blob: 8554b0029a4cac82b7109d02c551477975d2d409 [file] [log] [blame]
/*
* Copyright 2019 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkAlphaType.h"
#include "include/core/SkBlendMode.h"
#include "include/core/SkBlender.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkCapabilities.h"
#include "include/core/SkColor.h"
#include "include/core/SkColorFilter.h"
#include "include/core/SkColorType.h"
#include "include/core/SkData.h"
#include "include/core/SkImageInfo.h"
#include "include/core/SkPaint.h"
#include "include/core/SkPixmap.h"
#include "include/core/SkRefCnt.h"
#include "include/core/SkScalar.h"
#include "include/core/SkShader.h"
#include "include/core/SkSize.h"
#include "include/core/SkSpan.h"
#include "include/core/SkStream.h"
#include "include/core/SkString.h"
#include "include/core/SkSurface.h"
#include "include/core/SkTypes.h"
#include "include/effects/SkBlenders.h"
#include "include/effects/SkGradientShader.h"
#include "include/effects/SkRuntimeEffect.h"
#include "include/gpu/GpuTypes.h"
#include "include/gpu/GrDirectContext.h"
#include "include/private/SkColorData.h"
#include "include/private/SkSLSampleUsage.h"
#include "include/private/SkSLString.h"
#include "include/private/base/SkTArray.h"
#include "include/sksl/SkSLDebugTrace.h"
#include "include/sksl/SkSLVersion.h"
#include "src/base/SkTLazy.h"
#include "src/core/SkColorSpacePriv.h"
#include "src/core/SkRuntimeEffectPriv.h"
#include "src/gpu/KeyBuilder.h"
#include "src/gpu/SkBackingFit.h"
#include "src/gpu/ganesh/GrCaps.h"
#include "src/gpu/ganesh/GrColor.h"
#include "src/gpu/ganesh/GrDirectContextPriv.h"
#include "src/gpu/ganesh/GrFragmentProcessor.h"
#include "src/gpu/ganesh/GrImageInfo.h"
#include "src/gpu/ganesh/GrPixmap.h"
#include "src/gpu/ganesh/SurfaceFillContext.h"
#include "src/gpu/ganesh/effects/GrSkSLFP.h"
#include "tests/CtsEnforcement.h"
#include "tests/Test.h"
#include <array>
#include <cstdint>
#include <functional>
#include <initializer_list>
#include <memory>
#include <string>
#include <thread>
#include <utility>
class GrRecordingContext;
struct GrContextOptions;
struct SkIPoint;
#if defined(SK_GRAPHITE)
#include "include/gpu/graphite/Context.h"
#include "include/gpu/graphite/Recorder.h"
#include "include/gpu/graphite/Recording.h"
#include "src/gpu/graphite/Surface_Graphite.h"
struct GraphiteInfo {
skgpu::graphite::Context* context = nullptr;
skgpu::graphite::Recorder* recorder = nullptr;
};
#else
struct GraphiteInfo {
void* context = nullptr;
void* recorder = nullptr;
};
#endif
void test_invalid_effect(skiatest::Reporter* r, const char* src, const char* expected) {
auto [effect, errorText] = SkRuntimeEffect::MakeForShader(SkString(src));
REPORTER_ASSERT(r, !effect);
REPORTER_ASSERT(r, errorText.contains(expected),
"Expected error message to contain \"%s\". Actual message: \"%s\"",
expected, errorText.c_str());
}
#define EMPTY_MAIN "half4 main(float2 p) { return half4(0); }"
DEF_TEST(SkRuntimeEffectInvalid_NoInVariables, r) {
// 'in' variables aren't allowed at all:
test_invalid_effect(r, "in bool b;" EMPTY_MAIN, "'in'");
test_invalid_effect(r, "in float f;" EMPTY_MAIN, "'in'");
test_invalid_effect(r, "in float2 v;" EMPTY_MAIN, "'in'");
test_invalid_effect(r, "in half3x3 m;" EMPTY_MAIN, "'in'");
}
DEF_TEST(SkRuntimeEffectInvalid_UndefinedFunction, r) {
test_invalid_effect(r, "half4 missing(); half4 main(float2 p) { return missing(); }",
"function 'half4 missing()' is not defined");
}
DEF_TEST(SkRuntimeEffectInvalid_UndefinedMain, r) {
// Shouldn't be possible to create an SkRuntimeEffect without "main"
test_invalid_effect(r, "", "main");
}
DEF_TEST(SkRuntimeEffectInvalid_SkCapsDisallowed, r) {
// sk_Caps is an internal system. It should not be visible to runtime effects
test_invalid_effect(
r,
"half4 main(float2 p) { return sk_Caps.floatIs32Bits ? half4(1) : half4(0); }",
"name 'sk_Caps' is reserved");
}
DEF_TEST(SkRuntimeEffect_DeadCodeEliminationStackOverflow, r) {
// Verify that a deeply-nested loop does not cause stack overflow during SkVM dead-code
// elimination.
auto [effect, errorText] = SkRuntimeEffect::MakeForColorFilter(SkString(R"(
half4 main(half4 color) {
half value = color.r;
for (int a=0; a<10; ++a) { // 10
for (int b=0; b<10; ++b) { // 100
for (int c=0; c<10; ++c) { // 1000
for (int d=0; d<10; ++d) { // 10000
++value;
}}}}
return value.xxxx;
}
)"));
REPORTER_ASSERT(r, effect, "%s", errorText.c_str());
}
DEF_TEST(SkRuntimeEffectCanDisableES2Restrictions, r) {
auto test_valid_es3 = [](skiatest::Reporter* r, const char* sksl) {
SkRuntimeEffect::Options opt = SkRuntimeEffectPriv::ES3Options();
auto [effect, errorText] = SkRuntimeEffect::MakeForShader(SkString(sksl), opt);
REPORTER_ASSERT(r, effect, "%s", errorText.c_str());
};
test_invalid_effect(r, "float f[2] = float[2](0, 1);" EMPTY_MAIN, "construction of array type");
test_valid_es3 (r, "float f[2] = float[2](0, 1);" EMPTY_MAIN);
}
DEF_TEST(SkRuntimeEffectCanEnableVersion300, r) {
auto test_valid = [](skiatest::Reporter* r, const char* sksl) {
auto [effect, errorText] = SkRuntimeEffect::MakeForShader(SkString(sksl));
REPORTER_ASSERT(r, effect, "%s", errorText.c_str());
};
test_invalid_effect(r, "#version 100\nfloat f[2] = float[2](0, 1);" EMPTY_MAIN,
"construction of array type");
test_valid (r, "#version 300\nfloat f[2] = float[2](0, 1);" EMPTY_MAIN);
}
DEF_TEST(SkRuntimeEffectUniformFlags, r) {
auto [effect, errorText] = SkRuntimeEffect::MakeForShader(SkString(R"(
uniform int simple; // should have no flags
uniform float arrayOfOne[1]; // should have kArray_Flag
uniform float arrayOfMultiple[2]; // should have kArray_Flag
layout(color) uniform float4 color; // should have kColor_Flag
uniform half3 halfPrecisionFloat; // should have kHalfPrecision_Flag
layout(color) uniform half4 allFlags[2]; // should have Array | Color | HalfPrecision
)" EMPTY_MAIN));
REPORTER_ASSERT(r, effect, "%s", errorText.c_str());
SkSpan<const SkRuntimeEffect::Uniform> uniforms = effect->uniforms();
REPORTER_ASSERT(r, uniforms.size() == 6);
REPORTER_ASSERT(r, uniforms[0].flags == 0);
REPORTER_ASSERT(r, uniforms[1].flags == SkRuntimeEffect::Uniform::kArray_Flag);
REPORTER_ASSERT(r, uniforms[2].flags == SkRuntimeEffect::Uniform::kArray_Flag);
REPORTER_ASSERT(r, uniforms[3].flags == SkRuntimeEffect::Uniform::kColor_Flag);
REPORTER_ASSERT(r, uniforms[4].flags == SkRuntimeEffect::Uniform::kHalfPrecision_Flag);
REPORTER_ASSERT(r, uniforms[5].flags == (SkRuntimeEffect::Uniform::kArray_Flag |
