blob: 1b8c180304c66aa6e72b96513a61512cb70a0e2f [file] [log] [blame]
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkJSONWriter_DEFINED
#define SkJSONWriter_DEFINED
#include "include/core/SkStream.h"
#include "include/core/SkString.h"
#include "include/core/SkTypes.h"
#include "include/private/SkNoncopyable.h"
#include "include/private/SkTArray.h"
#include "src/utils/SkUTF.h"
#include <string.h>
/**
* Lightweight class for writing properly structured JSON data. No random-access, everything must
* be generated in-order. The resulting JSON is written directly to the SkWStream supplied at
* construction time. Output is buffered, so writing to disk (via an SkFILEWStream) is ideal.
*
* There is a basic state machine to ensure that JSON is structured correctly, and to allow for
* (optional) pretty formatting.
*
* This class adheres to the RFC-4627 usage of JSON (not ECMA-404). In other words, all JSON
* created with this class must have a top-level object or array. Free-floating values of other
* types are not considered valid.
*
* Note that all error checking is in the form of asserts - invalid usage in a non-debug build
* will simply produce invalid JSON.
*/
class SkJSONWriter : SkNoncopyable {
public:
enum class Mode {
/**
* Output the minimal amount of text. No additional whitespace (including newlines) is
* generated. The resulting JSON is suitable for fast parsing and machine consumption.
*/
kFast,
/**
* Output human-readable JSON, with indented objects and arrays, and one value per line.
* Slightly slower than kFast, and produces data that is somewhat larger.
*/
kPretty
};
/**
* Construct a JSON writer that will serialize all the generated JSON to 'stream'.
*/
SkJSONWriter(SkWStream* stream, Mode mode = Mode::kFast)
: fBlock(new char[kBlockSize])
, fWrite(fBlock)
, fBlockEnd(fBlock + kBlockSize)
, fStream(stream)
, fMode(mode)
, fState(State::kStart) {
fScopeStack.push_back(Scope::kNone);
fNewlineStack.push_back(true);
}
~SkJSONWriter() {
this->flush();
delete[] fBlock;
SkASSERT(fScopeStack.count() == 1);
SkASSERT(fNewlineStack.count() == 1);
}
/**
* Force all buffered output to be flushed to the underlying stream.
*/
void flush() {
if (fWrite != fBlock) {
fStream->write(fBlock, fWrite - fBlock);
fWrite = fBlock;
}
}
/**
* Append the name (key) portion of an object member. Must be called between beginObject() and
* endObject(). If you have both the name and value of an object member, you can simply call
* the two argument versions of the other append functions.
*/
void appendName(const char* name) {
if (!name) {
return;
}
SkASSERT(Scope::kObject == this->scope());
SkASSERT(State::kObjectBegin == fState || State::kObjectValue == fState);
if (State::kObjectValue == fState) {
this->write(",", 1);
}
this->separator(this->multiline());
this->write("\"", 1);
this->write(name, strlen(name));
this->write("\":", 2);
fState = State::kObjectName;
}
/**
* Adds a new object. A name must be supplied when called between beginObject() and
* endObject(). Calls to beginObject() must be balanced by corresponding calls to endObject().
* By default, objects are written out with one named value per line (when in kPretty mode).
* This can be overridden for a particular object by passing false for multiline, this will
* keep the entire object on a single line. This can help with readability in some situations.
* In kFast mode, this parameter is ignored.
*/
void beginObject(const char* name = nullptr, bool multiline = true) {
this->appendName(name);
this->beginValue(true);
this->write("{", 1);
fScopeStack.push_back(Scope::kObject);
fNewlineStack.push_back(multiline);
fState = State::kObjectBegin;
}
/**
* Ends an object that was previously started with beginObject().
*/
void endObject() {
SkASSERT(Scope::kObject == this->scope());
SkASSERT(State::kObjectBegin == fState || State::kObjectValue == fState);
bool emptyObject = State::kObjectBegin == fState;
bool wasMultiline = this->multiline();
this->popScope();
if (!emptyObject) {
this->separator(wasMultiline);
}
this->write("}", 1);
}
/**
* Adds a new array. A name must be supplied when called between beginObject() and
* endObject(). Calls to beginArray() must be balanced by corresponding calls to endArray().
