blob: 5f350554c2d5d874c366c8aa9a51cda419c14d2a [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkTypes.h"
#include "include/private/base/SkAlign.h"
#include "src/base/SkBlockAllocator.h"
#include "src/base/SkTBlockList.h"
#include "tests/Test.h"
#include <cstddef>
#include <cstdint>
#include <limits>
#include <type_traits>
#include <utility>
#include <vector>
namespace {
struct C {
C() : fID(-1) { ++gInstCnt; }
C(int id) : fID(id) { ++gInstCnt; }
C(C&& c) : C(c.fID) {}
C(const C& c) : C(c.fID) {}
C& operator=(C&&) = default;
C& operator=(const C&) = default;
~C() { --gInstCnt; }
int fID;
// Under the hood, SkTBlockList and SkBlockAllocator round up to max_align_t. If 'C' was
// just 4 bytes, that often means the internal blocks can squeeze a few extra instances in. This
// is fine, but makes predicting a little trickier, so make sure C is a bit bigger.
int fPadding[4];
static int gInstCnt;
};
int C::gInstCnt = 0;
struct D {
int fID;
};
} // namespace
class TBlockListTestAccess {
public:
template<int N>
static size_t ScratchBlockSize(SkTBlockList<C, N>& list) {
return (size_t) list.fAllocator->scratchBlockSize();
}
template<int N>
static size_t TotalSize(SkTBlockList<C, N>& list) {
return list.fAllocator->totalSize();
}
static constexpr size_t kAddressAlign = SkBlockAllocator::kAddressAlign;
};
// Checks that the allocator has the correct count, etc and that the element IDs are correct.
// Then pops popCnt items and checks again.
template<int N>
static void check_allocator_helper(SkTBlockList<C, N>* allocator, int cnt, int popCnt,
skiatest::Reporter* reporter) {
REPORTER_ASSERT(reporter, (0 == cnt) == allocator->empty());
REPORTER_ASSERT(reporter, cnt == allocator->count());
REPORTER_ASSERT(reporter, cnt == C::gInstCnt);
int i = 0;
for (const C& c : allocator->items()) {
REPORTER_ASSERT(reporter, i == c.fID);
REPORTER_ASSERT(reporter, allocator->item(i).fID == i);
++i;
}
REPORTER_ASSERT(reporter, i == cnt);
if (cnt > 0) {
REPORTER_ASSERT(reporter, cnt-1 == allocator->back().fID);
}
if (popCnt > 0) {
for (i = 0; i < popCnt; ++i) {
allocator->pop_back();
}
check_allocator_helper(allocator, cnt - popCnt, 0, reporter);
}
}
template<int N>
static void check_iterator_helper(SkTBlockList<C, N>* allocator,
const std::vector<C*>& expected,
skiatest::Reporter* reporter) {
const SkTBlockList<C, N>* cAlloc = allocator;
REPORTER_ASSERT(reporter, (size_t) allocator->count() == expected.size());
// Forward+const
int i = 0;
for (const C& c : cAlloc->items()) {
REPORTER_ASSERT(reporter, (uintptr_t) &c == (uintptr_t) expected[i]);
++i;
}
REPORTER_ASSERT(reporter, (size_t) i == expected.size());
// Forward+non-const
i = 0;
for (C& c : allocator->items()) {
REPORTER_ASSERT(reporter, (uintptr_t) &c == (uintptr_t) expected[i]);
++i;
}
REPORTER_ASSERT(reporter, (size_t) i == expected.size());
// Reverse+const
i = (int) expected.size() - 1;
for (const C& c : cAlloc->ritems()) {
REPORTER_ASSERT(reporter, (uintptr_t) &c == (uintptr_t) expected[i]);
--i;
}
REPORTER_ASSERT(reporter, i == -1);
// Reverse+non-const
i = (int) expected.size() - 1;
for (C& c : allocator->ritems()) {
REPORTER_ASSERT(reporter, (uintptr_t) &c == (uintptr_t) expected[i]);
--i;
}
REPORTER_ASSERT(reporter, i == -1);
// Also test random access
for (i = 0; i < allocator->count(); ++i) {
REPORTER_ASSERT(reporter, (uintptr_t) &allocator->item(i) == (uintptr_t) expected[i]);
REPORTER_ASSERT(reporter, (uintptr_t) &cAlloc->item(i) == (uintptr_t) expected[i]);
}
}
// Adds cnt items to the allocator, tests the cnts and iterators, pops popCnt items and checks
// again. Finally it resets the allocator and checks again.
