blob: 490decf107fe13bbe349a83487605127935db399 [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "dm/DMJsonWriter.h"
#include "dm/DMSrcSink.h"
#include "gm/verifiers/gmverifier.h"
#include "include/codec/SkCodec.h"
#include "include/core/SkBBHFactory.h"
#include "include/core/SkColorPriv.h"
#include "include/core/SkColorSpace.h"
#include "include/core/SkData.h"
#include "include/core/SkDocument.h"
#include "include/core/SkGraphics.h"
#include "include/private/SkChecksum.h"
#include "include/private/SkSpinlock.h"
#include "src/base/SkHalf.h"
#include "src/base/SkLeanWindows.h"
#include "src/core/SkColorSpacePriv.h"
#include "src/core/SkMD5.h"
#include "src/core/SkOSFile.h"
#include "src/core/SkStringUtils.h"
#include "src/core/SkTHash.h"
#include "src/core/SkTaskGroup.h"
#include "src/utils/SkOSPath.h"
#include "tests/Test.h"
#include "tests/TestHarness.h"
#include "tools/AutoreleasePool.h"
#include "tools/HashAndEncode.h"
#include "tools/ProcStats.h"
#include "tools/Resources.h"
#include "tools/ToolUtils.h"
#include "tools/flags/CommonFlags.h"
#include "tools/flags/CommonFlagsConfig.h"
#include "tools/ios_utils.h"
#include "tools/trace/ChromeTracingTracer.h"
#include "tools/trace/EventTracingPriv.h"
#include "tools/trace/SkDebugfTracer.h"
#include <memory>
#include <vector>
#include <stdlib.h>
#ifndef SK_BUILD_FOR_WIN
#include <unistd.h>
#endif
#if defined(SK_BUILD_FOR_ANDROID_FRAMEWORK) && defined(SK_HAS_HEIF_LIBRARY)
#include <binder/IPCThreadState.h>
#endif
#if defined(SK_BUILD_FOR_MAC)
#include "include/utils/mac/SkCGUtils.h"
#include "src/utils/mac/SkUniqueCFRef.h"
#endif
#if defined(SK_ENABLE_SVG)
#include "modules/svg/include/SkSVGOpenTypeSVGDecoder.h"
#endif
using namespace skia_private;
extern bool gSkForceRasterPipelineBlitter;
extern bool gForceHighPrecisionRasterPipeline;
extern bool gUseSkVMBlitter;
extern bool gSkVMAllowJIT;
extern bool gSkVMJITViaDylib;
extern bool gSkBlobAsSlugTesting;
static DEFINE_string(src, "tests gm skp mskp lottie rive svg image colorImage",
"Source types to test.");
static DEFINE_bool(nameByHash, false,
"If true, write to FLAGS_writePath[0]/<hash>.png instead of "
"to FLAGS_writePath[0]/<config>/<sourceType>/<sourceOptions>/<name>.png");
static DEFINE_bool2(pathOpsExtended, x, false, "Run extended pathOps tests.");
static DEFINE_string(matrix, "1 0 0 1",
"2x2 scale+skew matrix to apply or upright when using "
"'matrix' or 'upright' in config.");
static DEFINE_string(skip, "",
"Space-separated config/src/srcOptions/name quadruples to skip. "
"'_' matches anything. '~' negates the match. E.g. \n"
"'--skip gpu skp _ _' will skip all SKPs drawn into the gpu config.\n"
"'--skip gpu skp _ _ 8888 gm _ aarects' will also skip the aarects GM on 8888.\n"
"'--skip ~8888 svg _ svgparse_' blocks non-8888 SVGs that contain \"svgparse_\" in "
"the name.");
static DEFINE_string2(readPath, r, "",
"If set check for equality with golden results in this directory.");
DEFINE_string2(writePath, w, "", "If set, write bitmaps here as .pngs.");
static DEFINE_string(uninterestingHashesFile, "",
"File containing a list of uninteresting hashes. If a result hashes to something in "
"this list, no image is written for that result.");
static DEFINE_int(shards, 1, "We're splitting source data into this many shards.");
static DEFINE_int(shard, 0, "Which shard do I run?");
static DEFINE_string(mskps, "", "Directory to read mskps from, or a single mskp file.");
static DEFINE_bool(forceRasterPipeline, false, "sets gSkForceRasterPipelineBlitter");
static DEFINE_bool(forceRasterPipelineHP, false, "sets gSkForceRasterPipelineBlitter and gForceHighPrecisionRasterPipeline");
static DEFINE_bool(skvm, false, "sets gUseSkVMBlitter");
static DEFINE_bool(jit, true, "sets gSkVMAllowJIT");
static DEFINE_bool(dylib, false, "JIT via dylib (much slower compile but easier to debug/profile)");
static DEFINE_bool(blobAsSlugTesting, false, "sets gSkBlobAsSlugTesting");
static DEFINE_string(bisect, "",
"Pair of: SKP file to bisect, followed by an l/r bisect trail string (e.g., 'lrll'). The "
"l/r trail specifies which half to keep at each step of a binary search through the SKP's "
"paths. An empty string performs no bisect. Only the SkPaths are bisected; all other draws "
"are thrown out. This is useful for finding a reduced repo case for path drawing bugs.");
static DEFINE_bool(ignoreSigInt, false, "ignore SIGINT signals during test execution");
static DEFINE_bool(checkF16, false, "Ensure that F16Norm pixels are clamped.");
static DEFINE_string(colorImages, "",
"List of images and/or directories to decode with color correction. "
"A directory with no images is treated as a fatal error.");
static DEFINE_bool2(veryVerbose, V, false, "tell individual tests to be verbose.");
static DEFINE_bool(cpu, true, "Run CPU-bound work?");
static DEFINE_bool(gpu, true, "Run GPU-bound work?");
static DEFINE_bool(graphite, true, "Run Graphite work?");
static DEFINE_bool(dryRun, false,
"just print the tests that would be run, without actually running them.");
static DEFINE_string(images, "",
"List of images and/or directories to decode. A directory with no images"
" is treated as a fatal error.");
static DEFINE_bool(simpleCodec, false,
"Runs of a subset of the codec tests, "
"with no scaling or subsetting, always using the canvas color type.");
static DEFINE_string2(match, m, nullptr,
"[~][^]substring[$] [...] of name to run.\n"
"Multiple matches may be separated by spaces.\n"
"~ causes a matching name to always be skipped\n"
"^ requires the start of the name to match\n"
"$ requires the end of the name to match\n"
"^ and $ requires an exact match\n"
"If a name does not match any list entry,\n"
"it is skipped unless some list entry starts with ~");
static DEFINE_bool2(quiet, q, false, "if true, don't print status updates.");
static DEFINE_bool2(verbose, v, false, "enable verbose output from the test driver.");
static DEFINE_string(skps, "skps", "Directory to read skps from.");
static DEFINE_string(lotties, "lotties", "Directory to read (Bodymovin) jsons from.");
static DEFINE_string(svgs, "", "Directory to read SVGs from, or a single SVG file.");
static DEFINE_int_2(threads, j, -1,
"Run threadsafe tests on a threadpool with this many extra threads, "
"defaulting to one extra thread per core.");
static DEFINE_string(key, "",
"Space-separated key/value pairs to add to JSON identifying this builder.");
static DEFINE_string(properties, "",
"Space-separated key/value pairs to add to JSON identifying this run.");
static DEFINE_bool(rasterize_pdf, false, "Rasterize PDFs when possible.");
static DEFINE_bool(runVerifiers, false,
"if true, run SkQP-style verification of GM-produced images.");
#if defined(__MSVC_RUNTIME_CHECKS)
#include <rtcapi.h>
int RuntimeCheckErrorFunc(int errorType, const char* filename, int linenumber,