* By default, arrays are written out with one value per line (when in kPretty mode).
* This can be overridden for a particular array by passing false for multiline, this will
* keep the entire array on a single line. This can help with readability in some situations.
* In kFast mode, this parameter is ignored.
*/
void beginArray(const char* name = nullptr, bool multiline = true) {
this->appendName(name);
this->beginValue(true);
this->write("[", 1);
fScopeStack.push_back(Scope::kArray);
fNewlineStack.push_back(multiline);
fState = State::kArrayBegin;
}
/**
* Ends an array that was previous started with beginArray().
*/
void endArray() {
SkASSERT(Scope::kArray == this->scope());
SkASSERT(State::kArrayBegin == fState || State::kArrayValue == fState);
bool emptyArray = State::kArrayBegin == fState;
bool wasMultiline = this->multiline();
this->popScope();
if (!emptyArray) {
this->separator(wasMultiline);
}
this->write("]", 1);
}
/**
* Functions for adding values of various types. The single argument versions add un-named
* values, so must be called either
* - Between beginArray() and endArray() -or-
* - Between beginObject() and endObject(), after calling appendName()
*/
void appendString(const char* value, size_t size) {
this->beginValue();
this->write("\"", 1);
if (value) {
char const * const end = value + size;
while (value < end) {
char const * next = value;
SkUnichar u = SkUTF::NextUTF8(&next, end);
switch (u) {
case '"': this->write("\\\"", 2); break;
case '\\': this->write("\\\\", 2); break;
case '\b': this->write("\\b", 2); break;
case '\f': this->write("\\f", 2); break;
case '\n': this->write("\\n", 2); break;
case '\r': this->write("\\r", 2); break;
case '\t': this->write("\\t", 2); break;
default: {
if (u < 0) {
next = value + 1;
SkString s("\\u");
s.appendHex((unsigned char)*value, 4);
this->write(s.c_str(), s.size());
} else if (u < 0x20) {
SkString s("\\u");
s.appendHex(u, 4);
this->write(s.c_str(), s.size());
} else {
this->write(value, next - value);
}
} break;
}
value = next;
}
}
this->write("\"", 1);
}
void appendString(const SkString& value) {
this->appendString(value.c_str(), value.size());
}
// Avoid the non-explicit converting constructor from char*
template <class T, std::enable_if_t<std::is_same_v<T,std::string>,bool> = false>
void appendString(const T& value) {
this->appendString(value.data(), value.size());
}
template <size_t N> inline void appendNString(char const (&value)[N]) {
static_assert(N > 0);
this->appendString(value, N-1);
}
void appendCString(const char* value) {
this->appendString(value, value ? strlen(value) : 0);
}
void appendPointer(const void* value) { this->beginValue(); this->appendf("\"%p\"", value); }
void appendBool(bool value) {
this->beginValue();
if (value) {
this->write("true", 4);
} else {
this->write("false", 5);
}
}
void appendS32(int32_t value) { this->beginValue(); this->appendf("%d", value); }
void appendS64(int64_t value);
void appendU32(uint32_t value) { this->beginValue(); this->appendf("%u", value); }
void appendU64(uint64_t value);
void appendFloat(float value) { this->beginValue(); this->appendf("%g", value); }
void appendDouble(double value) { this->beginValue(); this->appendf("%g", value); }
void appendFloatDigits(float value, int digits) {
this->beginValue();
this->appendf("%.*g", digits, value);
}
void appendDoubleDigits(double value, int digits) {
this->beginValue();
this->appendf("%.*g", digits, value);
}
void appendHexU32(uint32_t value) { this->beginValue(); this->appendf("\"0x%x\"", value); }
void appendHexU64(uint64_t value);
void appendString(const char* name, const char* value, size_t size) {
this->appendName(name);
this->appendString(value, size);
}
void appendString(const char* name, const SkString& value) {
this->appendName(name);
this->appendString(value.c_str(), value.size());
}
// Avoid the non-explicit converting constructor from char*
template <class T, std::enable_if_t<std::is_same_v<T,std::string>,bool> = false>
void appendString(const char* name, const T& value) {
this->appendName(name);
this->appendString(value.data(), value.size());
}
template <size_t N> inline void appendNString(const char* name, char const (&value)[N]) {
static_assert(N > 0);
this->appendName(name);
this->appendString(value, N-1);
}
void appendCString(const char* name, const char* value) {
this->appendName(name);
this->appendString(value, value ? strlen(value) : 0);
}
#define DEFINE_NAMED_APPEND(function, type) \
void function(const char* name, type value) { this->appendName(name); this->function(value); }
/**
* Functions for adding named values of various types. These add a name field, so must be
* called between beginObject() and endObject().
