blob: d0ec01e63007aa664143965f9f374fae3343a1f6 [file] [log] [blame]
/*
* Copyright 2020 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "imgui.h"
#include "include/core/SkBitmap.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkPath.h"
#include "include/core/SkPathMeasure.h"
#include "include/core/SkPathUtils.h"
#include "include/utils/SkParsePath.h"
#include "src/core/SkGeometry.h"
#include "tools/viewer/ClickHandlerSlide.h"
#include <stack>
namespace {
//////////////////////////////////////////////////////////////////////////////
constexpr inline SkPoint rotate90(const SkPoint& p) { return {p.fY, -p.fX}; }
inline SkPoint rotate180(const SkPoint& p) { return p * -1; }
inline bool isClockwise(const SkPoint& a, const SkPoint& b) { return a.cross(b) > 0; }
static SkPoint checkSetLength(SkPoint p, float len, const char* file, int line) {
if (!p.setLength(len)) {
SkDebugf("%s:%d: Failed to set point length\n", file, line);
}
return p;
}
/** Version of setLength that prints debug msg on failure to help catch edge cases */
#define setLength(p, len) checkSetLength(p, len, __FILE__, __LINE__)
constexpr uint64_t choose(uint64_t n, uint64_t k) {
SkASSERT(n >= k);
uint64_t result = 1;
for (uint64_t i = 1; i <= k; i++) {
result *= (n + 1 - i);
result /= i;
}
return result;
}
//////////////////////////////////////////////////////////////////////////////
/**
* A scalar (float-valued weights) Bezier curve of arbitrary degree.
*/
class ScalarBezCurve {
public:
inline static constexpr int kDegreeInvalid = -1;
/** Creates an empty curve with invalid degree. */
ScalarBezCurve() : fDegree(kDegreeInvalid) {}
/** Creates a curve of the specified degree with weights initialized to 0. */
explicit ScalarBezCurve(int degree) : fDegree(degree) {
SkASSERT(degree >= 0);
fWeights.resize(degree + 1, {0});
}
/** Creates a curve of specified degree with the given weights. */
ScalarBezCurve(int degree, const std::vector<float>& weights) : ScalarBezCurve(degree) {
SkASSERT(degree >= 0);
SkASSERT(weights.size() == (size_t)degree + 1);
fWeights.insert(fWeights.begin(), weights.begin(), weights.end());
}
/** Returns the extreme-valued weight */
float extremumWeight() const {
float f = 0;
int sign = 1;
for (float w : fWeights) {
if (std::abs(w) > f) {
f = std::abs(w);
sign = w >= 0 ? 1 : -1;
}
}
return sign * f;
}
/** Evaluates the curve at t */
float eval(float t) const { return Eval(*this, t); }
/** Evaluates the curve at t */
static float Eval(const ScalarBezCurve& curve, float t) {
// Set up starting point of recursion (k=0)
ScalarBezCurve result = curve;
for (int k = 1; k <= curve.fDegree; k++) {
// k is level of recursion, k-1 has previous level's values.
for (int i = curve.fDegree; i >= k; i--) {
result.fWeights[i] = result.fWeights[i - 1] * (1 - t) + result.fWeights[i] * t;
}
}
return result.fWeights[curve.fDegree];
}
/** Splits this curve at t into two halves (of the same degree) */
void split(float t, ScalarBezCurve* left, ScalarBezCurve* right) const {
Split(*this, t, left, right);
}
/** Splits this curve into the subinterval [tmin,tmax]. */
void split(float tmin, float tmax, ScalarBezCurve* result) const {
// TODO: I believe there's a more efficient algorithm for this
const float tRel = tmin / tmax;
ScalarBezCurve ll, rl, rr;
this->split(tmax, &rl, &rr);
rl.split(tRel, &ll, result);
}
/** Splits the curve at t into two halves (of the same degree) */
static void Split(const ScalarBezCurve& curve,
float t,
ScalarBezCurve* left,
ScalarBezCurve* right) {
// Set up starting point of recursion (k=0)
const int degree = curve.fDegree;
ScalarBezCurve result = curve;
*left = ScalarBezCurve(degree);
*right = ScalarBezCurve(degree);
left->fWeights[0] = curve.fWeights[0];
right->fWeights[degree] = curve.fWeights[degree];
for (int k = 1; k <= degree; k++) {
// k is level of recursion, k-1 has previous level's values.