const char* moduleName, const char* fmt, ...) {
va_list args;
va_start(args, fmt);
vfprintf(stderr, fmt, args);
va_end(args);
SkDebugf("Line #%d\nFile: %s\nModule: %s\n",
linenumber, filename ? filename : "Unknown", moduleName ? moduleName : "Unknwon");
return 1;
}
#endif
using namespace DM;
using sk_gpu_test::GrContextFactory;
using sk_gpu_test::ContextInfo;
using skiatest::TestType;
#ifdef SK_GL
using sk_gpu_test::GLTestContext;
#endif
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
static FILE* gVLog;
static void vlog(const char* fmt, ...) SK_PRINTF_LIKE(1, 2);
static void vlog(const char* fmt, ...) {
if (gVLog) {
va_list args;
va_start(args, fmt);
vfprintf(gVLog, fmt, args);
fflush(gVLog);
va_end(args);
}
}
static void info(const char* fmt, ...) SK_PRINTF_LIKE(1, 2);
static void info(const char* fmt, ...) {
va_list args;
va_start(args, fmt);
if (gVLog) {
va_list vlogArgs;
va_copy(vlogArgs, args);
vfprintf(gVLog, fmt, vlogArgs);
fflush(gVLog);
va_end(vlogArgs);
}
if (!FLAGS_quiet) {
vprintf(fmt, args);
}
va_end(args);
}
static TArray<SkString>* gFailures = new TArray<SkString>;
static void fail(const SkString& err) {
static SkSpinlock mutex;
SkAutoSpinlock lock(mutex);
SkDebugf("\n\nFAILURE: %s\n\n", err.c_str());
gFailures->push_back(err);
}
struct Running {
SkString id;
SkThreadID thread;
void dump() const {
info("\t%s\n", id.c_str());
}
};
static void dump_json() {
if (!FLAGS_writePath.isEmpty()) {
JsonWriter::DumpJson(FLAGS_writePath[0], FLAGS_key, FLAGS_properties);
}
}
// We use a spinlock to make locking this in a signal handler _somewhat_ safe.
static SkSpinlock* gMutex = new SkSpinlock;
static int gPending;
static TArray<Running>* gRunning = new TArray<Running>;
static void done(const char* config, const char* src, const char* srcOptions, const char* name) {
SkString id = SkStringPrintf("%s %s %s %s", config, src, srcOptions, name);
vlog("done %s\n", id.c_str());
int pending;
{
SkAutoSpinlock lock(*gMutex);
for (int i = 0; i < gRunning->size(); i++) {
if (gRunning->at(i).id == id) {
gRunning->removeShuffle(i);
break;
}
}
pending = --gPending;
}
// We write out dm.json file and print out a progress update every once in a while.
// Notice this also handles the final dm.json and progress update when pending == 0.
if (pending % 500 == 0) {
dump_json();
int curr = sk_tools::getCurrResidentSetSizeMB(),
peak = sk_tools::getMaxResidentSetSizeMB();
SkAutoSpinlock lock(*gMutex);
info("\n%dMB RAM, %dMB peak, %d queued, %d active:\n",
curr, peak, gPending - gRunning->size(), gRunning->size());
for (auto& task : *gRunning) {
task.dump();
}
}
}
static void start(const char* config, const char* src, const char* srcOptions, const char* name) {
SkString id = SkStringPrintf("%s %s %s %s", config, src, srcOptions, name);
vlog("start %s\n", id.c_str());
SkAutoSpinlock lock(*gMutex);
gRunning->push_back({id,SkGetThreadID()});
}
static void find_culprit() {
// Assumes gMutex is locked.
SkThreadID thisThread = SkGetThreadID();
for (auto& task : *gRunning) {
if (task.thread == thisThread) {
info("Likely culprit:\n");
task.dump();
}
}
}
#if defined(SK_BUILD_FOR_WIN)
static LONG WINAPI crash_handler(EXCEPTION_POINTERS* e) {
static const struct {
const char* name;
DWORD code;
} kExceptions[] = {
#define _(E) {#E, E}
_(EXCEPTION_ACCESS_VIOLATION),
_(EXCEPTION_BREAKPOINT),
_(EXCEPTION_INT_DIVIDE_BY_ZERO),
_(EXCEPTION_STACK_OVERFLOW),
// TODO: more?
#undef _
};
SkAutoSpinlock lock(*gMutex);
const DWORD code = e->ExceptionRecord->ExceptionCode;
info("\nCaught exception %lu", code);
for (const auto& exception : kExceptions) {
if (exception.code == code) {
info(" %s", exception.name);
}
}
info(", was running:\n");
for (auto& task : *gRunning) {
task.dump();
}
find_culprit();
fflush(stdout);
// Execute default exception handler... hopefully, exit.
return EXCEPTION_EXECUTE_HANDLER;
}
static void setup_crash_handler() {
SetUnhandledExceptionFilter(crash_handler);
}
#else
#include <signal.h>
#if !defined(SK_BUILD_FOR_ANDROID)
#include <execinfo.h>
#endif
static constexpr int max_of() { return 0; }
template <typename... Rest>
static constexpr int max_of(int x, Rest... rest) {
return x > max_of(rest...) ? x : max_of(rest...);
}
static void (*previous_handler[max_of(SIGABRT,SIGBUS,SIGFPE,SIGILL,SIGSEGV,SIGTERM)+1])(int);
static void crash_handler(int sig) {
SkAutoSpinlock lock(*gMutex);
info("\nCaught signal %d [%s] (%dMB RAM, peak %dMB), was running:\n",
sig, strsignal(sig),
sk_tools::getCurrResidentSetSizeMB(), sk_tools::getMaxResidentSetSizeMB());
for (auto& task : *gRunning) {
task.dump();
}
find_culprit();
#if !defined(SK_BUILD_FOR_ANDROID)
void* stack[128];
int count = backtrace(stack, std::size(stack));
char** symbols = backtrace_symbols(stack, count);
info("\nStack trace:\n");
for (int i = 0; i < count; i++) {
info(" %s\n", symbols[i]);
}
#endif
fflush(stdout);
if (sig == SIGINT && FLAGS_ignoreSigInt) {
info("Ignoring signal %d because of --ignoreSigInt.\n"
"This is probably a sign the bot is overloaded with work.\n", sig);
} else {
signal(sig, previous_handler[sig]);
raise(sig);
}
}
static void setup_crash_handler() {
const int kSignals[] = { SIGABRT, SIGBUS, SIGFPE, SIGILL, SIGINT, SIGSEGV, SIGTERM };
for (int sig : kSignals) {
previous_handler[sig] = signal(sig, crash_handler);
}
}
#endif
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
struct Gold : public SkString {
Gold() : SkString("") {}
Gold(const SkString& sink, const SkString& src,
const SkString& srcOptions, const SkString& name,
const SkString& md5)
: SkString("") {
this->append(sink);
this->append(src);
this->append(srcOptions);
this->append(name);
this->append(md5);
}
struct Hash {
uint32_t operator()(const Gold& g) const {
return SkGoodHash()((const SkString&)g);
}
};
};
static SkTHashSet<Gold, Gold::Hash>* gGold = new SkTHashSet<Gold, Gold::Hash>;
static void add_gold(JsonWriter::BitmapResult r) {
gGold->add(Gold(r.config, r.sourceType, r.sourceOptions, r.name, r.md5));
}
static void gather_gold() {
if (!FLAGS_readPath.isEmpty()) {
SkString path(FLAGS_readPath[0]);
path.append("/dm.json");
if (!JsonWriter::ReadJson(path.c_str(), add_gold)) {
fail(SkStringPrintf("Couldn't read %s for golden results.", path.c_str()));
}
}
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
#if defined(SK_BUILD_FOR_WIN)
static constexpr char kNewline[] = "\r\n";
#else
static constexpr char kNewline[] = "\n";
#endif
static SkTHashSet<SkString>* gUninterestingHashes = new SkTHashSet<SkString>;
static void gather_uninteresting_hashes() {
if (!FLAGS_uninterestingHashesFile.isEmpty()) {
sk_sp<SkData> data(SkData::MakeFromFileName(FLAGS_uninterestingHashesFile[0]));
if (!data) {
info("WARNING: unable to read uninteresting hashes from %s\n",
FLAGS_uninterestingHashesFile[0]);
return;
}
// Copy to a string to make sure SkStrSplit has a terminating \0 to find.