template<int N>
static void check_allocator(SkTBlockList<C, N>* allocator, int cnt, int popCnt,
skiatest::Reporter* reporter) {
enum ItemInitializer : int {
kCopyCtor,
kMoveCtor,
kCopyAssign,
kMoveAssign,
kEmplace,
};
static constexpr int kInitCount = (int) kEmplace + 1;
SkASSERT(allocator);
SkASSERT(allocator->empty());
std::vector<C*> items;
for (int i = 0; i < cnt; ++i) {
switch((ItemInitializer) (i % kInitCount)) {
case kCopyCtor:
allocator->push_back(C(i));
break;
case kMoveCtor:
allocator->push_back(std::move(C(i)));
break;
case kCopyAssign:
allocator->push_back() = C(i);
break;
case kMoveAssign:
allocator->push_back() = std::move(C(i));
break;
case kEmplace:
allocator->emplace_back(i);
break;
}
items.push_back(&allocator->back());
}
check_iterator_helper(allocator, items, reporter);
check_allocator_helper(allocator, cnt, popCnt, reporter);
allocator->reset();
check_iterator_helper(allocator, {}, reporter);
check_allocator_helper(allocator, 0, 0, reporter);
}
template<int N>
static void run_allocator_test(SkTBlockList<C, N>* allocator, skiatest::Reporter* reporter) {
check_allocator(allocator, 0, 0, reporter);
check_allocator(allocator, 1, 1, reporter);
check_allocator(allocator, 2, 2, reporter);
check_allocator(allocator, 10, 1, reporter);
check_allocator(allocator, 10, 5, reporter);
check_allocator(allocator, 10, 10, reporter);
check_allocator(allocator, 100, 10, reporter);
}
template<int N1, int N2>
static void run_concat_test(skiatest::Reporter* reporter, int aCount, int bCount) {
SkTBlockList<C, N1> listA;
SkTBlockList<C, N2> listB;
for (int i = 0; i < aCount; ++i) {
listA.emplace_back(i);
}
for (int i = 0; i < bCount; ++i) {
listB.emplace_back(aCount + i);
}
REPORTER_ASSERT(reporter, listA.count() == aCount && listB.count() == bCount);
REPORTER_ASSERT(reporter, C::gInstCnt == aCount + bCount);
// Concatenate B into A and verify.
listA.concat(std::move(listB));
REPORTER_ASSERT(reporter, listA.count() == aCount + bCount);
// SkTBlockList guarantees the moved list is empty, but clang-tidy doesn't know about it;
// in practice we won't really be using moved lists so this won't pollute our main code base
// with lots of warning disables.
REPORTER_ASSERT(reporter, listB.count() == 0); // NOLINT(bugprone-use-after-move)
REPORTER_ASSERT(reporter, C::gInstCnt == aCount + bCount);
int i = 0;
for (const C& item : listA.items()) {
// By construction of A and B originally, the concatenated id sequence is continuous
REPORTER_ASSERT(reporter, i == item.fID);
i++;
}
REPORTER_ASSERT(reporter, i == (aCount + bCount));
}
template<int N1, int N2>
static void run_concat_trivial_test(skiatest::Reporter* reporter, int aCount, int bCount) {
static_assert(std::is_trivially_copyable<D>::value);
// This is similar to run_concat_test(), except since D is trivial we can't verify the instant
// counts that are tracked via ctor/dtor.
SkTBlockList<D, N1> listA;
SkTBlockList<D, N2> listB;
for (int i = 0; i < aCount; ++i) {
listA.push_back({i});
}
for (int i = 0; i < bCount; ++i) {
listB.push_back({aCount + i});
}
REPORTER_ASSERT(reporter, listA.count() == aCount && listB.count() == bCount);
// Concatenate B into A and verify.