for (int i = degree; i >= k; i--) {
result.fWeights[i] = result.fWeights[i - 1] * (1 - t) + result.fWeights[i] * t;
}
left->fWeights[k] = result.fWeights[k];
right->fWeights[degree - k] = result.fWeights[degree];
}
}
/**
* Increases the degree of the curve to the given degree. Has no effect if the
* degree is already equal to the given degree.
*
* This process is always exact (NB the reverse, degree reduction, is not exact).
*/
void elevateDegree(int newDegree) {
if (newDegree == fDegree) {
return;
}
fWeights = ElevateDegree(*this, newDegree).fWeights;
fDegree = newDegree;
}
/**
* Increases the degree of the curve to the given degree. Has no effect if the
* degree is already equal to the given degree.
*
* This process is always exact (NB the reverse, degree reduction, is not exact).
*/
static ScalarBezCurve ElevateDegree(const ScalarBezCurve& curve, int newDegree) {
SkASSERT(newDegree >= curve.degree());
if (newDegree == curve.degree()) {
return curve;
}
// From Farouki, Rajan, "Algorithms for polynomials in Bernstein form" 1988.
ScalarBezCurve elevated(newDegree);
const int r = newDegree - curve.fDegree;
const int n = curve.fDegree;
for (int i = 0; i <= n + r; i++) {
elevated.fWeights[i] = 0;
for (int j = std::max(0, i - r); j <= std::min(n, i); j++) {
const float f =
(choose(n, j) * choose(r, i - j)) / static_cast<float>(choose(n + r, i));
elevated.fWeights[i] += curve.fWeights[j] * f;
}
}
return elevated;
}
/**
* Returns the zero-set of this curve, which is a list of t values where the curve crosses 0.
*/
std::vector<float> zeroSet() const { return ZeroSet(*this); }
/**
* Returns the zero-set of the curve, which is a list of t values where the curve crosses 0.
*/
static std::vector<float> ZeroSet(const ScalarBezCurve& curve) {
constexpr float kTol = 0.001f;
std::vector<float> result;
ZeroSetRec(curve, 0, 1, kTol, &result);
return result;
}
/** Multiplies the curve's weights by a constant value */
static ScalarBezCurve Mul(const ScalarBezCurve& curve, float f) {
ScalarBezCurve result = curve;
for (int k = 0; k <= curve.fDegree; k++) {
result.fWeights[k] *= f;
}
return result;
}
/**
* Multiplies the two curves and returns the result.
*
* Degree of resulting curve is the sum of the degrees of the input curves.
*/
static ScalarBezCurve Mul(const ScalarBezCurve& a, const ScalarBezCurve& b) {
// From G. Elber, "Free form surface analysis using a hybrid of symbolic and numeric
// computation". PhD thesis, 1992. p.11.