SkString contents((const char*)data->data(), data->size());
TArray<SkString> hashes;
SkStrSplit(contents.c_str(), kNewline, &hashes);
for (const SkString& hash : hashes) {
gUninterestingHashes->add(hash);
}
info("FYI: loaded %d distinct uninteresting hashes from %d lines\n",
gUninterestingHashes->count(), hashes.size());
}
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
struct TaggedSrc : public std::unique_ptr<Src> {
SkString tag;
SkString options;
};
struct TaggedSink : public std::unique_ptr<Sink> {
SkString tag;
};
static constexpr bool kMemcpyOK = true;
static TArray<TaggedSrc, kMemcpyOK>* gSrcs = new TArray<TaggedSrc, kMemcpyOK>;
static TArray<TaggedSink, kMemcpyOK>* gSinks = new TArray<TaggedSink, kMemcpyOK>;
static bool in_shard() {
static int N = 0;
return N++ % FLAGS_shards == FLAGS_shard;
}
static void push_src(const char* tag, ImplicitString options, Src* inSrc) {
std::unique_ptr<Src> src(inSrc);
if (in_shard() && FLAGS_src.contains(tag) &&
!CommandLineFlags::ShouldSkip(FLAGS_match, src->name().c_str())) {
TaggedSrc& s = gSrcs->push_back();
s.reset(src.release());
s.tag = tag;
s.options = options;
}
}
static void push_codec_src(Path path, CodecSrc::Mode mode, CodecSrc::DstColorType dstColorType,
SkAlphaType dstAlphaType, float scale) {
if (FLAGS_simpleCodec) {
const bool simple = CodecSrc::kCodec_Mode == mode || CodecSrc::kAnimated_Mode == mode;
if (!simple || dstColorType != CodecSrc::kGetFromCanvas_DstColorType || scale != 1.0f) {
// Only decode in the simple case.
return;
}
}
SkString folder;
switch (mode) {
case CodecSrc::kCodec_Mode:
folder.append("codec");
break;
case CodecSrc::kCodecZeroInit_Mode:
folder.append("codec_zero_init");
break;
case CodecSrc::kScanline_Mode:
folder.append("scanline");
break;
case CodecSrc::kStripe_Mode:
folder.append("stripe");
break;
case CodecSrc::kCroppedScanline_Mode:
folder.append("crop");
break;
case CodecSrc::kSubset_Mode:
folder.append("codec_subset");
break;
case CodecSrc::kAnimated_Mode:
folder.append("codec_animated");
break;
}
switch (dstColorType) {
case CodecSrc::kGrayscale_Always_DstColorType:
folder.append("_kGray8");
break;
case CodecSrc::kNonNative8888_Always_DstColorType:
folder.append("_kNonNative");
break;
default:
break;
}
switch (dstAlphaType) {
case kPremul_SkAlphaType:
folder.append("_premul");
break;
case kUnpremul_SkAlphaType:
folder.append("_unpremul");
break;
default:
break;
}
if (1.0f != scale) {
folder.appendf("_%.3f", scale);
}
CodecSrc* src = new CodecSrc(path, mode, dstColorType, dstAlphaType, scale);
push_src("image", folder, src);
}
static void push_android_codec_src(Path path, CodecSrc::DstColorType dstColorType,
SkAlphaType dstAlphaType, int sampleSize) {
SkString folder;
folder.append("scaled_codec");
switch (dstColorType) {
case CodecSrc::kGrayscale_Always_DstColorType:
folder.append("_kGray8");
break;
case CodecSrc::kNonNative8888_Always_DstColorType:
folder.append("_kNonNative");
break;
default:
break;
}
switch (dstAlphaType) {
case kPremul_SkAlphaType:
folder.append("_premul");
break;
case kUnpremul_SkAlphaType:
folder.append("_unpremul");
break;
default:
break;
}
if (1 != sampleSize) {
folder.appendf("_%.3f", 1.0f / (float) sampleSize);
}
AndroidCodecSrc* src = new AndroidCodecSrc(path, dstColorType, dstAlphaType, sampleSize);
push_src("image", folder, src);
}
static void push_image_gen_src(Path path, ImageGenSrc::Mode mode, SkAlphaType alphaType, bool isGpu)
{
SkString folder;
switch (mode) {
case ImageGenSrc::kCodec_Mode:
folder.append("gen_codec");
break;
case ImageGenSrc::kPlatform_Mode:
folder.append("gen_platform");
break;
}
if (isGpu) {
folder.append("_gpu");
} else {
switch (alphaType) {
case kOpaque_SkAlphaType:
folder.append("_opaque");
break;
case kPremul_SkAlphaType:
folder.append("_premul");
break;
case kUnpremul_SkAlphaType:
folder.append("_unpremul");
break;
default:
break;
}
}
ImageGenSrc* src = new ImageGenSrc(path, mode, alphaType, isGpu);
push_src("image", folder, src);
}
#ifdef SK_ENABLE_ANDROID_UTILS
static void push_brd_src(Path path, CodecSrc::DstColorType dstColorType, BRDSrc::Mode mode,
uint32_t sampleSize) {
SkString folder("brd_android_codec");
switch (mode) {
case BRDSrc::kFullImage_Mode:
break;
case BRDSrc::kDivisor_Mode:
folder.append("_divisor");
break;
default:
SkASSERT(false);
return;
}
switch (dstColorType) {
case CodecSrc::kGetFromCanvas_DstColorType:
break;
case CodecSrc::kGrayscale_Always_DstColorType:
folder.append("_kGray");
break;
default:
SkASSERT(false);
return;
}
if (1 != sampleSize) {
folder.appendf("_%.3f", 1.0f / (float) sampleSize);
}
BRDSrc* src = new BRDSrc(path, mode, dstColorType, sampleSize);
push_src("image", folder, src);
}
static void push_brd_srcs(Path path, bool gray) {
if (gray) {
// Only run grayscale to one sampleSize and Mode. Though interesting
// to test grayscale, it should not reveal anything across various
// sampleSizes and Modes
// Arbitrarily choose Mode and sampleSize.
push_brd_src(path, CodecSrc::kGrayscale_Always_DstColorType,
BRDSrc::kFullImage_Mode, 2);
}
// Test on a variety of sampleSizes, making sure to include:
// - 2, 4, and 8, which are natively supported by jpeg
// - multiples of 2 which are not divisible by 4 (analogous for 4)
// - larger powers of two, since BRD clients generally use powers of 2
// We will only produce output for the larger sizes on large images.
