kFirstAdvancedGrBlendEquation];
static_assert(0 == kScreen_GrBlendEquation - kFirstAdvancedGrBlendEquation);
static_assert(1 == kOverlay_GrBlendEquation - kFirstAdvancedGrBlendEquation);
static_assert(2 == kDarken_GrBlendEquation - kFirstAdvancedGrBlendEquation);
static_assert(3 == kLighten_GrBlendEquation - kFirstAdvancedGrBlendEquation);
static_assert(4 == kColorDodge_GrBlendEquation - kFirstAdvancedGrBlendEquation);
static_assert(5 == kColorBurn_GrBlendEquation - kFirstAdvancedGrBlendEquation);
static_assert(6 == kHardLight_GrBlendEquation - kFirstAdvancedGrBlendEquation);
static_assert(7 == kSoftLight_GrBlendEquation - kFirstAdvancedGrBlendEquation);
static_assert(8 == kDifference_GrBlendEquation - kFirstAdvancedGrBlendEquation);
static_assert(9 == kExclusion_GrBlendEquation - kFirstAdvancedGrBlendEquation);
static_assert(10 == kMultiply_GrBlendEquation - kFirstAdvancedGrBlendEquation);
static_assert(11 == kHSLHue_GrBlendEquation - kFirstAdvancedGrBlendEquation);
static_assert(12 == kHSLSaturation_GrBlendEquation - kFirstAdvancedGrBlendEquation);
static_assert(13 == kHSLColor_GrBlendEquation - kFirstAdvancedGrBlendEquation);
static_assert(14 == kHSLLuminosity_GrBlendEquation - kFirstAdvancedGrBlendEquation);
// There's an illegal GrBlendEquation at the end there, hence the -1.
static_assert(SK_ARRAY_COUNT(kLayoutQualifierNames) ==
kGrBlendEquationCnt - kFirstAdvancedGrBlendEquation - 1);
}
uint8_t GrGLSLFragmentShaderBuilder::KeyForSurfaceOrigin(GrSurfaceOrigin origin) {
SkASSERT(kTopLeft_GrSurfaceOrigin == origin || kBottomLeft_GrSurfaceOrigin == origin);
return origin + 1;
static_assert(0 == kTopLeft_GrSurfaceOrigin);
static_assert(1 == kBottomLeft_GrSurfaceOrigin);
}
GrGLSLFragmentShaderBuilder::GrGLSLFragmentShaderBuilder(GrGLSLProgramBuilder* program)
: GrGLSLFragmentBuilder(program) {
fSubstageIndices.push_back(0);
}
const char* GrGLSLFragmentShaderBuilder::sampleOffsets() {
SkASSERT(CustomFeatures::kSampleLocations & fProgramBuilder->processorFeatures());
SkDEBUGCODE(fUsedProcessorFeaturesThisStage_DebugOnly |= CustomFeatures::kSampleLocations);
SkDEBUGCODE(fUsedProcessorFeaturesAllStages_DebugOnly |= CustomFeatures::kSampleLocations);
return "_sampleOffsets";
}
void GrGLSLFragmentShaderBuilder::maskOffMultisampleCoverage(
const char* mask, ScopeFlags scopeFlags) {
const GrShaderCaps& shaderCaps = *fProgramBuilder->shaderCaps();
if (!shaderCaps.sampleMaskSupport()) {
SkDEBUGFAIL("Attempted to mask sample coverage without support.");
return;
}
if (const char* extension = shaderCaps.sampleVariablesExtensionString()) {
this->addFeature(1 << kSampleVariables_GLSLPrivateFeature, extension);
}
if (!fHasModifiedSampleMask) {
fHasModifiedSampleMask = true;
if (ScopeFlags::kTopLevel != scopeFlags) {
this->codePrependf("sk_SampleMask[0] = ~0;");
}
if (!(ScopeFlags::kInsideLoop & scopeFlags)) {
this->codeAppendf("sk_SampleMask[0] = (%s);", mask);
return;
}
}
this->codeAppendf("sk_SampleMask[0] &= (%s);", mask);
}
void GrGLSLFragmentShaderBuilder::applyFnToMultisampleMask(
const char* fn, const char* grad, ScopeFlags scopeFlags) {
SkASSERT(CustomFeatures::kSampleLocations & fProgramBuilder->processorFeatures());
SkDEBUGCODE(fUsedProcessorFeaturesThisStage_DebugOnly |= CustomFeatures::kSampleLocations);
SkDEBUGCODE(fUsedProcessorFeaturesAllStages_DebugOnly |= CustomFeatures::kSampleLocations);
int sampleCnt = fProgramBuilder->effectiveSampleCnt();
SkASSERT(sampleCnt > 1);
this->codeAppendf("{");
if (!grad) {
SkASSERT(fProgramBuilder->shaderCaps()->shaderDerivativeSupport());
// In order to use HW derivatives, our neighbors within the same primitive must also be
// executing the same code. A per-pixel branch makes this pre-condition impossible to
// fulfill.