const int n = a.degree(), m = b.degree();
const int newDegree = n + m;
ScalarBezCurve result(newDegree);
for (int k = 0; k <= newDegree; k++) {
result.fWeights[k] = 0;
for (int i = std::max(0, k - n); i <= std::min(k, m); i++) {
const float f =
(choose(m, i) * choose(n, k - i)) / static_cast<float>(choose(m + n, k));
result.fWeights[k] += a.fWeights[i] * b.fWeights[k - i] * f;
}
}
return result;
}
/** Returns a^2 + b^2. This is a specialized method because the loops are easily fused. */
static ScalarBezCurve AddSquares(const ScalarBezCurve& a, const ScalarBezCurve& b) {
const int n = a.degree(), m = b.degree();
const int newDegree = n + m;
ScalarBezCurve result(newDegree);
for (int k = 0; k <= newDegree; k++) {
float aSq = 0, bSq = 0;
for (int i = std::max(0, k - n); i <= std::min(k, m); i++) {
const float f =
(choose(m, i) * choose(n, k - i)) / static_cast<float>(choose(m + n, k));
aSq += a.fWeights[i] * a.fWeights[k - i] * f;
bSq += b.fWeights[i] * b.fWeights[k - i] * f;
}
result.fWeights[k] = aSq + bSq;
}
return result;
}
/** Returns a - b. */
static ScalarBezCurve Sub(const ScalarBezCurve& a, const ScalarBezCurve& b) {
ScalarBezCurve result = a;
result.sub(b);
return result;
}
/** Subtracts the other curve from this curve */
void sub(const ScalarBezCurve& other) {
SkASSERT(other.fDegree == fDegree);
for (int k = 0; k <= fDegree; k++) {
fWeights[k] -= other.fWeights[k];
}
}
/** Subtracts a constant from this curve */
void sub(float f) {
for (int k = 0; k <= fDegree; k++) {
fWeights[k] -= f;
}
}
/** Returns the curve degree */
int degree() const { return fDegree; }
/** Returns the curve weights */
const std::vector<float>& weights() const { return fWeights; }
float operator[](size_t i) const { return fWeights[i]; }
float& operator[](size_t i) { return fWeights[i]; }
private:
/** Recursive helper for ZeroSet */
static void ZeroSetRec(const ScalarBezCurve& curve,
float tmin,
float tmax,
float tol,
std::vector<float>* result) {
float lenP = 0;
bool allPos = curve.fWeights[0] >= 0, allNeg = curve.fWeights[0] < 0;
for (int i = 1; i <= curve.fDegree; i++) {
lenP += std::abs(curve.fWeights[i] - curve.fWeights[i - 1]);
allPos &= curve.fWeights[i] >= 0;
allNeg &= curve.fWeights[i] < 0;
}
if (lenP <= tol) {
result->push_back((tmin + tmax) * 0.5);
return;
} else if (allPos || allNeg) {
// No zero crossings possible if the coefficients don't change sign (convex hull
// property)
return;
} else if (SkScalarNearlyZero(tmax - tmin)) {
return;
} else {
ScalarBezCurve left(curve.fDegree), right(curve.fDegree);
Split(curve, 0.5f, &left, &right);
const float tmid = (tmin + tmax) * 0.5;
ZeroSetRec(left, tmin, tmid, tol, result);
ZeroSetRec(right, tmid, tmax, tol, result);
}
}
int fDegree;
std::vector<float> fWeights;
};
//////////////////////////////////////////////////////////////////////////////
/** Helper class that measures per-verb path lengths. */
class PathVerbMeasure {
public:
explicit PathVerbMeasure(const SkPath& path) : fPath(path), fIter(path, false) { nextVerb(); }
SkScalar totalLength() const;
SkScalar currentVerbLength() { return fMeas.getLength(); }
void nextVerb();
private:
const SkPath& fPath;
SkPoint fFirstPointInContour;
SkPoint fPreviousPoint;
SkPath fCurrVerb;
SkPath::Iter fIter;
SkPathMeasure fMeas;
};
SkScalar PathVerbMeasure::totalLength() const {
SkPathMeasure meas(fPath, false);
return meas.getLength();
}
void PathVerbMeasure::nextVerb() {
SkPoint pts[4];
SkPath::Verb verb = fIter.next(pts);
while (verb == SkPath::kMove_Verb || verb == SkPath::kClose_Verb) {
if (verb == SkPath::kMove_Verb) {
fFirstPointInContour = pts[0];
fPreviousPoint = fFirstPointInContour;
}
verb = fIter.next(pts);
}
fCurrVerb.rewind();
fCurrVerb.moveTo(fPreviousPoint);
switch (verb) {
case SkPath::kLine_Verb:
fCurrVerb.lineTo(pts[1]);
break;
case SkPath::kQuad_Verb:
fCurrVerb.quadTo(pts[1], pts[2]);
break;
case SkPath::kCubic_Verb:
fCurrVerb.cubicTo(pts[1], pts[2], pts[3]);
break;
case SkPath::kConic_Verb:
fCurrVerb.conicTo(pts[1], pts[2], fIter.conicWeight());
break;
case SkPath::kDone_Verb:
break;
case SkPath::kClose_Verb:
case SkPath::kMove_Verb:
SkASSERT(false);
break;
}
fCurrVerb.getLastPt(&fPreviousPoint);
fMeas.setPath(&fCurrVerb, false);
}
//////////////////////////////////////////////////////////////////////////////
// Several debug-only visualization helpers
namespace viz {
std::unique_ptr<ScalarBezCurve> outerErr;
SkPath outerFirstApprox;
} // namespace viz
/**
* Prototype variable-width path stroker.