SkRuntimeEffect::Uniform::kColor_Flag |
SkRuntimeEffect::Uniform::kHalfPrecision_Flag));
}
DEF_TEST(SkRuntimeEffectValidation, r) {
auto es2Effect = SkRuntimeEffect::MakeForShader(SkString("#version 100\n" EMPTY_MAIN)).effect;
auto es3Effect = SkRuntimeEffect::MakeForShader(SkString("#version 300\n" EMPTY_MAIN)).effect;
REPORTER_ASSERT(r, es2Effect && es3Effect);
auto es2Caps = SkCapabilities::RasterBackend();
REPORTER_ASSERT(r, es2Caps->skslVersion() == SkSL::Version::k100);
REPORTER_ASSERT(r, SkRuntimeEffectPriv::CanDraw(es2Caps.get(), es2Effect.get()));
REPORTER_ASSERT(r, !SkRuntimeEffectPriv::CanDraw(es2Caps.get(), es3Effect.get()));
}
DEF_TEST(SkRuntimeEffectForColorFilter, r) {
// Tests that the color filter factory rejects or accepts certain SkSL constructs
auto test_valid = [r](const char* sksl) {
auto [effect, errorText] = SkRuntimeEffect::MakeForColorFilter(SkString(sksl));
REPORTER_ASSERT(r, effect, "%s", errorText.c_str());
};
auto test_invalid = [r](const char* sksl, const char* expected) {
auto [effect, errorText] = SkRuntimeEffect::MakeForColorFilter(SkString(sksl));
REPORTER_ASSERT(r, !effect);
REPORTER_ASSERT(r,
errorText.contains(expected),
"Expected error message to contain \"%s\". Actual message: \"%s\"",
expected,
errorText.c_str());
};
// Color filters must use the 'half4 main(half4)' signature. Either color can be float4/vec4
test_valid("half4 main(half4 c) { return c; }");
test_valid("float4 main(half4 c) { return c; }");
test_valid("half4 main(float4 c) { return c; }");
test_valid("float4 main(float4 c) { return c; }");
test_valid("vec4 main(half4 c) { return c; }");
test_valid("half4 main(vec4 c) { return c; }");
test_valid("vec4 main(vec4 c) { return c; }");
// Invalid return types
test_invalid("void main(half4 c) {}", "'main' must return");
test_invalid("half3 main(half4 c) { return c.rgb; }", "'main' must return");
// Invalid argument types (some are valid as shaders, but not color filters)
test_invalid("half4 main() { return half4(1); }", "'main' parameter");
test_invalid("half4 main(float2 p) { return half4(1); }", "'main' parameter");
test_invalid("half4 main(float2 p, half4 c) { return c; }", "'main' parameter");
// sk_FragCoord should not be available
test_invalid("half4 main(half4 c) { return sk_FragCoord.xy01; }", "unknown identifier");
// Sampling a child shader requires that we pass explicit coords
test_valid("uniform shader child;"
"half4 main(half4 c) { return child.eval(c.rg); }");
// Sampling a colorFilter requires a color
test_valid("uniform colorFilter child;"
"half4 main(half4 c) { return child.eval(c); }");
// Sampling a blender requires two colors
test_valid("uniform blender child;"
"half4 main(half4 c) { return child.eval(c, c); }");
}
DEF_TEST(SkRuntimeEffectForBlender, r) {
// Tests that the blender factory rejects or accepts certain SkSL constructs
auto test_valid = [r](const char* sksl) {
auto [effect, errorText] = SkRuntimeEffect::MakeForBlender(SkString(sksl));
REPORTER_ASSERT(r, effect, "%s", errorText.c_str());
};
auto test_invalid = [r](const char* sksl, const char* expected) {
auto [effect, errorText] = SkRuntimeEffect::MakeForBlender(SkString(sksl));
REPORTER_ASSERT(r, !effect);
REPORTER_ASSERT(r,
errorText.contains(expected),
"Expected error message to contain \"%s\". Actual message: \"%s\"",
expected,
errorText.c_str());
};
// Blenders must use the 'half4 main(half4, half4)' signature. Any mixture of float4/vec4/half4
// is allowed.
test_valid("half4 main(half4 s, half4 d) { return s; }");
test_valid("float4 main(float4 s, float4 d) { return d; }");
test_valid("float4 main(half4 s, float4 d) { return s; }");
test_valid("half4 main(float4 s, half4 d) { return d; }");
test_valid("vec4 main(half4 s, half4 d) { return s; }");
test_valid("half4 main(vec4 s, vec4 d) { return d; }");
test_valid("vec4 main(vec4 s, vec4 d) { return s; }");
// Invalid return types
test_invalid("void main(half4 s, half4 d) {}", "'main' must return");
test_invalid("half3 main(half4 s, half4 d) { return s.rgb; }", "'main' must return");
// Invalid argument types (some are valid as shaders/color filters)
test_invalid("half4 main() { return half4(1); }", "'main' parameter");
test_invalid("half4 main(half4 c) { return c; }", "'main' parameter");
test_invalid("half4 main(float2 p) { return half4(1); }", "'main' parameter");
test_invalid("half4 main(float2 p, half4 c) { return c; }", "'main' parameter");
test_invalid("half4 main(float2 p, half4 a, half4 b) { return a; }", "'main' parameter");
test_invalid("half4 main(half4 a, half4 b, half4 c) { return a; }", "'main' parameter");
// sk_FragCoord should not be available
test_invalid("half4 main(half4 s, half4 d) { return sk_FragCoord.xy01; }",
"unknown identifier");
// Sampling a child shader requires that we pass explicit coords
test_valid("uniform shader child;"
"half4 main(half4 s, half4 d) { return child.eval(s.rg); }");
// Sampling a colorFilter requires a color
test_valid("uniform colorFilter child;"
"half4 main(half4 s, half4 d) { return child.eval(d); }");
// Sampling a blender requires two colors
test_valid("uniform blender child;"
"half4 main(half4 s, half4 d) { return child.eval(s, d); }");
}
DEF_TEST(SkRuntimeEffectForShader, r) {
// Tests that the shader factory rejects or accepts certain SkSL constructs
auto test_valid = [r](const char* sksl, SkRuntimeEffect::Options options = {}) {
auto [effect, errorText] = SkRuntimeEffect::MakeForShader(SkString(sksl), options);
REPORTER_ASSERT(r, effect, "%s", errorText.c_str());
};
auto test_invalid = [r](const char* sksl,
const char* expected,
SkRuntimeEffect::Options options = {}) {
auto [effect, errorText] = SkRuntimeEffect::MakeForShader(SkString(sksl));
REPORTER_ASSERT(r, !effect);
REPORTER_ASSERT(r,
errorText.contains(expected),
"Expected error message to contain \"%s\". Actual message: \"%s\"",
expected,
errorText.c_str());
};
// Shaders must use the 'half4 main(float2)' signature
// Either color can be half4/float4/vec4, but the coords must be float2/vec2
test_valid("half4 main(float2 p) { return p.xyxy; }");
test_valid("float4 main(float2 p) { return p.xyxy; }");
test_valid("vec4 main(float2 p) { return p.xyxy; }");
test_valid("half4 main(vec2 p) { return p.xyxy; }");
test_valid("vec4 main(vec2 p) { return p.xyxy; }");
// The 'half4 main(float2, half4|float4)' signature is disallowed on both public and private
// runtime effects.