*/
DEFINE_NAMED_APPEND(appendPointer, const void *)
DEFINE_NAMED_APPEND(appendBool, bool)
DEFINE_NAMED_APPEND(appendS32, int32_t)
DEFINE_NAMED_APPEND(appendS64, int64_t)
DEFINE_NAMED_APPEND(appendU32, uint32_t)
DEFINE_NAMED_APPEND(appendU64, uint64_t)
DEFINE_NAMED_APPEND(appendFloat, float)
DEFINE_NAMED_APPEND(appendDouble, double)
DEFINE_NAMED_APPEND(appendHexU32, uint32_t)
DEFINE_NAMED_APPEND(appendHexU64, uint64_t)
#undef DEFINE_NAMED_APPEND
void appendFloatDigits(const char* name, float value, int digits) {
this->appendName(name);
this->appendFloatDigits(value, digits);
}
void appendDoubleDigits(const char* name, double value, int digits) {
this->appendName(name);
this->appendDoubleDigits(value, digits);
}
private:
enum {
// Using a 32k scratch block gives big performance wins, but we diminishing returns going
// any larger. Even with a 1MB block, time to write a large (~300 MB) JSON file only drops
// another ~10%.
kBlockSize = 32 * 1024,
};
enum class Scope {
kNone,
kObject,
kArray
};
enum class State {
kStart,
kEnd,
kObjectBegin,
kObjectName,
kObjectValue,
kArrayBegin,
kArrayValue,
};
void appendf(const char* fmt, ...) SK_PRINTF_LIKE(2, 3);
void beginValue(bool structure = false) {
SkASSERT(State::kObjectName == fState ||
State::kArrayBegin == fState ||
State::kArrayValue == fState ||
(structure && State::kStart == fState));
if (State::kArrayValue == fState) {
this->write(",", 1);
}
if (Scope::kArray == this->scope()) {
this->separator(this->multiline());
} else if (Scope::kObject == this->scope() && Mode::kPretty == fMode) {
this->write(" ", 1);
}
// We haven't added the value yet, but all (non-structure) callers emit something
// immediately, so transition state, to simplify the calling code.
if (!structure) {
fState = Scope::kArray == this->scope() ? State::kArrayValue : State::kObjectValue;
}
}
void separator(bool multiline) {
if (Mode::kPretty == fMode) {
if (multiline) {
this->write("\n", 1);
for (int i = 0; i < fScopeStack.count() - 1; ++i) {
this->write(" ", 3);
}
} else {
this->write(" ", 1);
}
}
}
void write(const char* buf, size_t length) {
if (static_cast<size_t>(fBlockEnd - fWrite) < length) {
// Don't worry about splitting writes that overflow our block.
this->flush();
}
if (length > kBlockSize) {
// Send particularly large writes straight through to the stream (unbuffered).
fStream->write(buf, length);
} else {
memcpy(fWrite, buf, length);
fWrite += length;
}
}
Scope scope() const {
SkASSERT(!fScopeStack.empty());
return fScopeStack.back();
}
bool multiline() const {
SkASSERT(!fNewlineStack.empty());
return fNewlineStack.back();
}
void popScope() {
fScopeStack.pop_back();
fNewlineStack.pop_back();
switch (this->scope()) {
case Scope::kNone:
fState = State::kEnd;
break;
case Scope::kObject:
fState = State::kObjectValue;
break;
case Scope::kArray:
fState = State::kArrayValue;
break;
default:
SkDEBUGFAIL("Invalid scope");
break;
}
}
char* fBlock;
char* fWrite;
char* fBlockEnd;
SkWStream* fStream;
Mode fMode;
State fState;
SkSTArray<16, Scope, true> fScopeStack;
SkSTArray<16, bool, true> fNewlineStack;
};
#endif