const uint32_t sampleSizes[] = { 1, 2, 3, 4, 5, 6, 7, 8, 12, 16, 24, 32, 64 };
const BRDSrc::Mode modes[] = { BRDSrc::kFullImage_Mode, BRDSrc::kDivisor_Mode, };
for (uint32_t sampleSize : sampleSizes) {
for (BRDSrc::Mode mode : modes) {
push_brd_src(path, CodecSrc::kGetFromCanvas_DstColorType, mode, sampleSize);
}
}
}
#endif // SK_ENABLE_ANDROID_UTILS
static void push_codec_srcs(Path path) {
sk_sp<SkData> encoded(SkData::MakeFromFileName(path.c_str()));
if (!encoded) {
info("Couldn't read %s.", path.c_str());
return;
}
std::unique_ptr<SkCodec> codec = SkCodec::MakeFromData(encoded);
if (nullptr == codec) {
info("Couldn't create codec for %s.", path.c_str());
return;
}
// native scaling is only supported by WEBP and JPEG
bool supportsNativeScaling = false;
TArray<CodecSrc::Mode> nativeModes;
nativeModes.push_back(CodecSrc::kCodec_Mode);
nativeModes.push_back(CodecSrc::kCodecZeroInit_Mode);
switch (codec->getEncodedFormat()) {
case SkEncodedImageFormat::kJPEG:
nativeModes.push_back(CodecSrc::kScanline_Mode);
nativeModes.push_back(CodecSrc::kStripe_Mode);
nativeModes.push_back(CodecSrc::kCroppedScanline_Mode);
supportsNativeScaling = true;
break;
case SkEncodedImageFormat::kWEBP:
nativeModes.push_back(CodecSrc::kSubset_Mode);
supportsNativeScaling = true;
break;
case SkEncodedImageFormat::kDNG:
break;
default:
nativeModes.push_back(CodecSrc::kScanline_Mode);
break;
}
TArray<CodecSrc::DstColorType> colorTypes;
colorTypes.push_back(CodecSrc::kGetFromCanvas_DstColorType);
colorTypes.push_back(CodecSrc::kNonNative8888_Always_DstColorType);
switch (codec->getInfo().colorType()) {
case kGray_8_SkColorType:
colorTypes.push_back(CodecSrc::kGrayscale_Always_DstColorType);
break;
default:
break;
}
TArray<SkAlphaType> alphaModes;
alphaModes.push_back(kPremul_SkAlphaType);
if (codec->getInfo().alphaType() != kOpaque_SkAlphaType) {
alphaModes.push_back(kUnpremul_SkAlphaType);
}
for (CodecSrc::Mode mode : nativeModes) {
for (CodecSrc::DstColorType colorType : colorTypes) {
for (SkAlphaType alphaType : alphaModes) {
// Only test kCroppedScanline_Mode when the alpha type is premul. The test is
// slow and won't be interestingly different with different alpha types.
if (CodecSrc::kCroppedScanline_Mode == mode &&
kPremul_SkAlphaType != alphaType) {
continue;
}
push_codec_src(path, mode, colorType, alphaType, 1.0f);
// Skip kNonNative on different native scales. It won't be interestingly
// different.
if (supportsNativeScaling &&
CodecSrc::kNonNative8888_Always_DstColorType == colorType) {
// Native Scales
// SkJpegCodec natively supports scaling to the following:
for (auto scale : { 0.125f, 0.25f, 0.375f, 0.5f, 0.625f, 0.750f, 0.875f }) {
push_codec_src(path, mode, colorType, alphaType, scale);
}
}
}
}
}
{
std::vector<SkCodec::FrameInfo> frameInfos = codec->getFrameInfo();
if (frameInfos.size() > 1) {
for (auto dstCT : { CodecSrc::kNonNative8888_Always_DstColorType,
CodecSrc::kGetFromCanvas_DstColorType }) {
for (auto at : { kUnpremul_SkAlphaType, kPremul_SkAlphaType }) {
push_codec_src(path, CodecSrc::kAnimated_Mode, dstCT, at, 1.0f);
}
}
for (float scale : { .5f, .33f }) {
push_codec_src(path, CodecSrc::kAnimated_Mode, CodecSrc::kGetFromCanvas_DstColorType,
kPremul_SkAlphaType, scale);
}
}
}
if (FLAGS_simpleCodec) {
return;
}
const int sampleSizes[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
for (int sampleSize : sampleSizes) {
for (CodecSrc::DstColorType colorType : colorTypes) {
for (SkAlphaType alphaType : alphaModes) {
// We can exercise all of the kNonNative support code in the swizzler with just a
// few sample sizes. Skip the rest.
if (CodecSrc::kNonNative8888_Always_DstColorType == colorType && sampleSize > 3) {
continue;
}
push_android_codec_src(path, colorType, alphaType, sampleSize);
}
}
}
const char* ext = strrchr(path.c_str(), '.');
if (ext) {
ext++;
static const char* const rawExts[] = {
"arw", "cr2", "dng", "nef", "nrw", "orf", "raf", "rw2", "pef", "srw",
"ARW", "CR2", "DNG", "NEF", "NRW", "ORF", "RAF", "RW2", "PEF", "SRW",
};
for (const char* rawExt : rawExts) {
if (0 == strcmp(rawExt, ext)) {
// RAW is not supported by image generator (skbug.com/5079) or BRD.
return;
}
}
#ifdef SK_ENABLE_ANDROID_UTILS
static const char* const brdExts[] = {
"jpg", "jpeg", "png", "webp",
"JPG", "JPEG", "PNG", "WEBP",
};
for (const char* brdExt : brdExts) {
if (0 == strcmp(brdExt, ext)) {
bool gray = codec->getInfo().colorType() == kGray_8_SkColorType;
push_brd_srcs(path, gray);
break;
}
}
#endif
}
// Push image generator GPU test.
push_image_gen_src(path, ImageGenSrc::kCodec_Mode, codec->getInfo().alphaType(), true);
// Push image generator CPU tests.
for (SkAlphaType alphaType : alphaModes) {
push_image_gen_src(path, ImageGenSrc::kCodec_Mode, alphaType, false);
#if defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_IOS)
if (SkEncodedImageFormat::kWEBP != codec->getEncodedFormat() &&
SkEncodedImageFormat::kWBMP != codec->getEncodedFormat() &&
kUnpremul_SkAlphaType != alphaType)
{
push_image_gen_src(path, ImageGenSrc::kPlatform_Mode, alphaType, false);
}
#elif defined(SK_BUILD_FOR_WIN)
if (SkEncodedImageFormat::kWEBP != codec->getEncodedFormat() &&
SkEncodedImageFormat::kWBMP != codec->getEncodedFormat())
{
push_image_gen_src(path, ImageGenSrc::kPlatform_Mode, alphaType, false);
}
#elif defined(SK_ENABLE_NDK_IMAGES)
push_image_gen_src(path, ImageGenSrc::kPlatform_Mode, alphaType, false);
#endif
}
}
template <typename T>
void gather_file_srcs(const CommandLineFlags::StringArray& flags,
const char* ext,
const char* src_name = nullptr) {
if (!src_name) {
// With the exception of Lottie files, the source name is the extension.