SkRuntimeEffect::Options options;
SkRuntimeEffectPriv::AllowPrivateAccess(&options);
test_invalid("half4 main(float2 p, half4 c) { return c; }", "'main' parameter");
test_invalid("half4 main(float2 p, half4 c) { return c; }", "'main' parameter", options);
test_invalid("half4 main(float2 p, float4 c) { return c; }", "'main' parameter");
test_invalid("half4 main(float2 p, float4 c) { return c; }", "'main' parameter", options);
test_invalid("half4 main(float2 p, vec4 c) { return c; }", "'main' parameter");
test_invalid("half4 main(float2 p, vec4 c) { return c; }", "'main' parameter", options);
test_invalid("float4 main(float2 p, half4 c) { return c; }", "'main' parameter");
test_invalid("float4 main(float2 p, half4 c) { return c; }", "'main' parameter", options);
test_invalid("vec4 main(float2 p, half4 c) { return c; }", "'main' parameter");
test_invalid("vec4 main(float2 p, half4 c) { return c; }", "'main' parameter", options);
test_invalid("vec4 main(vec2 p, vec4 c) { return c; }", "'main' parameter");
test_invalid("vec4 main(vec2 p, vec4 c) { return c; }", "'main' parameter", options);
// Invalid return types
test_invalid("void main(float2 p) {}", "'main' must return");
test_invalid("half3 main(float2 p) { return p.xy1; }", "'main' must return");
// Invalid argument types (some are valid as color filters, but not shaders)
test_invalid("half4 main() { return half4(1); }", "'main' parameter");
test_invalid("half4 main(half4 c) { return c; }", "'main' parameter");
// sk_FragCoord should be available, but only if we've enabled it via Options
test_invalid("half4 main(float2 p) { return sk_FragCoord.xy01; }",
"unknown identifier 'sk_FragCoord'");
test_valid("half4 main(float2 p) { return sk_FragCoord.xy01; }", options);
// Sampling a child shader requires that we pass explicit coords
test_valid("uniform shader child;"
"half4 main(float2 p) { return child.eval(p); }");
// Sampling a colorFilter requires a color
test_valid("uniform colorFilter child;"
"half4 main(float2 p) { return child.eval(half4(1)); }");
// Sampling a blender requires two colors
test_valid("uniform blender child;"
"half4 main(float2 p) { return child.eval(half4(0.5), half4(0.6)); }");
}
using PreTestFn = std::function<void(SkCanvas*, SkPaint*)>;
void paint_canvas(SkCanvas* canvas, SkPaint* paint, const PreTestFn& preTestCallback) {
canvas->save();
if (preTestCallback) {
preTestCallback(canvas, paint);
}
canvas->drawPaint(*paint);
canvas->restore();
}
static bool read_pixels(SkSurface* surface,
GrColor* pixels) {
SkImageInfo info = surface->imageInfo();
SkPixmap dest{info, pixels, info.minRowBytes()};
return surface->readPixels(dest, /*srcX=*/0, /*srcY=*/0);
}
static void verify_2x2_surface_results(skiatest::Reporter* r,
const SkRuntimeEffect* effect,
SkSurface* surface,
std::array<GrColor, 4> expected) {
std::array<GrColor, 4> actual;
SkImageInfo info = surface->imageInfo();
if (!read_pixels(surface, actual.data())) {
REPORT_FAILURE(r, "readPixels", SkString("readPixels failed"));
return;
}
if (actual != expected) {
REPORT_FAILURE(r, "Runtime effect didn't match expectations",
SkStringPrintf("\n"
"Expected: [ %08x %08x %08x %08x ]\n"
"Got : [ %08x %08x %08x %08x ]\n"
"SkSL:\n%s\n",
expected[0], expected[1], expected[2], expected[3],
actual[0], actual[1], actual[2], actual[3],
effect->source().c_str()));
}
}
static sk_sp<SkSurface> make_surface(GrRecordingContext* grContext,
const GraphiteInfo* graphite,
SkISize size) {
const SkImageInfo info = SkImageInfo::Make(size, kRGBA_8888_SkColorType, kPremul_SkAlphaType);
sk_sp<SkSurface> surface;
if (graphite) {
#if defined(SK_GRAPHITE)
surface = SkSurface::MakeGraphite(graphite->recorder, info);
#endif
} else if (grContext) {
surface = SkSurface::MakeRenderTarget(grContext, skgpu::Budgeted::kNo, info);
} else {
surface = SkSurface::MakeRaster(info);
}
SkASSERT(surface);
return surface;
}
class TestEffect {
public:
TestEffect(skiatest::Reporter* r,
GrRecordingContext* grContext,
const GraphiteInfo* graphite,
SkISize size = {2, 2})
: fReporter(r), fGrContext(grContext), fGraphite(graphite), fSize(size) {
fSurface = make_surface(fGrContext, fGraphite, fSize);
}
void build(const char* src) {
SkRuntimeEffect::Options options;
SkRuntimeEffectPriv::AllowPrivateAccess(&options);
auto [effect, errorText] = SkRuntimeEffect::MakeForShader(SkString(src), options);
if (!effect) {
ERRORF(fReporter, "Effect didn't compile: %s", errorText.c_str());
return;
}
fBuilder.init(std::move(effect));
}
SkRuntimeShaderBuilder::BuilderUniform uniform(const char* name) {
return fBuilder->uniform(name);
}
SkRuntimeShaderBuilder::BuilderChild child(const char* name) {
return fBuilder->child(name);
}
void test(std::array<GrColor, 4> expected, PreTestFn preTestCallback = nullptr) {
auto shader = fBuilder->makeShader();
if (!shader) {
ERRORF(fReporter, "Effect didn't produce a shader");
return;
}
SkCanvas* canvas = fSurface->getCanvas();
// We shouldn't need to clear the canvas, because we are about to paint over the whole thing
// with a `source` blend mode. However, there are a few devices where the background can
// leak through when we paint with MSAA on. (This seems to be a driver/hardware bug.)
// Graphite, at present, uses MSAA to do `drawPaint`. To avoid flakiness in this test on
// those devices, we explicitly clear the canvas here. (skia:13761)
canvas->clear(SK_ColorBLACK);
SkPaint paint;
paint.setShader(std::move(shader));
paint.setBlendMode(SkBlendMode::kSrc);
paint_canvas(canvas, &paint, preTestCallback);
verify_2x2_surface_results(fReporter, fBuilder->effect(), fSurface.get(), expected);
}
std::string trace(const SkIPoint& traceCoord) {
sk_sp<SkShader> shader = fBuilder->makeShader();
if (!shader) {
ERRORF(fReporter, "Effect didn't produce a shader");
return {};
}
auto [debugShader, debugTrace] = SkRuntimeEffect::MakeTraced(std::move(shader), traceCoord);
SkCanvas* canvas = fSurface->getCanvas();
SkPaint paint;
paint.setShader(std::move(debugShader));
paint.setBlendMode(SkBlendMode::kSrc);
paint_canvas(canvas, &paint, /*preTestCallback=*/nullptr);
SkDynamicMemoryWStream wstream;
debugTrace->dump(&wstream);
sk_sp<SkData> streamData = wstream.detachAsData();
return std::string(static_cast<const char*>(streamData->data()), streamData->size());
}
void test(GrColor expected, PreTestFn preTestCallback = nullptr) {
this->test({expected, expected, expected, expected}, preTestCallback);
}
private:
skiatest::Reporter* fReporter;
sk_sp<SkSurface> fSurface;
GrRecordingContext* fGrContext;
const GraphiteInfo* fGraphite;
SkISize fSize;
SkTLazy<SkRuntimeShaderBuilder> fBuilder;
};
class TestBlend {
public:
TestBlend(skiatest::Reporter* r, GrRecordingContext* grContext, const GraphiteInfo* graphite)
: fReporter(r), fGrContext(grContext), fGraphite(graphite) {
fSurface = make_surface(fGrContext, fGraphite, /*size=*/{2, 2});
}
void build(const char* src) {
auto [effect, errorText] = SkRuntimeEffect::MakeForBlender(SkString(src));
if (!effect) {
ERRORF(fReporter, "Effect didn't compile: %s", errorText.c_str());
return;
}
fBuilder.init(std::move(effect));
}
SkSurface* surface() {
return fSurface.get();
}
SkRuntimeBlendBuilder::BuilderUniform uniform(const char* name) {
return fBuilder->uniform(name);
}
SkRuntimeBlendBuilder::BuilderChild child(const char* name) {
return fBuilder->child(name);
}
void test(std::array<GrColor, 4> expected, PreTestFn preTestCallback = nullptr) {
auto blender = fBuilder->makeBlender();
if (!blender) {
ERRORF(fReporter, "Effect didn't produce a blender");
return;
}
SkCanvas* canvas = fSurface->getCanvas();
SkPaint paint;
paint.setBlender(std::move(blender));
paint.setColor(SK_ColorGRAY);
paint_canvas(canvas, &paint, preTestCallback);
verify_2x2_surface_results(fReporter, fBuilder->effect(), fSurface.get(), expected);
}
void test(GrColor expected, PreTestFn preTestCallback = nullptr) {
this->test({expected, expected, expected, expected}, preTestCallback);
}
private:
skiatest::Reporter* fReporter;
sk_sp<SkSurface> fSurface;
GrRecordingContext* fGrContext;
const GraphiteInfo* fGraphite;
SkTLazy<SkRuntimeBlendBuilder> fBuilder;
};
// Produces a shader which will paint these opaque colors in a 2x2 rectangle:
// [ Red, Green ]
// [ Blue, White ]
static sk_sp<SkShader> make_RGBW_shader() {
static constexpr SkColor colors[] = {SK_ColorWHITE, SK_ColorWHITE,
SK_ColorBLUE, SK_ColorBLUE,
SK_ColorRED, SK_ColorRED,
SK_ColorGREEN, SK_ColorGREEN};
static constexpr SkScalar pos[] = { 0, .25f, .25f, .50f, .50f, .75, .75, 1 };
static_assert(std::size(colors) == std::size(pos), "size mismatch");
return SkGradientShader::MakeSweep(1, 1, colors, pos, std::size(colors));
}
static void test_RuntimeEffect_Shaders(skiatest::Reporter* r,
GrRecordingContext* grContext,
const GraphiteInfo* graphite) {
TestEffect effect(r, grContext, graphite);
using float4 = std::array<float, 4>;
using int4 = std::array<int, 4>;
// Local coords
effect.build("half4 main(float2 p) { return half4(half2(p - 0.5), 0, 1); }");
effect.test({0xFF000000, 0xFF0000FF, 0xFF00FF00, 0xFF00FFFF});
// Use of a simple uniform. (Draw twice with two values to ensure it's updated).