SkASSERT(!(ScopeFlags::kInsidePerPixelBranch & scopeFlags));
this->codeAppendf("float2 grad = float2(dFdx(%s), dFdy(%s));", fn, fn);
this->codeAppendf("float fnwidth = fwidth(%s);", fn);
grad = "grad";
} else {
this->codeAppendf("float fnwidth = abs(%s.x) + abs(%s.y);", grad, grad);
}
this->codeAppendf("int mask = 0;");
this->codeAppendf("if (%s*2 < fnwidth) {", fn); // Are ANY samples inside the implicit fn?
this->codeAppendf( "if (%s*-2 >= fnwidth) {", fn); // Are ALL samples inside the implicit?
this->codeAppendf( "mask = ~0;");
this->codeAppendf( "} else for (int i = 0; i < %i; ++i) {", sampleCnt);
this->codeAppendf( "float fnsample = dot(%s, _sampleOffsets[i]) + %s;", grad, fn);
this->codeAppendf( "if (fnsample < 0) {");
this->codeAppendf( "mask |= (1 << i);");
this->codeAppendf( "}");
this->codeAppendf( "}");
this->codeAppendf("}");
this->maskOffMultisampleCoverage("mask", scopeFlags);
this->codeAppendf("}");
}
SkString GrGLSLFPFragmentBuilder::writeProcessorFunction(GrGLSLFragmentProcessor* fp,
GrGLSLFragmentProcessor::EmitArgs& args) {
this->onBeforeChildProcEmitCode();
this->nextStage();
// An FP's function signature is theoretically always main(half4 color, float2 _coords).
// However, if it is only sampled by a chain of const/uniform matrices (or legacy coord
// transforms), the value that would have been passed to _coords is lifted to the vertex shader
// and stored in a unique varying. In that case it uses that variable and does not have a
// second actual argument for _coords.
// FIXME: Once GrCoordTransforms are gone, and we can more easily associated this varying with
// the sample call site, then invokeChild() can pass the varying in, instead of requiring this
// dynamic signature.
int paramCount;
GrShaderVar params[] = { GrShaderVar(args.fInputColor, kHalf4_GrSLType),
GrShaderVar(args.fSampleCoord, kFloat2_GrSLType) };
if (args.fFp.isSampledWithExplicitCoords()) {
// All invokeChild() that point to 'fp' will evaluate these expressions and pass the float2
// in, so we need the 2nd argument.
paramCount = 2;
// FIXME: This is only needed for the short term until FPs no longer put transformation
// data in a GrCoordTransform (and we can then mark the parameter as read-only)
if (args.fTransformedCoords.count() > 0) {
SkASSERT(args.fTransformedCoords.count() == 1);
const GrShaderVar& transform = args.fTransformedCoords[0].fTransform;
switch (transform.getType()) {
case kFloat4_GrSLType:
// This is a scale+translate, so there's no perspective division needed
this->codeAppendf("%s = %s * %s.xz + %s.yw;\n", args.fSampleCoord,
args.fSampleCoord,
transform.c_str(),
transform.c_str());
break;
case kFloat3x3_GrSLType:
this->codeAppend("{\n");
this->codeAppendf("float3 _coords3 = (%s * %s.xy1);\n",
transform.c_str(), args.fSampleCoord);
this->codeAppendf("%s = _coords3.xy / _coords3.z;\n", args.fSampleCoord);
this->codeAppend("}\n");
break;
default:
SkASSERT(transform.getType() == kVoid_GrSLType);
break;
}
}
} else {
// Sampled with a const/uniform matrix and/or a legacy coord transform. The actual
// transformation code is emitted in the vertex shader, so this only has to access it.