src_name = ext;
}
for (int i = 0; i < flags.size(); i++) {
const char* path = flags[i];
if (sk_isdir(path)) {
SkOSFile::Iter it(path, ext);
for (SkString file; it.next(&file); ) {
push_src(src_name, "", new T(SkOSPath::Join(path, file.c_str())));
}
} else {
push_src(src_name, "", new T(path));
}
}
}
static bool gather_srcs() {
for (skiagm::GMFactory f : skiagm::GMRegistry::Range()) {
push_src("gm", "", new GMSrc(f));
}
gather_file_srcs<SKPSrc>(FLAGS_skps, "skp");
gather_file_srcs<MSKPSrc>(FLAGS_mskps, "mskp");
#if defined(SK_ENABLE_SKOTTIE)
gather_file_srcs<SkottieSrc>(FLAGS_lotties, "json", "lottie");
#endif
#if defined(SK_ENABLE_SVG)
gather_file_srcs<SVGSrc>(FLAGS_svgs, "svg");
#endif
if (!FLAGS_bisect.isEmpty()) {
// An empty l/r trail string will draw all the paths.
push_src("bisect", "",
new BisectSrc(FLAGS_bisect[0], FLAGS_bisect.size() > 1 ? FLAGS_bisect[1] : ""));
}
TArray<SkString> images;
if (!CommonFlags::CollectImages(FLAGS_images, &images)) {
return false;
}
for (const SkString& image : images) {
push_codec_srcs(image);
}
TArray<SkString> colorImages;
if (!CommonFlags::CollectImages(FLAGS_colorImages, &colorImages)) {
return false;
}
for (const SkString& colorImage : colorImages) {
push_src("colorImage", "decode_native", new ColorCodecSrc(colorImage, false));
push_src("colorImage", "decode_to_dst", new ColorCodecSrc(colorImage, true));
}
return true;
}
static void push_sink(const SkCommandLineConfig& config, Sink* s) {
std::unique_ptr<Sink> sink(s);
// Try a simple Src as a canary. If it fails, skip this sink.
struct : public Src {
Result draw(SkCanvas* c) const override {
c->drawRect(SkRect::MakeWH(1,1), SkPaint());
return Result::Ok();
}
SkISize size() const override { return SkISize::Make(16, 16); }
Name name() const override { return "justOneRect"; }
} justOneRect;
SkBitmap bitmap;
SkDynamicMemoryWStream stream;
SkString log;
Result result = sink->draw(justOneRect, &bitmap, &stream, &log);
if (result.isFatal()) {
info("Could not run %s: %s\n", config.getTag().c_str(), result.c_str());
exit(1);
}
TaggedSink& ts = gSinks->push_back();
ts.reset(sink.release());
ts.tag = config.getTag();
}
static Sink* create_sink(const GrContextOptions& grCtxOptions, const SkCommandLineConfig* config) {
if (FLAGS_gpu) {
if (const SkCommandLineConfigGpu* gpuConfig = config->asConfigGpu()) {
GrContextFactory testFactory(grCtxOptions);
if (!testFactory.get(gpuConfig->getContextType(), gpuConfig->getContextOverrides())) {
info("WARNING: can not create GPU context for config '%s'. "
"GM tests will be skipped.\n", gpuConfig->getTag().c_str());
return nullptr;
}
if (gpuConfig->getTestThreading()) {
SkASSERT(!gpuConfig->getTestPersistentCache());
return new GPUThreadTestingSink(gpuConfig, grCtxOptions);
} else if (gpuConfig->getTestPersistentCache()) {
return new GPUPersistentCacheTestingSink(gpuConfig, grCtxOptions);
} else if (gpuConfig->getTestPrecompile()) {
return new GPUPrecompileTestingSink(gpuConfig, grCtxOptions);
} else if (gpuConfig->getUseDDLSink()) {
return new GPUDDLSink(gpuConfig, grCtxOptions);
} else if (gpuConfig->getSlug()) {
return new GPUSlugSink(gpuConfig, grCtxOptions);
} else if (gpuConfig->getSerializedSlug()) {
return new GPUSerializeSlugSink(gpuConfig, grCtxOptions);
} else if (gpuConfig->getRemoteSlug()) {
return new GPURemoteSlugSink(gpuConfig, grCtxOptions);
} else {
return new GPUSink(gpuConfig, grCtxOptions);
}
}
}
#if defined(SK_GRAPHITE)
if (FLAGS_graphite) {
if (const SkCommandLineConfigGraphite *graphiteConfig = config->asConfigGraphite()) {
return new GraphiteSink(graphiteConfig);
}
}
#endif
if (const SkCommandLineConfigSvg* svgConfig = config->asConfigSvg()) {
int pageIndex = svgConfig->getPageIndex();
return new SVGSink(pageIndex);
}
#define SINK(t, sink, ...) if (config->getBackend().equals(t)) return new sink(__VA_ARGS__)
if (FLAGS_cpu) {
SINK("r8", RasterSink, kR8_unorm_SkColorType);
SINK("565", RasterSink, kRGB_565_SkColorType);
SINK("4444", RasterSink, kARGB_4444_SkColorType);
SINK("8888", RasterSink, kN32_SkColorType);
SINK("rgba", RasterSink, kRGBA_8888_SkColorType);
SINK("bgra", RasterSink, kBGRA_8888_SkColorType);
SINK("rgbx", RasterSink, kRGB_888x_SkColorType);
SINK("1010102", RasterSink, kRGBA_1010102_SkColorType);
SINK("101010x", RasterSink, kRGB_101010x_SkColorType);
SINK("bgra1010102", RasterSink, kBGRA_1010102_SkColorType);
SINK("bgr101010x", RasterSink, kBGR_101010x_SkColorType);
SINK("f16", RasterSink, kRGBA_F16_SkColorType);
SINK("f16norm", RasterSink, kRGBA_F16Norm_SkColorType);
SINK("f32", RasterSink, kRGBA_F32_SkColorType);
SINK("srgba", RasterSink, kSRGBA_8888_SkColorType);
SINK("pdf", PDFSink, false, SK_ScalarDefaultRasterDPI);
SINK("skp", SKPSink);
SINK("svg", SVGSink);
SINK("null", NullSink);
SINK("xps", XPSSink);
SINK("pdfa", PDFSink, true, SK_ScalarDefaultRasterDPI);
SINK("pdf300", PDFSink, false, 300);
SINK("jsdebug", DebugSink);
}
#undef SINK
return nullptr;
}
static Sink* create_via(const SkString& tag, Sink* wrapped) {
#define VIA(t, via, ...) if (tag.equals(t)) return new via(__VA_ARGS__)
#ifdef TEST_VIA_SVG
VIA("svg", ViaSVG, wrapped);
#endif
VIA("serialize", ViaSerialization, wrapped);
VIA("pic", ViaPicture, wrapped);
VIA("rtblend", ViaRuntimeBlend, wrapped);
if (FLAGS_matrix.size() == 4) {
SkMatrix m;
m.reset();
m.setScaleX((SkScalar)atof(FLAGS_matrix[0]));
m.setSkewX ((SkScalar)atof(FLAGS_matrix[1]));
m.setSkewY ((SkScalar)atof(FLAGS_matrix[2]));
m.setScaleY((SkScalar)atof(FLAGS_matrix[3]));
VIA("matrix", ViaMatrix, m, wrapped);
VIA("upright", ViaUpright, m, wrapped);
}
#undef VIA
return nullptr;
}
static bool gather_sinks(const GrContextOptions& grCtxOptions, bool defaultConfigs) {
SkCommandLineConfigArray configs;
ParseConfigs(FLAGS_config, &configs);
AutoreleasePool pool;
for (int i = 0; i < configs.size(); i++) {
const SkCommandLineConfig& config = *configs[i];
Sink* sink = create_sink(grCtxOptions, &config);
if (sink == nullptr) {
info("Skipping config %s: Don't understand '%s'.\n", config.getTag().c_str(),
config.getTag().c_str());
continue;
}
// The command line config already parsed out the via-style color space. Apply it here.