effect.build("uniform float4 gColor; half4 main(float2 p) { return half4(gColor); }");
effect.uniform("gColor") = float4{ 0.0f, 0.25f, 0.75f, 1.0f };
effect.test(0xFFBF4000);
effect.uniform("gColor") = float4{ 1.0f, 0.0f, 0.0f, 0.498f };
effect.test(0x7F0000FF); // Tests that we don't clamp to valid premul
// Same, with integer uniforms
effect.build("uniform int4 gColor; half4 main(float2 p) { return half4(gColor) / 255.0; }");
effect.uniform("gColor") = int4{ 0x00, 0x40, 0xBF, 0xFF };
effect.test(0xFFBF4000);
effect.uniform("gColor") = int4{ 0xFF, 0x00, 0x00, 0x7F };
effect.test(0x7F0000FF); // Tests that we don't clamp to valid premul
// Test sk_FragCoord (device coords). Rotate the canvas to be sure we're seeing device coords.
// Since the surface is 2x2, we should see (0,0), (1,0), (0,1), (1,1). Multiply by 0.498 to
// make sure we're not saturating unexpectedly.
effect.build(
"half4 main(float2 p) { return half4(0.498 * (half2(sk_FragCoord.xy) - 0.5), 0, 1); }");
effect.test({0xFF000000, 0xFF00007F, 0xFF007F00, 0xFF007F7F},
[](SkCanvas* canvas, SkPaint*) { canvas->rotate(45.0f); });
// Runtime effects should use relaxed precision rules by default
effect.build("half4 main(float2 p) { return float4(p - 0.5, 0, 1); }");
effect.test({0xFF000000, 0xFF0000FF, 0xFF00FF00, 0xFF00FFFF});
// ... and support *returning* float4 (aka vec4), not just half4
effect.build("float4 main(float2 p) { return float4(p - 0.5, 0, 1); }");
effect.test({0xFF000000, 0xFF0000FF, 0xFF00FF00, 0xFF00FFFF});
effect.build("vec4 main(float2 p) { return float4(p - 0.5, 0, 1); }");
effect.test({0xFF000000, 0xFF0000FF, 0xFF00FF00, 0xFF00FFFF});
// Mutating coords should work. (skbug.com/10918)
effect.build("vec4 main(vec2 p) { p -= 0.5; return vec4(p, 0, 1); }");
effect.test({0xFF000000, 0xFF0000FF, 0xFF00FF00, 0xFF00FFFF});
effect.build("void moveCoords(inout vec2 p) { p -= 0.5; }"
"vec4 main(vec2 p) { moveCoords(p); return vec4(p, 0, 1); }");
effect.test({0xFF000000, 0xFF0000FF, 0xFF00FF00, 0xFF00FFFF});
//
// Sampling children
//
// Sampling a null shader should return the paint color
if (!graphite) {
// TODO: Graphite does not yet pass this test.
effect.build("uniform shader child;"
"half4 main(float2 p) { return child.eval(p); }");
effect.child("child") = nullptr;
effect.test(0xFF00FFFF,
[](SkCanvas*, SkPaint* paint) { paint->setColor4f({1.0f, 1.0f, 0.0f, 1.0f}); });
}
// Sampling a null color-filter should return the passed-in color
effect.build("uniform colorFilter child;"
"half4 main(float2 p) { return child.eval(half4(1, 1, 0, 1)); }");
effect.child("child") = nullptr;
effect.test(0xFF00FFFF);
// Sampling a null blender should return blend_src_over(src, dest).
effect.build("uniform blender child;"
"half4 main(float2 p) {"
" float4 src = float4(p - 0.5, 0, 1) * 0.498;"
" return child.eval(src, half4(0, 0, 0, 1));"
"}");
effect.child("child") = nullptr;
effect.test({0xFF000000, 0xFF00007F, 0xFF007F00, 0xFF007F7F});
// Sampling a simple child at our coordinates
sk_sp<SkShader> rgbwShader = make_RGBW_shader();
effect.build("uniform shader child;"
"half4 main(float2 p) { return child.eval(p); }");
effect.child("child") = rgbwShader;
effect.test({0xFF0000FF, 0xFF00FF00, 0xFFFF0000, 0xFFFFFFFF});
// Sampling with explicit coordinates (reflecting about the diagonal)
effect.build("uniform shader child;"
"half4 main(float2 p) { return child.eval(p.yx); }");
effect.child("child") = rgbwShader;
effect.test({0xFF0000FF, 0xFFFF0000, 0xFF00FF00, 0xFFFFFFFF});
// Bind an image shader, but don't use it - ensure that we don't assert or generate bad shaders.
// (skbug.com/12429)
effect.build("uniform shader child;"
"half4 main(float2 p) { return half4(0, 1, 0, 1); }");
effect.child("child") = rgbwShader;
effect.test(0xFF00FF00);
//
// Helper functions
//
// Test case for inlining in the pipeline-stage and fragment-shader passes (skbug.com/10526):
effect.build("float2 helper(float2 x) { return x + 1; }"
"half4 main(float2 p) { float2 v = helper(p); return half4(half2(v), 0, 1); }");
effect.test(0xFF00FFFF);
}
DEF_TEST(SkRuntimeEffectSimple, r) {
test_RuntimeEffect_Shaders(r, /*grContext=*/nullptr, /*graphite=*/nullptr);
}
#if defined(SK_GRAPHITE)
DEF_GRAPHITE_TEST_FOR_RENDERING_CONTEXTS(SkRuntimeEffectSimple_Graphite, r, context) {
std::unique_ptr<skgpu::graphite::Recorder> recorder = context->makeRecorder();
GraphiteInfo graphite = {context, recorder.get()};
test_RuntimeEffect_Shaders(r, /*grContext=*/nullptr, &graphite);
}
#endif
DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(SkRuntimeEffectSimple_GPU,
r,
ctxInfo,
CtsEnforcement::kApiLevel_T) {
test_RuntimeEffect_Shaders(r, ctxInfo.directContext(), /*graphite=*/nullptr);
}
static void verify_draw_obeys_capabilities(skiatest::Reporter* r,
const SkRuntimeEffect* effect,
SkSurface* surface,
const SkPaint& paint) {
// We expect the draw to do something if-and-only-if expectSuccess is true:
const bool expectSuccess = surface->capabilities()->skslVersion() >= SkSL::Version::k300;
constexpr GrColor kGreen = 0xFF00FF00;
constexpr GrColor kRed = 0xFF0000FF;
const GrColor kExpected = expectSuccess ? kGreen : kRed;
surface->getCanvas()->clear(SK_ColorRED);
surface->getCanvas()->drawPaint(paint);
verify_2x2_surface_results(r, effect, surface, {kExpected, kExpected, kExpected, kExpected});
}
static void test_RuntimeEffectObeysCapabilities(skiatest::Reporter* r, SkSurface* surface) {
// This test creates shaders and blenders that target `#version 300`. If a user validates an
// effect like this against a particular device, and later draws that effect to a device with
// insufficient capabilities -- we want to fail gracefully (drop the draw entirely).
// If the capabilities indicate that the effect is supported, we expect it to work.
//
// We test two different scenarios here:
// 1) An effect flagged as #version 300, but actually compatible with #version 100.
// 2) An effect flagged as #version 300, and using features not available in ES2.
//
// We expect both cases to fail cleanly on ES2-only devices -- nothing should be drawn, and
// there should be no asserts or driver shader-compilation errors.
//
// In all tests, we first clear the canvas to RED, then draw an effect that (if it renders)
// will fill the canvas with GREEN. We check that the final colors match our expectations,
// based on the device capabilities.