// Add a float2 _coords variable that maps to the associated varying and replaces the
// absent 2nd argument to the fp's function.
paramCount = 1;
if (args.fFp.referencesSampleCoords()) {
const GrShaderVar& varying = args.fTransformedCoords[0].fVaryingPoint;
switch(varying.getType()) {
case kFloat2_GrSLType:
// Just point the local coords to the varying
args.fSampleCoord = varying.getName().c_str();
break;
case kFloat3_GrSLType:
// Must perform the perspective divide in the frag shader based on the varying,
// and since we won't actually have a function parameter for local coords, add
// it as a local variable.
this->codeAppendf("float2 %s = %s.xy / %s.z;\n", args.fSampleCoord,
varying.getName().c_str(), varying.getName().c_str());
break;
default:
SkDEBUGFAILF("Unexpected varying type for coord: %s %d\n",
varying.getName().c_str(), (int) varying.getType());
break;
}
}
}
this->codeAppendf("half4 %s;\n", args.fOutputColor);
fp->emitCode(args);
this->codeAppendf("return %s;\n", args.fOutputColor);
SkString result;
this->emitFunction(kHalf4_GrSLType, args.fFp.name(), paramCount, params,
this->code().c_str(), &result);
this->deleteStage();
this->onAfterChildProcEmitCode();
return result;
}
const char* GrGLSLFragmentShaderBuilder::dstColor() {
SkDEBUGCODE(fHasReadDstColorThisStage_DebugOnly = true;)
const GrShaderCaps* shaderCaps = fProgramBuilder->shaderCaps();
if (shaderCaps->fbFetchSupport()) {
this->addFeature(1 << kFramebufferFetch_GLSLPrivateFeature,
shaderCaps->fbFetchExtensionString());
// Some versions of this extension string require declaring custom color output on ES 3.0+
const char* fbFetchColorName = "sk_LastFragColor";
if (shaderCaps->fbFetchNeedsCustomOutput()) {
this->enableCustomOutput();
fCustomColorOutput->setTypeModifier(GrShaderVar::TypeModifier::InOut);
fbFetchColorName = DeclaredColorOutputName();
// Set the dstColor to an intermediate variable so we don't override it with the output
this->codeAppendf("half4 %s = %s;", kDstColorName, fbFetchColorName);
} else {
return fbFetchColorName;
}
}
return kDstColorName;
}
void GrGLSLFragmentShaderBuilder::enableAdvancedBlendEquationIfNeeded(GrBlendEquation equation) {
SkASSERT(GrBlendEquationIsAdvanced(equation));
const GrShaderCaps& caps = *fProgramBuilder->shaderCaps();
if (!caps.mustEnableAdvBlendEqs()) {
return;
}
this->addFeature(1 << kBlendEquationAdvanced_GLSLPrivateFeature,
"GL_KHR_blend_equation_advanced");
if (caps.mustEnableSpecificAdvBlendEqs()) {
this->addLayoutQualifier(specific_layout_qualifier_name(equation), kOut_InterfaceQualifier);
} else {
this->addLayoutQualifier("blend_support_all_equations", kOut_InterfaceQualifier);
}
}
void GrGLSLFragmentShaderBuilder::enableCustomOutput() {
if (!fCustomColorOutput) {
fCustomColorOutput = &fOutputs.emplace_back(DeclaredColorOutputName(), kHalf4_GrSLType,
GrShaderVar::TypeModifier::Out);
fProgramBuilder->finalizeFragmentOutputColor(fOutputs.back());
}
}
void GrGLSLFragmentShaderBuilder::enableSecondaryOutput() {
SkASSERT(!fHasSecondaryOutput);
fHasSecondaryOutput = true;
const GrShaderCaps& caps = *fProgramBuilder->shaderCaps();
if (const char* extension = caps.secondaryOutputExtensionString()) {
this->addFeature(1 << kBlendFuncExtended_GLSLPrivateFeature, extension);
}
// If the primary output is declared, we must declare also the secondary output
// and vice versa, since it is not allowed to use a built-in gl_FragColor and a custom
// output. The condition also co-incides with the condition in whici GLES SL 2.0
// requires the built-in gl_SecondaryFragColorEXT, where as 3.0 requires a custom output.