sink->setColorSpace(config.refColorSpace());
const TArray<SkString>& parts = config.getViaParts();
for (int j = parts.size(); j-- > 0;) {
const SkString& part = parts[j];
Sink* next = create_via(part, sink);
if (next == nullptr) {
info("Skipping config %s: Don't understand '%s'.\n", config.getTag().c_str(),
part.c_str());
delete sink;
sink = nullptr;
break;
}
sink = next;
}
if (sink) {
push_sink(config, sink);
}
}
// If no configs were requested (just running tests, perhaps?), then we're okay.
if (configs.size() == 0 ||
// If we're using the default configs, we're okay.
defaultConfigs ||
// Otherwise, make sure that all specified configs have become sinks.
configs.size() == gSinks->size()) {
return true;
}
return false;
}
static bool match(const char* needle, const char* haystack) {
if ('~' == needle[0]) {
return !match(needle + 1, haystack);
}
if (0 == strcmp("_", needle)) {
return true;
}
return nullptr != strstr(haystack, needle);
}
static bool should_skip(const char* sink, const char* src,
const char* srcOptions, const char* name) {
for (int i = 0; i < FLAGS_skip.size() - 3; i += 4) {
if (match(FLAGS_skip[i+0], sink) &&
match(FLAGS_skip[i+1], src) &&
match(FLAGS_skip[i+2], srcOptions) &&
match(FLAGS_skip[i+3], name)) {
return true;
}
}
return false;
}
// Even when a Task Sink reports to be non-threadsafe (e.g. GPU), we know things like
// .png encoding are definitely thread safe. This lets us offload that work to CPU threads.
static SkTaskGroup* gDefinitelyThreadSafeWork = new SkTaskGroup;
// The finest-grained unit of work we can run: draw a single Src into a single Sink,
// report any errors, and perhaps write out the output: a .png of the bitmap, or a raw stream.
struct Task {
Task(const TaggedSrc& src, const TaggedSink& sink) : src(src), sink(sink) {}
const TaggedSrc& src;
const TaggedSink& sink;
static void Run(const Task& task) {
AutoreleasePool pool;
SkString name = task.src->name();
SkString log;
if (!FLAGS_dryRun) {
SkBitmap bitmap;
SkDynamicMemoryWStream stream;
start(task.sink.tag.c_str(), task.src.tag.c_str(),
task.src.options.c_str(), name.c_str());
Result result = task.sink->draw(*task.src, &bitmap, &stream, &log);
if (!log.isEmpty()) {
info("%s %s %s %s:\n%s\n", task.sink.tag.c_str()
, task.src.tag.c_str()
, task.src.options.c_str()
, name.c_str()
, log.c_str());
}
if (result.isSkip()) {
done(task.sink.tag.c_str(), task.src.tag.c_str(),
task.src.options.c_str(), name.c_str());
return;
}
if (result.isFatal()) {
fail(SkStringPrintf("%s %s %s %s: %s",
task.sink.tag.c_str(),
task.src.tag.c_str(),
task.src.options.c_str(),
name.c_str(),
result.c_str()));
}
// Run verifiers if specified
if (FLAGS_runVerifiers) {
RunGMVerifiers(task, bitmap);
}
// We're likely switching threads here, so we must capture by value, [=] or [foo,bar].
SkStreamAsset* data = stream.detachAsStream().release();
gDefinitelyThreadSafeWork->add([task,name,bitmap,data]{
std::unique_ptr<SkStreamAsset> ownedData(data);
std::unique_ptr<HashAndEncode> hashAndEncode;
SkString md5;
if (!FLAGS_writePath.isEmpty() || !FLAGS_readPath.isEmpty()) {
SkMD5 hash;
if (data->getLength()) {
hash.writeStream(data, data->getLength());
data->rewind();
} else {
hashAndEncode = std::make_unique<HashAndEncode>(bitmap);
hashAndEncode->feedHash(&hash);
}
SkMD5::Digest digest = hash.finish();
for (int i = 0; i < 16; i++) {
md5.appendf("%02x", digest.data[i]);
}
}
if (!FLAGS_readPath.isEmpty() &&
!gGold->contains(Gold(task.sink.tag, task.src.tag,
task.src.options, name, md5))) {
fail(SkStringPrintf("%s not found for %s %s %s %s in %s",
md5.c_str(),
task.sink.tag.c_str(),
task.src.tag.c_str(),
task.src.options.c_str(),
name.c_str(),
FLAGS_readPath[0]));
}
// Tests sometimes use a nullptr ext to indicate no image should be uploaded.
const char* ext = task.sink->fileExtension();
if (ext && !FLAGS_writePath.isEmpty()) {
#if defined(SK_BUILD_FOR_MAC)
if (FLAGS_rasterize_pdf && SkString("pdf").equals(ext)) {
SkASSERT(data->getLength() > 0);
sk_sp<SkData> blob = SkData::MakeFromStream(data, data->getLength());
SkUniqueCFRef<CGDataProviderRef> provider{
CGDataProviderCreateWithData(nullptr,
blob->data(),
blob->size(),
nullptr)};
SkUniqueCFRef<CGPDFDocumentRef> pdf{
CGPDFDocumentCreateWithProvider(provider.get())};
CGPDFPageRef page = CGPDFDocumentGetPage(pdf.get(), 1);
CGRect bounds = CGPDFPageGetBoxRect(page, kCGPDFMediaBox);
const int w = (int)CGRectGetWidth (bounds),
h = (int)CGRectGetHeight(bounds);
SkBitmap rasterized;
rasterized.allocPixels(SkImageInfo::Make(
w, h, kRGBA_8888_SkColorType, kPremul_SkAlphaType));
rasterized.eraseColor(SK_ColorWHITE);
SkUniqueCFRef<CGColorSpaceRef> cs{CGColorSpaceCreateDeviceRGB()};
CGBitmapInfo info = kCGBitmapByteOrder32Big |
(CGBitmapInfo)kCGImageAlphaPremultipliedLast;
SkUniqueCFRef<CGContextRef> ctx{CGBitmapContextCreate(
rasterized.getPixels(), w,h,8, rasterized.rowBytes(), cs.get(), info)};
CGContextDrawPDFPage(ctx.get(), page);
// Skip calling hashAndEncode->feedHash(SkMD5*)... we want the .pdf's hash.