// Effect that would actually work on CPU/ES2, but should still fail on those devices:
{
auto effect = SkRuntimeEffect::MakeForShader(SkString(R"(
#version 300
half4 main(float2 xy) { return half4(0, 1, 0, 1); }
)")).effect;
REPORTER_ASSERT(r, effect);
SkPaint paint;
paint.setShader(effect->makeShader(/*uniforms=*/nullptr, /*children=*/{}));
REPORTER_ASSERT(r, paint.getShader());
verify_draw_obeys_capabilities(r, effect.get(), surface, paint);
}
// Effect that won't work on CPU/ES2 at all, and should fail gracefully on those devices.
// We choose to use bit-pun intrinsics because SkSL doesn't automatically inject an extension
// to enable them (like it does for derivatives). We pass a non-literal value so that SkSL's
// constant folding doesn't elide them entirely before the driver sees the shader.
{
auto effect = SkRuntimeEffect::MakeForShader(SkString(R"(
#version 300
half4 main(float2 xy) {
half4 result = half4(0, 1, 0, 1);
result.g = intBitsToFloat(floatBitsToInt(result.g));
return result;
}
)")).effect;
REPORTER_ASSERT(r, effect);
SkPaint paint;
paint.setShader(effect->makeShader(/*uniforms=*/nullptr, /*children=*/{}));
REPORTER_ASSERT(r, paint.getShader());
verify_draw_obeys_capabilities(r, effect.get(), surface, paint);
}
//
// As above, but with a blender
//
{
auto effect = SkRuntimeEffect::MakeForBlender(SkString(R"(
#version 300
half4 main(half4 src, half4 dst) { return half4(0, 1, 0, 1); }
)")).effect;
REPORTER_ASSERT(r, effect);
SkPaint paint;
paint.setBlender(effect->makeBlender(/*uniforms=*/nullptr, /*children=*/{}));
REPORTER_ASSERT(r, paint.getBlender());
verify_draw_obeys_capabilities(r, effect.get(), surface, paint);
}
{
auto effect = SkRuntimeEffect::MakeForBlender(SkString(R"(
#version 300
half4 main(half4 src, half4 dst) {
half4 result = half4(0, 1, 0, 1);
result.g = intBitsToFloat(floatBitsToInt(result.g));
return result;
}
)")).effect;
REPORTER_ASSERT(r, effect);
SkPaint paint;
paint.setBlender(effect->makeBlender(/*uniforms=*/nullptr, /*children=*/{}));
REPORTER_ASSERT(r, paint.getBlender());
verify_draw_obeys_capabilities(r, effect.get(), surface, paint);
}
}
DEF_TEST(SkRuntimeEffectObeysCapabilities_CPU, r) {
SkImageInfo info = SkImageInfo::Make(2, 2, kRGBA_8888_SkColorType, kPremul_SkAlphaType);
sk_sp<SkSurface> surface = SkSurface::MakeRaster(info);
REPORTER_ASSERT(r, surface);
test_RuntimeEffectObeysCapabilities(r, surface.get());
}
DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(SkRuntimeEffectObeysCapabilities_GPU,
r,
ctxInfo,
CtsEnforcement::kApiLevel_T) {
SkImageInfo info = SkImageInfo::Make(2, 2, kRGBA_8888_SkColorType, kPremul_SkAlphaType);
sk_sp<SkSurface> surface =
SkSurface::MakeRenderTarget(ctxInfo.directContext(), skgpu::Budgeted::kNo, info);
REPORTER_ASSERT(r, surface);
test_RuntimeEffectObeysCapabilities(r, surface.get());
}
DEF_TEST(SkRuntimeColorFilterLimitedToES2, r) {
// Verify that SkSL requesting #version 300 can't be used to create a color-filter effect.
// This restriction could be removed if we can find a way to implement filterColor for these
// color filters.
{
auto effect = SkRuntimeEffect::MakeForColorFilter(SkString(R"(
#version 300
half4 main(half4 inColor) { return half4(1, 0, 0, 1); }
)")).effect;
REPORTER_ASSERT(r, !effect);
}
{
auto effect = SkRuntimeEffect::MakeForColorFilter(SkString(R"(
#version 300
uniform int loops;
half4 main(half4 inColor) {
half4 result = half4(1, 0, 0, 1);
for (int i = 0; i < loops; i++) {
result = result.argb;
}
return result;
}
)")).effect;
REPORTER_ASSERT(r, !effect);
}
}
DEF_TEST(SkRuntimeEffectTraceShader, r) {
for (int imageSize : {2, 80}) {
TestEffect effect(r, /*grContext=*/nullptr, /*graphite=*/nullptr,
SkISize{imageSize, imageSize});
effect.build(R"(
half4 main(float2 p) {
float2 val = p - 0.5;
return val.0y01;
}
)");
int center = imageSize / 2;
std::string dump = effect.trace({center, 1});
auto expectation = SkSL::String::printf(R"($0 = [main].result (float4 : slot 1/4, L2)
$1 = [main].result (float4 : slot 2/4, L2)
$2 = [main].result (float4 : slot 3/4, L2)
$3 = [main].result (float4 : slot 4/4, L2)
$4 = p (float2 : slot 1/2, L2)
$5 = p (float2 : slot 2/2, L2)
$6 = val (float2 : slot 1/2, L3)
$7 = val (float2 : slot 2/2, L3)
F0 = half4 main(float2 p)
enter half4 main(float2 p)
p.x = %d.5
p.y = 1.5
scope +1
line 3
val.x = %d
val.y = 1
line 4
[main].result.x = 0
[main].result.y = 1
[main].result.z = 0
[main].result.w = 1
scope -1
exit half4 main(float2 p)
)", center, center);
REPORTER_ASSERT(r, dump == expectation,
"Trace output does not match expectation for %dx%d:\n%.*s\n",
imageSize, imageSize, (int)dump.size(), dump.data());
}
}
DEF_TEST(SkRuntimeEffectTracesAreUnoptimized, r) {
TestEffect effect(r, /*grContext=*/nullptr, /*graphite=*/nullptr);
effect.build(R"(
int globalUnreferencedVar = 7;
half inlinableFunction() {
return 1;
}
half4 main(float2 p) {
if (true) {
int localUnreferencedVar = 7;
}
return inlinableFunction().xxxx;
}
)");
std::string dump = effect.trace({1, 1});
constexpr char kExpectation[] = R"($0 = globalUnreferencedVar (int, L2)
$1 = [main].result (float4 : slot 1/4, L6)
$2 = [main].result (float4 : slot 2/4, L6)
$3 = [main].result (float4 : slot 3/4, L6)
$4 = [main].result (float4 : slot 4/4, L6)
$5 = p (float2 : slot 1/2, L6)
$6 = p (float2 : slot 2/2, L6)
$7 = localUnreferencedVar (int, L8)
$8 = [inlinableFunction].result (float, L3)
F0 = half4 main(float2 p)
F1 = half inlinableFunction()
globalUnreferencedVar = 7
enter half4 main(float2 p)
p.x = 1.5
p.y = 1.5
scope +1
line 7
scope +1
line 8
localUnreferencedVar = 7
scope -1
line 10
enter half inlinableFunction()
scope +1
line 4
[inlinableFunction].result = 1
scope -1
exit half inlinableFunction()
[main].result.x = 1
[main].result.y = 1
[main].result.z = 1
[main].result.w = 1
scope -1
exit half4 main(float2 p)
)";
REPORTER_ASSERT(r, dump == kExpectation,
"Trace output does not match expectation:\n%.*s\n",
(int)dump.size(), dump.data());
}
DEF_TEST(SkRuntimeEffectTraceCodeThatCannotBeUnoptimized, r) {
TestEffect effect(r, /*grContext=*/nullptr, /*graphite=*/nullptr);
effect.build(R"(
half4 main(float2 p) {
int variableThatGetsOptimizedAway = 7;
if (true) {
return half4(1);
}
// This (unreachable) path doesn't return a value.
// Without optimization, SkSL thinks this code doesn't return a value on every path.