listA.concat(std::move(listB));
REPORTER_ASSERT(reporter, listA.count() == aCount + bCount);
REPORTER_ASSERT(reporter, listB.count() == 0); // NOLINT(bugprone-use-after-move): see above
int i = 0;
for (const D& item : listA.items()) {
// By construction of A and B originally, the concatenated id sequence is continuous
REPORTER_ASSERT(reporter, i == item.fID);
i++;
}
REPORTER_ASSERT(reporter, i == (aCount + bCount));
}
template<int N>
static void run_reserve_test(skiatest::Reporter* reporter) {
constexpr int kItemsPerBlock = N + 4; // Make this a number > 1, even if N starting items == 1
SkTBlockList<C, N> list(kItemsPerBlock);
size_t initialSize = TBlockListTestAccess::TotalSize(list);
// Should be able to add N instances of T w/o changing size from initialSize
for (int i = 0; i < N; ++i) {
list.push_back(C(i));
}
REPORTER_ASSERT(reporter, initialSize == TBlockListTestAccess::TotalSize(list));
// Reserve room for 2*kItemsPerBlock items
list.reserve(2 * kItemsPerBlock);
REPORTER_ASSERT(reporter, list.count() == N); // count shouldn't change though
size_t reservedSize = TBlockListTestAccess::TotalSize(list);
REPORTER_ASSERT(reporter, reservedSize >= initialSize + 2 * kItemsPerBlock * sizeof(C));
for (int i = 0; i < 2 * kItemsPerBlock; ++i) {
list.push_back(C(i));
}
REPORTER_ASSERT(reporter, reservedSize == TBlockListTestAccess::TotalSize(list));
// Make the next block partially fully (N > 0 but < kItemsPerBlock)
for (int i = 0; i < N; ++i) {
list.push_back(C(i));
}
// Reserve room again for 2*kItemsPerBlock, but reserve should automatically take account of the
// (kItemsPerBlock-N) that are still available in the active block
list.reserve(2 * kItemsPerBlock);
int extraReservedCount = kItemsPerBlock + N;
// Because SkTBlockList normally allocates blocks in fixed sizes, and extraReservedCount >
// items-per-block, it will always use that size and not that of the growth policy.
REPORTER_ASSERT(reporter, TBlockListTestAccess::ScratchBlockSize(list) >=
extraReservedCount * sizeof(C));
reservedSize = TBlockListTestAccess::TotalSize(list);
for (int i = 0; i < 2 * kItemsPerBlock; ++i) {
list.push_back(C(i));
}
REPORTER_ASSERT(reporter, reservedSize == TBlockListTestAccess::TotalSize(list));
// If we reserve a count < items-per-block, it will use the fixed size from the growth policy.
list.reserve(2);
REPORTER_ASSERT(reporter, TBlockListTestAccess::ScratchBlockSize(list) >=
kItemsPerBlock * sizeof(C));
// Ensure the reservations didn't initialize any more D's than anticipated
int expectedInstanceCount = 2 * (N + 2 * kItemsPerBlock);
REPORTER_ASSERT(reporter, expectedInstanceCount == C::gInstCnt);
list.reset();
REPORTER_ASSERT(reporter, 0 == C::gInstCnt);
}
void run_large_increment_test(skiatest::Reporter* reporter) {
static constexpr size_t kIncrementMax = std::numeric_limits<uint16_t>::max();
// Pick an item count such that count*sizeof(C)/max align exceeds uint16_t max.
int itemCount = (int) (sizeof(C) * kIncrementMax / TBlockListTestAccess::kAddressAlign) + 1;
SkTBlockList<C> largeIncrement(itemCount);
// Trigger a scratch block allocation, which given default fixed growth policy, will be one
// block increment.
largeIncrement.reserve(10);
size_t scratchSize = TBlockListTestAccess::ScratchBlockSize(largeIncrement);
// SkBlockAllocator aligns large blocks to 4k
size_t expected = SkAlignTo(kIncrementMax * TBlockListTestAccess::kAddressAlign, (1 << 12));
REPORTER_ASSERT(reporter, scratchSize == expected);
}
DEF_TEST(SkTBlockList, reporter) {
// Test combinations of allocators with and without stack storage and with different block sizes
SkTBlockList<C> a1(1);
run_allocator_test(&a1, reporter);
SkTBlockList<C> a2(2);
run_allocator_test(&a2, reporter);
SkTBlockList<C> a5(5);
run_allocator_test(&a5, reporter);
SkTBlockList<C, 1> sa1;
run_allocator_test(&sa1, reporter);
SkTBlockList<C, 3> sa3;
run_allocator_test(&sa3, reporter);
SkTBlockList<C, 4> sa4;
run_allocator_test(&sa4, reporter);
run_reserve_test<1>(reporter);
run_reserve_test<2>(reporter);
run_reserve_test<3>(reporter);
run_reserve_test<4>(reporter);
run_reserve_test<5>(reporter);
run_concat_test<1, 1>(reporter, 10, 10);
run_concat_test<5, 1>(reporter, 50, 10);
run_concat_test<1, 5>(reporter, 10, 50);
run_concat_test<5, 5>(reporter, 100, 100);
run_concat_trivial_test<1, 1>(reporter, 10, 10);
run_concat_trivial_test<5, 1>(reporter, 50, 10);
run_concat_trivial_test<1, 5>(reporter, 10, 50);
run_concat_trivial_test<5, 5>(reporter, 100, 100);
run_large_increment_test(reporter);
}