hashAndEncode = std::make_unique<HashAndEncode>(rasterized);
WriteToDisk(task, md5, "png", nullptr,0, &rasterized, hashAndEncode.get());
} else
#endif
if (data->getLength()) {
WriteToDisk(task, md5, ext, data, data->getLength(), nullptr, nullptr);
SkASSERT(bitmap.drawsNothing());
} else if (!bitmap.drawsNothing()) {
WriteToDisk(task, md5, ext, nullptr, 0, &bitmap, hashAndEncode.get());
}
}
SkPixmap pm;
if (FLAGS_checkF16 && bitmap.colorType() == kRGBA_F16Norm_SkColorType &&
bitmap.peekPixels(&pm)) {
bool unclamped = false;
for (int y = 0; y < pm.height() && !unclamped; ++y)
for (int x = 0; x < pm.width() && !unclamped; ++x) {
skvx::float4 rgba = SkHalfToFloat_finite_ftz(*pm.addr64(x, y));
float a = rgba[3];
if (a > 1.0f || any(rgba < 0.0f) || any(rgba > a)) {
SkDebugf("[%s] F16Norm pixel [%d, %d] unclamped: (%g, %g, %g, %g)\n",
name.c_str(), x, y, rgba[0], rgba[1], rgba[2], rgba[3]);
unclamped = true;
}
}
}
});
}
done(task.sink.tag.c_str(), task.src.tag.c_str(), task.src.options.c_str(), name.c_str());
}
static SkString identify_gamut(SkColorSpace* cs) {
if (!cs) {
return SkString("untagged");
}
skcms_Matrix3x3 gamut;
if (cs->toXYZD50(&gamut)) {
auto eq = [](skcms_Matrix3x3 x, skcms_Matrix3x3 y) {
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++) {
if (x.vals[i][j] != y.vals[i][j]) { return false; }
}
return true;
};
if (eq(gamut, SkNamedGamut::kSRGB )) { return SkString("sRGB"); }
if (eq(gamut, SkNamedGamut::kAdobeRGB )) { return SkString("Adobe"); }
if (eq(gamut, SkNamedGamut::kDisplayP3)) { return SkString("P3"); }
if (eq(gamut, SkNamedGamut::kRec2020 )) { return SkString("2020"); }
if (eq(gamut, SkNamedGamut::kXYZ )) { return SkString("XYZ"); }
if (eq(gamut, gNarrow_toXYZD50 )) { return SkString("narrow"); }
return SkString("other");
}
return SkString("non-XYZ");
}
static SkString identify_transfer_fn(SkColorSpace* cs) {
if (!cs) {
return SkString("untagged");
}
auto eq = [](skcms_TransferFunction x, skcms_TransferFunction y) {
return x.g == y.g
&& x.a == y.a
&& x.b == y.b
&& x.c == y.c
&& x.d == y.d
&& x.e == y.e
&& x.f == y.f;
};
skcms_TransferFunction tf;
cs->transferFn(&tf);
switch (skcms_TransferFunction_getType(&tf)) {
case skcms_TFType_sRGBish:
if (tf.a == 1 && tf.b == 0 && tf.c == 0 && tf.d == 0 && tf.e == 0 && tf.f == 0) {
return SkStringPrintf("gamma %.3g", tf.g);
}
if (eq(tf, SkNamedTransferFn::kSRGB)) { return SkString("sRGB"); }
if (eq(tf, SkNamedTransferFn::kRec2020)) { return SkString("2020"); }
return SkStringPrintf("%.3g %.3g %.3g %.3g %.3g %.3g %.3g",
tf.g, tf.a, tf.b, tf.c, tf.d, tf.e, tf.f);
case skcms_TFType_PQish:
if (eq(tf, SkNamedTransferFn::kPQ)) { return SkString("PQ"); }
return SkStringPrintf("PQish %.3g %.3g %.3g %.3g %.3g %.3g",
tf.a, tf.b, tf.c, tf.d, tf.e, tf.f);
case skcms_TFType_HLGish:
if (eq(tf, SkNamedTransferFn::kHLG)) { return SkString("HLG"); }
return SkStringPrintf("HLGish %.3g %.3g %.3g %.3g %.3g (%.3g)",
tf.a, tf.b, tf.c, tf.d, tf.e, tf.f+1);
case skcms_TFType_HLGinvish: break;
case skcms_TFType_Invalid: break;
}
return SkString("non-numeric");
}
static void WriteToDisk(const Task& task,
SkString md5,
const char* ext,
SkStream* data, size_t len,
const SkBitmap* bitmap,
const HashAndEncode* hashAndEncode) {
// Determine whether or not the OldestSupportedSkpVersion extra_config is provided.
bool isOldestSupportedSkp = false;
for (int i = 1; i < FLAGS_key.size(); i += 2) {
if (0 == strcmp(FLAGS_key[i-1], "extra_config") &&
0 == strcmp(FLAGS_key[i], "OldestSupportedSkpVersion")) {
isOldestSupportedSkp = true;
break;
}
}
JsonWriter::BitmapResult result;
result.name = task.src->name();
result.config = task.sink.tag;
result.sourceType = task.src.tag;
// If the OldestSupportedSkpVersion extra_config is provided, override the "skp"
// source_type with "old-skp". This has the effect of grouping the oldest supported SKPs in
// a separate Gold corpus for easier triaging.
if (isOldestSupportedSkp && 0 == strcmp(result.sourceType.c_str(), "skp")) {
result.sourceType = "old-skp";
}
result.sourceOptions = task.src.options;
result.ext = ext;
result.md5 = md5;
if (bitmap) {
result.gamut = identify_gamut (bitmap->colorSpace());
result.transferFn = identify_transfer_fn (bitmap->colorSpace());
result.colorType = ToolUtils::colortype_name (bitmap->colorType());
result.alphaType = ToolUtils::alphatype_name (bitmap->alphaType());
result.colorDepth = ToolUtils::colortype_depth(bitmap->colorType());
}
JsonWriter::AddBitmapResult(result);
// If an MD5 is uninteresting, we want it noted in the JSON file,
// but don't want to dump it out as a .png (or whatever ext is).
if (gUninterestingHashes->contains(md5)) {
return;
}
const char* dir = FLAGS_writePath[0];
SkString resources = GetResourcePath();
if (0 == strcmp(dir, "@")) { // Needed for iOS.
dir = resources.c_str();
}
sk_mkdir(dir);
SkString path;
if (FLAGS_nameByHash) {
path = SkOSPath::Join(dir, result.md5.c_str());
path.append(".");
path.append(ext);
if (sk_exists(path.c_str())) {
return; // Content-addressed. If it exists already, we're done.
}
} else {
path = SkOSPath::Join(dir, task.sink.tag.c_str());
sk_mkdir(path.c_str());
path = SkOSPath::Join(path.c_str(), task.src.tag.c_str());
sk_mkdir(path.c_str());
if (0 != strcmp(task.src.options.c_str(), "")) {
path = SkOSPath::Join(path.c_str(), task.src.options.c_str());
sk_mkdir(path.c_str());
}
path = SkOSPath::Join(path.c_str(), task.src->name().c_str());
path.append(".");
path.append(ext);
}
SkFILEWStream file(path.c_str());
if (!file.isValid()) {
fail(SkStringPrintf("Can't open %s for writing.\n", path.c_str()));
return;
}
if (bitmap) {
SkASSERT(hashAndEncode);
if (!hashAndEncode->encodePNG(&file,
result.md5.c_str(),
FLAGS_key,
FLAGS_properties)) {
fail(SkStringPrintf("Can't encode PNG to %s.\n", path.c_str()));
return;
}
} else {
if (!file.writeStream(data, len)) {
fail(SkStringPrintf("Can't write to %s.\n", path.c_str()));
return;
}
}
}
static void RunGMVerifiers(const Task& task, const SkBitmap& actualBitmap) {
const SkString name = task.src->name();
auto verifierList = task.src->getVerifiers();
if (verifierList == nullptr) {
return;
}
skiagm::verifiers::VerifierResult
res = verifierList->verifyAll(task.sink->colorInfo(), actualBitmap);
if (!res.ok()) {
fail(
SkStringPrintf(
"%s %s %s %s: verifier failed: %s", task.sink.tag.c_str(), task.src.tag.c_str(),
task.src.options.c_str(), name.c_str(), res.message().c_str()));
}
}
};
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
// Unit tests don't fit so well into the Src/Sink model, so we give them special treatment.