}
)");
std::string dump = effect.trace({1, 1});
constexpr char kExpectation[] = R"($0 = [main].result (float4 : slot 1/4, L2)
$1 = [main].result (float4 : slot 2/4, L2)
$2 = [main].result (float4 : slot 3/4, L2)
$3 = [main].result (float4 : slot 4/4, L2)
$4 = p (float2 : slot 1/2, L2)
$5 = p (float2 : slot 2/2, L2)
F0 = half4 main(float2 p)
enter half4 main(float2 p)
p.x = 1.5
p.y = 1.5
scope +1
scope +1
line 5
[main].result.x = 1
[main].result.y = 1
[main].result.z = 1
[main].result.w = 1
scope -1
scope -1
exit half4 main(float2 p)
)";
REPORTER_ASSERT(r, dump == kExpectation,
"Trace output does not match expectation:\n%.*s\n",
(int)dump.size(), dump.data());
}
static void test_RuntimeEffect_Blenders(skiatest::Reporter* r,
GrRecordingContext* grContext,
const GraphiteInfo* graphite) {
TestBlend effect(r, grContext, graphite);
using float2 = std::array<float, 2>;
using float4 = std::array<float, 4>;
using int4 = std::array<int, 4>;
// Use of a simple uniform. (Draw twice with two values to ensure it's updated).
effect.build("uniform float4 gColor; half4 main(half4 s, half4 d) { return half4(gColor); }");
effect.uniform("gColor") = float4{ 0.0f, 0.25f, 0.75f, 1.0f };
effect.test(0xFFBF4000);
effect.uniform("gColor") = float4{ 1.0f, 0.0f, 0.0f, 0.498f };
effect.test(0x7F0000FF); // We don't clamp here either
// Same, with integer uniforms
effect.build("uniform int4 gColor;"
"half4 main(half4 s, half4 d) { return half4(gColor) / 255.0; }");
effect.uniform("gColor") = int4{ 0x00, 0x40, 0xBF, 0xFF };
effect.test(0xFFBF4000);
effect.uniform("gColor") = int4{ 0xFF, 0x00, 0x00, 0x7F };
effect.test(0x7F0000FF); // We don't clamp here either
// Verify that mutating the source and destination colors is allowed
effect.build("half4 main(half4 s, half4 d) { s += d; d += s; return half4(1); }");
effect.test(0xFFFFFFFF);
// Verify that we can write out the source color (ignoring the dest color)
// This is equivalent to the kSrc blend mode.
effect.build("half4 main(half4 s, half4 d) { return s; }");
effect.test(0xFF888888);
// Fill the destination with a variety of colors (using the RGBW shader)
SkPaint rgbwPaint;
rgbwPaint.setShader(make_RGBW_shader());
rgbwPaint.setBlendMode(SkBlendMode::kSrc);
effect.surface()->getCanvas()->drawPaint(rgbwPaint);
// Verify that we can read back the dest color exactly as-is (ignoring the source color)
// This is equivalent to the kDst blend mode.
effect.build("half4 main(half4 s, half4 d) { return d; }");
effect.test({0xFF0000FF, 0xFF00FF00, 0xFFFF0000, 0xFFFFFFFF});
// Verify that we can invert the destination color (including the alpha channel).
// The expected outputs are the exact inverse of the previous test.
effect.build("half4 main(half4 s, half4 d) { return half4(1) - d; }");
effect.test({0x00FFFF00, 0x00FF00FF, 0x0000FFFF, 0x00000000});
// Verify that color values are clamped to 0 and 1.
effect.build("half4 main(half4 s, half4 d) { return half4(-1); }");
effect.test(0x00000000);
effect.build("half4 main(half4 s, half4 d) { return half4(2); }");
effect.test(0xFFFFFFFF);
//
// Sampling children
//
// Sampling a null shader/color filter should return the paint color.
effect.build("uniform shader child;"
"half4 main(half4 s, half4 d) { return child.eval(s.rg); }");
effect.child("child") = nullptr;
effect.test(0xFF00FFFF,
[](SkCanvas*, SkPaint* paint) { paint->setColor4f({1.0f, 1.0f, 0.0f, 1.0f}); });
effect.build("uniform colorFilter child;"
"half4 main(half4 s, half4 d) { return child.eval(s); }");
effect.child("child") = nullptr;
effect.test(0xFF00FFFF,
[](SkCanvas*, SkPaint* paint) { paint->setColor4f({1.0f, 1.0f, 0.0f, 1.0f}); });
// Sampling a null blender should do a src-over blend. Draw 50% black over RGBW to verify this.
effect.surface()->getCanvas()->drawPaint(rgbwPaint);
effect.build("uniform blender child;"
"half4 main(half4 s, half4 d) { return child.eval(s, d); }");
effect.child("child") = nullptr;
effect.test({0xFF000080, 0xFF008000, 0xFF800000, 0xFF808080},
[](SkCanvas*, SkPaint* paint) { paint->setColor4f({0.0f, 0.0f, 0.0f, 0.497f}); });
// Sampling a shader at various coordinates
effect.build("uniform shader child;"
"uniform half2 pos;"
"half4 main(half4 s, half4 d) { return child.eval(pos); }");
effect.child("child") = make_RGBW_shader();
effect.uniform("pos") = float2{0.5, 0.5};
effect.test(0xFF0000FF);
effect.uniform("pos") = float2{1.5, 0.5};
effect.test(0xFF00FF00);
effect.uniform("pos") = float2{0.5, 1.5};
effect.test(0xFFFF0000);
effect.uniform("pos") = float2{1.5, 1.5};
effect.test(0xFFFFFFFF);
// Sampling a color filter
effect.build("uniform colorFilter child;"
"half4 main(half4 s, half4 d) { return child.eval(half4(1)); }");
effect.child("child") = SkColorFilters::Blend(0xFF012345, SkBlendMode::kSrc);
effect.test(0xFF452301);
// Sampling a built-in blender
effect.surface()->getCanvas()->drawPaint(rgbwPaint);
effect.build("uniform blender child;"
"half4 main(half4 s, half4 d) { return child.eval(s, d); }");
effect.child("child") = SkBlender::Mode(SkBlendMode::kPlus);
effect.test({0xFF4523FF, 0xFF45FF01, 0xFFFF2301, 0xFFFFFFFF},
[](SkCanvas*, SkPaint* paint) { paint->setColor(0xFF012345); });
// Sampling a runtime-effect blender
effect.surface()->getCanvas()->drawPaint(rgbwPaint);
effect.build("uniform blender child;"
"half4 main(half4 s, half4 d) { return child.eval(s, d); }");
effect.child("child") = SkBlenders::Arithmetic(0, 1, 1, 0, /*enforcePremul=*/false);
effect.test({0xFF4523FF, 0xFF45FF01, 0xFFFF2301, 0xFFFFFFFF},
[](SkCanvas*, SkPaint* paint) { paint->setColor(0xFF012345); });
}
DEF_TEST(SkRuntimeEffect_Blender_CPU, r) {
test_RuntimeEffect_Blenders(r, /*grContext=*/nullptr, /*graphite=*/nullptr);
}
DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(SkRuntimeEffect_Blender_GPU,
r,
ctxInfo,
CtsEnforcement::kApiLevel_T) {
test_RuntimeEffect_Blenders(r, ctxInfo.directContext(), /*graphite=*/nullptr);
}
DEF_TEST(SkRuntimeShaderBuilderReuse, r) {
const char* kSource = R"(
uniform half x;
half4 main(float2 p) { return half4(x); }
)";
sk_sp<SkRuntimeEffect> effect = SkRuntimeEffect::MakeForShader(SkString(kSource)).effect;
REPORTER_ASSERT(r, effect);
// Test passes if this sequence doesn't assert. skbug.com/10667
SkRuntimeShaderBuilder b(std::move(effect));
b.uniform("x") = 0.0f;
auto shader_0 = b.makeShader();
b.uniform("x") = 1.0f;
auto shader_1 = b.makeShader();
}
DEF_TEST(SkRuntimeBlendBuilderReuse, r) {
const char* kSource = R"(
uniform half x;
half4 main(half4 s, half4 d) { return half4(x); }
)";
sk_sp<SkRuntimeEffect> effect = SkRuntimeEffect::MakeForBlender(SkString(kSource)).effect;
REPORTER_ASSERT(r, effect);
// We should be able to construct multiple SkBlenders in a row without asserting.
SkRuntimeBlendBuilder b(std::move(effect));
for (float x = 0.0f; x <= 2.0f; x += 2.0f) {
b.uniform("x") = x;
sk_sp<SkBlender> blender = b.makeBlender();
}
}
DEF_TEST(SkRuntimeShaderBuilderSetUniforms, r) {
const char* kSource = R"(
uniform half x;
uniform vec2 offset;
half4 main(float2 p) { return half4(x); }
)";
sk_sp<SkRuntimeEffect> effect = SkRuntimeEffect::MakeForShader(SkString(kSource)).effect;
REPORTER_ASSERT(r, effect);
SkRuntimeShaderBuilder b(std::move(effect));
// Test passes if this sequence doesn't assert.
float x = 1.0f;
REPORTER_ASSERT(r, b.uniform("x").set(&x, 1));
// add extra value to ensure that set doesn't try to use sizeof(array)
float origin[] = { 2.0f, 3.0f, 4.0f };
REPORTER_ASSERT(r, b.uniform("offset").set<float>(origin, 2));
#ifndef SK_DEBUG
REPORTER_ASSERT(r, !b.uniform("offset").set<float>(origin, 1));
REPORTER_ASSERT(r, !b.uniform("offset").set<float>(origin, 3));
#endif
auto shader = b.makeShader();
}
DEF_TEST(SkRuntimeEffectThreaded, r) {
// This tests that we can safely use SkRuntimeEffect::MakeForShader from more than one thread,
// and also that programs don't refer to shared structures owned by the compiler.