*
* Takes as input a path to be stroked, and two distance functions (inside and outside).
* Produces a fill path with the stroked path geometry.
*
* The algorithms in use here are from:
*
* G. Elber, E. Cohen. "Error bounded variable distance offset operator for free form curves and
* surfaces." International Journal of Computational Geometry & Applications 1, no. 01 (1991)
*
* G. Elber. "Free form surface analysis using a hybrid of symbolic and numeric computation."
* PhD diss., Dept. of Computer Science, University of Utah, 1992.
*/
class SkVarWidthStroker {
public:
/** Metric to use for interpolation of distance function across path segments. */
enum class LengthMetric {
/** Each path segment gets an equal interval of t in [0,1] */
kNumSegments,
/** Each path segment gets t interval equal to its percent of the total path length */
kPathLength,
};
/**
* Strokes the path with a fixed-width distance function. This produces a traditional stroked
* path.
*/
SkPath getFillPath(const SkPath& path, const SkPaint& paint) {
return getFillPath(path, paint, identityVarWidth(paint.getStrokeWidth()),
identityVarWidth(paint.getStrokeWidth()));
}
/**
* Strokes the given path using the two given distance functions for inner and outer offsets.
*/
SkPath getFillPath(const SkPath& path,
const SkPaint& paint,
const ScalarBezCurve& varWidth,
const ScalarBezCurve& varWidthInner,
LengthMetric lengthMetric = LengthMetric::kNumSegments);
private:
/** Helper struct referring to a single segment of an SkPath */
struct PathSegment {
SkPath::Verb fVerb;
std::array<SkPoint, 4> fPoints;
};
struct OffsetSegments {
std::vector<PathSegment> fInner;
std::vector<PathSegment> fOuter;
};
/** Initialize stroker state */
void initForPath(const SkPath& path, const SkPaint& paint);
/** Strokes a path segment */
OffsetSegments strokeSegment(const PathSegment& segment,
const ScalarBezCurve& varWidth,
const ScalarBezCurve& varWidthInner,
bool needsMove);
/**
* Strokes the given segment using the given distance function.
*
* Returns a list of quad segments that approximate the offset curve.
* TODO: no reason this needs to return a vector of quads, can just append to the path
*/
std::vector<PathSegment> strokeSegment(const PathSegment& seg,
const ScalarBezCurve& distanceFunc) const;
/** Adds an endcap to fOuter */
enum class CapLocation { Start, End };
void endcap(CapLocation loc);
/** Adds a join between the two segments */
void join(const SkPoint& common,
float innerRadius,
float outerRadius,
const OffsetSegments& prev,
const OffsetSegments& curr);
/** Appends path in reverse to result */
static void appendPathReversed(const SkPath& path, SkPath* result);
/** Returns the segment unit normal and unit tangent if not nullptr */
static SkPoint unitNormal(const PathSegment& seg, float t, SkPoint* tangentOut);
/** Returns the degree of a segment curve */
static int segmentDegree(const PathSegment& seg);
/** Splits a path segment at t */
static void splitSegment(const PathSegment& seg, float t, PathSegment* segA, PathSegment* segB);
/**
* Returns a quadratic segment that approximates the given segment using the given distance
* function.