if (caps.mustDeclareFragmentShaderOutput()) {
fOutputs.emplace_back(DeclaredSecondaryColorOutputName(), kHalf4_GrSLType,
GrShaderVar::TypeModifier::Out);
fProgramBuilder->finalizeFragmentSecondaryColor(fOutputs.back());
}
}
const char* GrGLSLFragmentShaderBuilder::getPrimaryColorOutputName() const {
return this->hasCustomColorOutput() ? DeclaredColorOutputName() : "sk_FragColor";
}
bool GrGLSLFragmentShaderBuilder::primaryColorOutputIsInOut() const {
return fCustomColorOutput &&
fCustomColorOutput->getTypeModifier() == GrShaderVar::TypeModifier::InOut;
}
void GrGLSLFragmentBuilder::declAppendf(const char* fmt, ...) {
va_list argp;
va_start(argp, fmt);
inputs().appendVAList(fmt, argp);
va_end(argp);
}
const char* GrGLSLFragmentShaderBuilder::getSecondaryColorOutputName() const {
if (this->hasSecondaryOutput()) {
return (fProgramBuilder->shaderCaps()->mustDeclareFragmentShaderOutput())
? DeclaredSecondaryColorOutputName()
: "gl_SecondaryFragColorEXT";
}
return nullptr;
}
GrSurfaceOrigin GrGLSLFragmentShaderBuilder::getSurfaceOrigin() const {
return fProgramBuilder->origin();
}
void GrGLSLFragmentShaderBuilder::onFinalize() {
SkASSERT(fProgramBuilder->processorFeatures() == fUsedProcessorFeaturesAllStages_DebugOnly);
if (CustomFeatures::kSampleLocations & fProgramBuilder->processorFeatures()) {
const SkTArray<SkPoint>& sampleLocations = fProgramBuilder->getSampleLocations();
this->definitions().appendf("const float2 _sampleOffsets[%i] = float2[%i](",
sampleLocations.count(), sampleLocations.count());
for (int i = 0; i < sampleLocations.count(); ++i) {
SkPoint offset = sampleLocations[i] - SkPoint::Make(.5f, .5f);
if (kBottomLeft_GrSurfaceOrigin == this->getSurfaceOrigin()) {
offset.fY = -offset.fY;
}
this->definitions().appendf("float2(%f, %f)", offset.x(), offset.y());
this->definitions().append((i + 1 != sampleLocations.count()) ? ", " : ");");
}
}
fProgramBuilder->varyingHandler()->getFragDecls(&this->inputs(), &this->outputs());
}
void GrGLSLFragmentShaderBuilder::onBeforeChildProcEmitCode() {
SkASSERT(fSubstageIndices.count() >= 1);
fSubstageIndices.push_back(0);
// second-to-last value in the fSubstageIndices stack is the index of the child proc
// at that level which is currently emitting code.
fMangleString.appendf("_c%d", fSubstageIndices[fSubstageIndices.count() - 2]);
}
void GrGLSLFragmentShaderBuilder::onAfterChildProcEmitCode() {
SkASSERT(fSubstageIndices.count() >= 2);
fSubstageIndices.pop_back();
fSubstageIndices.back()++;
int removeAt = fMangleString.findLastOf('_');
fMangleString.remove(removeAt, fMangleString.size() - removeAt);
}