// skbug.com/10589
static constexpr char kSource[] = "half4 main(float2 p) { return sk_FragCoord.xyxy; }";
std::thread threads[16];
for (auto& thread : threads) {
thread = std::thread([r]() {
SkRuntimeEffect::Options options;
SkRuntimeEffectPriv::AllowPrivateAccess(&options);
auto [effect, error] = SkRuntimeEffect::MakeForShader(SkString(kSource), options);
REPORTER_ASSERT(r, effect);
});
}
for (auto& thread : threads) {
thread.join();
}
}
DEF_TEST(SkRuntimeEffectAllowsPrivateAccess, r) {
SkRuntimeEffect::Options defaultOptions;
SkRuntimeEffect::Options optionsWithAccess;
SkRuntimeEffectPriv::AllowPrivateAccess(&optionsWithAccess);
// Confirm that shaders can only access $private_functions when private access is allowed.
{
static constexpr char kShader[] =
"half4 main(float2 p) { return $hsl_to_rgb(p.xxx, p.y); }";
SkRuntimeEffect::Result normal =
SkRuntimeEffect::MakeForShader(SkString(kShader), defaultOptions);
REPORTER_ASSERT(r, !normal.effect);
SkRuntimeEffect::Result privileged =
SkRuntimeEffect::MakeForShader(SkString(kShader), optionsWithAccess);
REPORTER_ASSERT(r, privileged.effect, "%s", privileged.errorText.c_str());
}
// Confirm that color filters can only access $private_functions when private access is allowed.
{
static constexpr char kColorFilter[] =
"half4 main(half4 c) { return $hsl_to_rgb(c.rgb, c.a); }";
SkRuntimeEffect::Result normal =
SkRuntimeEffect::MakeForColorFilter(SkString(kColorFilter), defaultOptions);
REPORTER_ASSERT(r, !normal.effect);
SkRuntimeEffect::Result privileged =
SkRuntimeEffect::MakeForColorFilter(SkString(kColorFilter), optionsWithAccess);
REPORTER_ASSERT(r, privileged.effect, "%s", privileged.errorText.c_str());
}
// Confirm that blenders can only access $private_functions when private access is allowed.
{
static constexpr char kBlender[] =
"half4 main(half4 s, half4 d) { return $hsl_to_rgb(s.rgb, d.a); }";
SkRuntimeEffect::Result normal =
SkRuntimeEffect::MakeForBlender(SkString(kBlender), defaultOptions);
REPORTER_ASSERT(r, !normal.effect);
SkRuntimeEffect::Result privileged =
SkRuntimeEffect::MakeForBlender(SkString(kBlender), optionsWithAccess);
REPORTER_ASSERT(r, privileged.effect, "%s", privileged.errorText.c_str());
}
}
DEF_TEST(SkRuntimeColorFilterSingleColor, r) {
// Test runtime colorfilters support filterColor4f().
auto [effect, err] =
SkRuntimeEffect::MakeForColorFilter(SkString{"half4 main(half4 c) { return c*c; }"});
REPORTER_ASSERT(r, effect);
REPORTER_ASSERT(r, err.isEmpty());
sk_sp<SkColorFilter> cf = effect->makeColorFilter(SkData::MakeEmpty());
REPORTER_ASSERT(r, cf);
SkColor4f c = cf->filterColor4f({0.25, 0.5, 0.75, 1.0},
sk_srgb_singleton(), sk_srgb_singleton());
REPORTER_ASSERT(r, c.fR == 0.0625f);
REPORTER_ASSERT(r, c.fG == 0.25f);
REPORTER_ASSERT(r, c.fB == 0.5625f);
REPORTER_ASSERT(r, c.fA == 1.0f);
}
static void test_RuntimeEffectStructNameReuse(skiatest::Reporter* r, GrRecordingContext* rContext) {
// Test that two different runtime effects can reuse struct names in a single paint operation
auto [childEffect, err] = SkRuntimeEffect::MakeForShader(SkString(
"uniform shader paint;"
"struct S { half4 rgba; };"
"void process(inout S s) { s.rgba.rgb *= 0.5; }"
"half4 main(float2 p) { S s; s.rgba = paint.eval(p); process(s); return s.rgba; }"
));
REPORTER_ASSERT(r, childEffect, "%s\n", err.c_str());
sk_sp<SkShader> nullChild = nullptr;
sk_sp<SkShader> child = childEffect->makeShader(/*uniforms=*/nullptr,
&nullChild,
/*childCount=*/1);
TestEffect effect(r, /*grContext=*/nullptr, /*graphite=*/nullptr);
effect.build(
"uniform shader child;"
"struct S { float2 coord; };"
"void process(inout S s) { s.coord = s.coord.yx; }"
"half4 main(float2 p) { S s; s.coord = p; process(s); return child.eval(s.coord); "
"}");
effect.child("child") = child;
effect.test(0xFF00407F, [](SkCanvas*, SkPaint* paint) {
paint->setColor4f({0.99608f, 0.50196f, 0.0f, 1.0f});
});
}
DEF_TEST(SkRuntimeStructNameReuse, r) {
test_RuntimeEffectStructNameReuse(r, nullptr);
}
DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(SkRuntimeStructNameReuse_GPU,
r,
ctxInfo,
CtsEnforcement::kApiLevel_T) {
test_RuntimeEffectStructNameReuse(r, ctxInfo.directContext());
}
DEF_TEST(SkRuntimeColorFilterFlags, r) {
{ // Here's a non-trivial filter that doesn't change alpha.
auto [effect, err] = SkRuntimeEffect::MakeForColorFilter(SkString{
"half4 main(half4 color) { return color + half4(1,1,1,0); }"});
REPORTER_ASSERT(r, effect && err.isEmpty());
sk_sp<SkColorFilter> filter = effect->makeColorFilter(SkData::MakeEmpty());
REPORTER_ASSERT(r, filter && filter->isAlphaUnchanged());
}
{ // Here's one that definitely changes alpha.
auto [effect, err] = SkRuntimeEffect::MakeForColorFilter(SkString{
"half4 main(half4 color) { return color + half4(0,0,0,4); }"});
REPORTER_ASSERT(r, effect && err.isEmpty());
sk_sp<SkColorFilter> filter = effect->makeColorFilter(SkData::MakeEmpty());
REPORTER_ASSERT(r, filter && !filter->isAlphaUnchanged());
}
}
DEF_TEST(SkRuntimeShaderSampleCoords, r) {
// This test verifies that we detect calls to sample where the coords are the same as those
// passed to main. In those cases, it's safe to turn the "explicit" sampling into "passthrough"
// sampling. This optimization is implemented very conservatively.
//
// It also checks that we correctly set the "referencesSampleCoords" bit on the runtime effect
// FP, depending on how the coords parameter to main is used.
auto test = [&](const char* src, bool expectExplicit, bool expectReferencesSampleCoords) {
auto [effect, err] =
SkRuntimeEffect::MakeForShader(SkStringPrintf("uniform shader child; %s", src));
REPORTER_ASSERT(r, effect);
auto child = GrFragmentProcessor::MakeColor({ 1, 1, 1, 1 });
auto fp = GrSkSLFP::Make(effect.get(), "test_fp", /*inputFP=*/nullptr,
GrSkSLFP::OptFlags::kNone, "child", std::move(child));
REPORTER_ASSERT(r, fp);
REPORTER_ASSERT(r, fp->childProcessor(0)->sampleUsage().isExplicit() == expectExplicit);
REPORTER_ASSERT(r, fp->usesSampleCoords() == expectReferencesSampleCoords);
};
// Cases where our optimization is valid, and works:
// Direct use of passed-in coords. Here, the only use of sample coords is for a sample call
// converted to passthrough, so referenceSampleCoords is *false*, despite appearing in main.
test("half4 main(float2 xy) { return child.eval(xy); }", false, false);
// Sample with passed-in coords, read (but don't write) sample coords elsewhere
test("half4 main(float2 xy) { return child.eval(xy) + sin(xy.x); }", false, true);
// Cases where our optimization is not valid, and does not happen:
// Sampling with values completely unrelated to passed-in coords
test("half4 main(float2 xy) { return child.eval(float2(0, 0)); }", true, false);
// Use of expression involving passed in coords
test("half4 main(float2 xy) { return child.eval(xy * 0.5); }", true, true);
// Use of coords after modification
test("half4 main(float2 xy) { xy *= 2; return child.eval(xy); }", true, true);
// Use of coords after modification via out-param call
test("void adjust(inout float2 xy) { xy *= 2; }"
"half4 main(float2 xy) { adjust(xy); return child.eval(xy); }", true, true);
// There should (must) not be any false-positive cases. There are false-negatives.