static SkTDArray<skiatest::Test>* gCPUTests = new SkTDArray<skiatest::Test>;
static SkTDArray<skiatest::Test>* gGaneshTests = new SkTDArray<skiatest::Test>;
static SkTDArray<skiatest::Test>* gGraphiteTests = new SkTDArray<skiatest::Test>;
static void gather_tests() {
if (!FLAGS_src.contains("tests")) {
return;
}
for (const skiatest::Test& test : skiatest::TestRegistry::Range()) {
if (!in_shard()) {
continue;
}
if (CommandLineFlags::ShouldSkip(FLAGS_match, test.fName)) {
continue;
}
if (test.fTestType == TestType::kGanesh && FLAGS_gpu) {
gGaneshTests->push_back(test);
} else if (test.fTestType == TestType::kGraphite && FLAGS_graphite) {
gGraphiteTests->push_back(test);
} else if (test.fTestType == TestType::kCPU && FLAGS_cpu) {
gCPUTests->push_back(test);
}
}
}
struct DMReporter : public skiatest::Reporter {
void reportFailed(const skiatest::Failure& failure) override {
fail(failure.toString());
}
bool allowExtendedTest() const override {
return FLAGS_pathOpsExtended;
}
bool verbose() const override { return FLAGS_veryVerbose; }
};
static void run_cpu_test(skiatest::Test test) {
DMReporter reporter;
if (!FLAGS_dryRun && !should_skip("_", "tests", "_", test.fName)) {
skiatest::ReporterContext ctx(&reporter, SkString(test.fName));
start("unit", "test", "", test.fName);
test.cpu(&reporter);
}
done("unit", "test", "", test.fName);
}
static void run_ganesh_test(skiatest::Test test, const GrContextOptions& grCtxOptions) {
DMReporter reporter;
if (!FLAGS_dryRun && !should_skip("_", "tests", "_", test.fName)) {
AutoreleasePool pool;
GrContextOptions options = grCtxOptions;
test.modifyGrContextOptions(&options);
skiatest::ReporterContext ctx(&reporter, SkString(test.fName));
start("unit", "test", "", test.fName);
test.ganesh(&reporter, options);
}
done("unit", "test", "", test.fName);
}
static void run_graphite_test(skiatest::Test test) {
DMReporter reporter;
if (!FLAGS_dryRun && !should_skip("_", "tests", "_", test.fName)) {
AutoreleasePool pool;
skiatest::ReporterContext ctx(&reporter, SkString(test.fName));
start("unit", "test", "", test.fName);
test.graphite(&reporter);
}
done("unit", "test", "", test.fName);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
TestHarness CurrentTestHarness() {
return TestHarness::kDM;
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
int main(int argc, char** argv) {
#if defined(__MSVC_RUNTIME_CHECKS)
_RTC_SetErrorFunc(RuntimeCheckErrorFunc);
#endif
#if defined(SK_BUILD_FOR_ANDROID_FRAMEWORK) && defined(SK_HAS_HEIF_LIBRARY)
android::ProcessState::self()->startThreadPool();
#endif
CommandLineFlags::Parse(argc, argv);
initializeEventTracingForTools();
#if !defined(SK_BUILD_FOR_GOOGLE3) && defined(SK_BUILD_FOR_IOS)
cd_Documents();
#endif
setbuf(stdout, nullptr);
setup_crash_handler();
CommonFlags::SetDefaultFontMgr();
CommonFlags::SetAnalyticAA();
gSkForceRasterPipelineBlitter = FLAGS_forceRasterPipelineHP || FLAGS_forceRasterPipeline;
gForceHighPrecisionRasterPipeline = FLAGS_forceRasterPipelineHP;
gUseSkVMBlitter = FLAGS_skvm;
gSkVMAllowJIT = FLAGS_jit;
gSkVMJITViaDylib = FLAGS_dylib;
gSkBlobAsSlugTesting = FLAGS_blobAsSlugTesting;
// The bots like having a verbose.log to upload, so always touch the file even if --verbose.
if (!FLAGS_writePath.isEmpty()) {
sk_mkdir(FLAGS_writePath[0]);
gVLog = fopen(SkOSPath::Join(FLAGS_writePath[0], "verbose.log").c_str(), "w");
}
if (FLAGS_verbose) {
gVLog = stderr;
}
GrContextOptions grCtxOptions;
CommonFlags::SetCtxOptions(&grCtxOptions);
dump_json(); // It's handy for the bots to assume this is ~never missing.
SkAutoGraphics ag;
#if defined(SK_ENABLE_SVG)
SkGraphics::SetOpenTypeSVGDecoderFactory(SkSVGOpenTypeSVGDecoder::Make);
#endif
SkTaskGroup::Enabler enabled(FLAGS_threads);
if (nullptr == GetResourceAsData("images/color_wheel.png")) {
info("Some resources are missing. Do you need to set --resourcePath?\n");
}
gather_gold();
gather_uninteresting_hashes();
if (!gather_srcs()) {
return 1;
}
// TODO(dogben): This is a bit ugly. Find a cleaner way to do this.
bool defaultConfigs = true;
for (int i = 0; i < argc; i++) {
if (strcmp(argv[i], "--config") == 0) {
defaultConfigs = false;
break;
}
}
if (!gather_sinks(grCtxOptions, defaultConfigs)) {
return 1;
}
gather_tests();
int testCount = gCPUTests->size() + gGaneshTests->size() + gGraphiteTests->size();
gPending = gSrcs->size() * gSinks->size() + testCount;
info("%d srcs * %d sinks + %d tests == %d tasks\n",
gSrcs->size(), gSinks->size(), testCount,
gPending);
// Kick off as much parallel work as we can, making note of any serial work we'll need to do.
SkTaskGroup parallel;
TArray<Task> serial;
for (TaggedSink& sink : *gSinks) {
for (TaggedSrc& src : *gSrcs) {
if (src->veto(sink->flags()) ||
should_skip(sink.tag.c_str(), src.tag.c_str(),
src.options.c_str(), src->name().c_str())) {
SkAutoSpinlock lock(*gMutex);
gPending--;
continue;
}
Task task(src, sink);
if (src->serial() || sink->serial()) {
serial.push_back(task);
} else {
parallel.add([task] { Task::Run(task); });
}
}
}
for (skiatest::Test& test : *gCPUTests) {
parallel.add([test] { run_cpu_test(test); });
}
// With the parallel work running, run serial tasks and tests here on main thread.
for (Task& task : serial) { Task::Run(task); }
for (skiatest::Test& test : *gGaneshTests) { run_ganesh_test(test, grCtxOptions); }
for (skiatest::Test& test : *gGraphiteTests) { run_graphite_test(test); }
// Wait for any remaining parallel work to complete (including any spun off of serial tasks).
parallel.wait();
gDefinitelyThreadSafeWork->wait();
// At this point we're back in single-threaded land.
// We'd better have run everything.
SkASSERT(gPending == 0);
// Make sure we've flushed all our results to disk.
dump_json();
if (!gFailures->empty()) {
info("Failures:\n");
for (const SkString& fail : *gFailures) {
info("\t%s\n", fail.c_str());
}
info("%d failures\n", gFailures->size());
return 1;
}
SkGraphics::PurgeAllCaches();
info("Finished!\n");
return 0;
}