// In all of these cases, our optimization would be valid, but does not happen:
// Direct use of passed-in coords, modified after use
test("half4 main(float2 xy) { half4 c = child.eval(xy); xy *= 2; return c; }", true, true);
// Passed-in coords copied to a temp variable
test("half4 main(float2 xy) { float2 p = xy; return child.eval(p); }", true, true);
// Use of coords passed to helper function
test("half4 helper(float2 xy) { return child.eval(xy); }"
"half4 main(float2 xy) { return helper(xy); }", true, true);
}
DEF_TEST(SkRuntimeShaderIsOpaque, r) {
// This test verifies that we detect certain simple patterns in runtime shaders, and can deduce
// (via code in SkSL::Analysis::ReturnsOpaqueColor) that the resulting shader is always opaque.
// That logic is conservative, and the tests below reflect this.
auto test = [&](const char* body, bool expectOpaque) {
auto [effect, err] = SkRuntimeEffect::MakeForShader(SkStringPrintf(R"(
uniform shader cOnes;
uniform shader cZeros;
uniform float4 uOnes;
uniform float4 uZeros;
half4 main(float2 xy) {
%s
})", body));
REPORTER_ASSERT(r, effect);
auto cOnes = SkShaders::Color(SK_ColorWHITE);
auto cZeros = SkShaders::Color(SK_ColorTRANSPARENT);
SkASSERT(cOnes->isOpaque());
SkASSERT(!cZeros->isOpaque());
SkRuntimeShaderBuilder builder(effect);
builder.child("cOnes") = std::move(cOnes);
builder.child("cZeros") = std::move(cZeros);
builder.uniform("uOnes") = SkColors::kWhite;
builder.uniform("uZeros") = SkColors::kTransparent;
auto shader = builder.makeShader();
REPORTER_ASSERT(r, shader->isOpaque() == expectOpaque);
};
// Cases where our optimization is valid, and works:
// Returning opaque literals
test("return half4(1);", true);
test("return half4(0, 1, 0, 1);", true);
test("return half4(0, 0, 0, 1);", true);
// Simple expressions involving uniforms
test("return uZeros.rgb1;", true);
test("return uZeros.bgra.rgb1;", true);
test("return half4(uZeros.rgb, 1);", true);
// Simple expressions involving child.eval
test("return cZeros.eval(xy).rgb1;", true);
test("return cZeros.eval(xy).bgra.rgb1;", true);
test("return half4(cZeros.eval(xy).rgb, 1);", true);
// Multiple returns
test("if (xy.x < 100) { return uZeros.rgb1; } else { return cZeros.eval(xy).rgb1; }", true);
// More expression cases:
test("return (cZeros.eval(xy) * uZeros).rgb1;", true);
test("return half4(1, 1, 1, 0.5 + 0.5);", true);
// Constant variable propagation
test("const half4 kWhite = half4(1); return kWhite;", true);
// Cases where our optimization is not valid, and does not happen:
// Returning non-opaque literals
test("return half4(0);", false);
test("return half4(1, 1, 1, 0);", false);
// Returning non-opaque uniforms or children
test("return uZeros;", false);
test("return cZeros.eval(xy);", false);
// Multiple returns
test("if (xy.x < 100) { return uZeros; } else { return cZeros.eval(xy).rgb1; }", false);
test("if (xy.x < 100) { return uZeros.rgb1; } else { return cZeros.eval(xy); }", false);
// There should (must) not be any false-positive cases. There are false-negatives.
// In these cases, our optimization would be valid, but does not happen:
// More complex expressions that can't be simplified
test("return xy.x < 100 ? uZeros.rgb1 : cZeros.eval(xy).rgb1;", false);
// Finally, there are cases that are conditional on the uniforms and children. These *could*
// determine dynamically if the uniform and/or child being referenced is opaque, and use that
// information. Today, we don't do this, so we pessimistically assume they're transparent:
test("return uOnes;", false);
test("return cOnes.eval(xy);", false);
}
DEF_GANESH_TEST_FOR_ALL_CONTEXTS(GrSkSLFP_Specialized, r, ctxInfo, CtsEnforcement::kApiLevel_T) {
struct FpAndKey {
std::unique_ptr<GrFragmentProcessor> fp;
SkTArray<uint32_t, true> key;
};
// Constant color, but with an 'specialize' option that decides if the color is inserted in the
// SkSL as a literal, or left as a uniform
auto make_color_fp = [&](SkPMColor4f color, bool specialize) {
static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader,
"uniform half4 color;"
"half4 main(float2 xy) { return color; }"
);
FpAndKey result;
result.fp = GrSkSLFP::Make(effect, "color_fp", /*inputFP=*/nullptr,
GrSkSLFP::OptFlags::kNone,
"color", GrSkSLFP::SpecializeIf(specialize, color));
skgpu::KeyBuilder builder(&result.key);
result.fp->addToKey(*ctxInfo.directContext()->priv().caps()->shaderCaps(), &builder);
builder.flush();
return result;
};
FpAndKey uRed = make_color_fp({1, 0, 0, 1}, false),
uGreen = make_color_fp({0, 1, 0, 1}, false),
sRed = make_color_fp({1, 0, 0, 1}, true),
sGreen = make_color_fp({0, 1, 0, 1}, true);
// uRed and uGreen should have the same key - they just have different uniforms
SkASSERT(uRed.key == uGreen.key);
// sRed and sGreen should have keys that are different from the uniform case, and each other
SkASSERT(sRed.key != uRed.key);
SkASSERT(sGreen.key != uRed.key);
SkASSERT(sRed.key != sGreen.key);
}
DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(GrSkSLFP_UniformArray,
r,
ctxInfo,
CtsEnforcement::kApiLevel_T) {
// Make a fill-context to draw into.
GrDirectContext* directContext = ctxInfo.directContext();
SkImageInfo info = SkImageInfo::Make(1, 1, kRGBA_8888_SkColorType, kPremul_SkAlphaType);
std::unique_ptr<skgpu::v1::SurfaceFillContext> testCtx =
directContext->priv().makeSFC(info, /*label=*/{}, SkBackingFit::kExact);
// Make an effect that takes a uniform array as input.
static constexpr std::array<float, 4> kRed {1.0f, 0.0f, 0.0f, 1.0f};
static constexpr std::array<float, 4> kGreen{0.0f, 1.0f, 0.0f, 1.0f};
static constexpr std::array<float, 4> kBlue {0.0f, 0.0f, 1.0f, 1.0f};
static constexpr std::array<float, 4> kGray {0.499f, 0.499f, 0.499f, 1.0f};
for (const auto& colorArray : {kRed, kGreen, kBlue, kGray}) {
// Compile our runtime effect.
static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader,
"uniform half color[4];"
"half4 main(float2 xy) { return half4(color[0], color[1], color[2], color[3]); }"
);
// Render our shader into the fill-context with our various input colors.
testCtx->fillWithFP(GrSkSLFP::Make(effect, "test_fp", /*inputFP=*/nullptr,
GrSkSLFP::OptFlags::kNone,
"color", SkSpan(colorArray)));
// Read our color back and ensure it matches.
GrColor actual;
GrPixmap pixmap(info, &actual, sizeof(GrColor));
if (!testCtx->readPixels(directContext, pixmap, /*srcPt=*/{0, 0})) {
REPORT_FAILURE(r, "readPixels", SkString("readPixels failed"));
break;
}
if (actual != GrColorPackRGBA(255 * colorArray[0], 255 * colorArray[1],
255 * colorArray[2], 255 * colorArray[3])) {
REPORT_FAILURE(r, "Uniform array didn't match expectations",
SkStringPrintf("\n"
"Expected: [ %g %g %g %g ]\n"
"Got : [ %08x ]\n",
colorArray[0], colorArray[1],
colorArray[2], colorArray[3],
actual));
break;
}
}
}