*/
static void approximateSegment(const PathSegment& seg,
const ScalarBezCurve& distFnc,
PathSegment* approxQuad);
/** Returns a constant (deg 0) distance function for the given stroke width */
static ScalarBezCurve identityVarWidth(float strokeWidth) {
return ScalarBezCurve(0, {strokeWidth / 2.0f});
}
float fRadius;
SkPaint::Cap fCap;
SkPaint::Join fJoin;
SkPath fInner, fOuter;
ScalarBezCurve fVarWidth, fVarWidthInner;
float fCurrT;
};
void SkVarWidthStroker::initForPath(const SkPath& path, const SkPaint& paint) {
fRadius = paint.getStrokeWidth() / 2;
fCap = paint.getStrokeCap();
fJoin = paint.getStrokeJoin();
fInner.rewind();
fOuter.rewind();
fCurrT = 0;
}
SkPath SkVarWidthStroker::getFillPath(const SkPath& path,
const SkPaint& paint,
const ScalarBezCurve& varWidth,
const ScalarBezCurve& varWidthInner,
LengthMetric lengthMetric) {
const auto appendStrokes = [this](const OffsetSegments& strokes, bool needsMove) {
if (needsMove) {
fOuter.moveTo(strokes.fOuter.front().fPoints[0]);
fInner.moveTo(strokes.fInner.front().fPoints[0]);
}
for (const PathSegment& seg : strokes.fOuter) {
fOuter.quadTo(seg.fPoints[1], seg.fPoints[2]);
}
for (const PathSegment& seg : strokes.fInner) {
fInner.quadTo(seg.fPoints[1], seg.fPoints[2]);
}
};
initForPath(path, paint);
fVarWidth = varWidth;
fVarWidthInner = varWidthInner;
// TODO: this assumes one contour:
PathVerbMeasure meas(path);
const float totalPathLength = lengthMetric == LengthMetric::kPathLength
? meas.totalLength()
: (path.countVerbs() - 1);
// Trace the inner and outer paths simultaneously. Inner will therefore be
// recorded in reverse from how we trace the outline.
SkPath::Iter it(path, false);
PathSegment segment, prevSegment;
OffsetSegments offsetSegs, prevOffsetSegs;
bool firstSegment = true, prevWasFirst = false;
float lenTraveled = 0;
while ((segment.fVerb = it.next(&segment.fPoints[0])) != SkPath::kDone_Verb) {
const float verbLength = lengthMetric == LengthMetric::kPathLength
? (meas.currentVerbLength() / totalPathLength)
: (1.0f / totalPathLength);
const float tmin = lenTraveled;
const float tmax = lenTraveled + verbLength;
// Subset the distance function for the current interval.
ScalarBezCurve partVarWidth, partVarWidthInner;
fVarWidth.split(tmin, tmax, &partVarWidth);
fVarWidthInner.split(tmin, tmax, &partVarWidthInner);
partVarWidthInner = ScalarBezCurve::Mul(partVarWidthInner, -1);
// Stroke the current segment
switch (segment.fVerb) {
case SkPath::kLine_Verb:
case SkPath::kQuad_Verb:
case SkPath::kCubic_Verb:
offsetSegs = strokeSegment(segment, partVarWidth, partVarWidthInner, firstSegment);
break;
case SkPath::kMove_Verb:
// Don't care about multiple contours currently
continue;
default:
SkDebugf("Unhandled path verb %d\n", segment.fVerb);
SkASSERT(false);
break;
}
// Join to the previous segment
if (!firstSegment) {
// Append prev inner and outer strokes
appendStrokes(prevOffsetSegs, prevWasFirst);
// Append the join
const float innerRadius = varWidthInner.eval(tmin);
const float outerRadius = varWidth.eval(tmin);
join(segment.fPoints[0], innerRadius, outerRadius, prevOffsetSegs, offsetSegs);
}
std::swap(segment, prevSegment);
std::swap(offsetSegs, prevOffsetSegs);
prevWasFirst = firstSegment;
firstSegment = false;
lenTraveled += verbLength;
meas.nextVerb();
}
// Finish appending final offset segments
appendStrokes(prevOffsetSegs, prevWasFirst);
// Open contour => endcap at the end
const bool isClosed = path.isLastContourClosed();
if (isClosed) {
SkDebugf("Unhandled closed contour\n");
SkASSERT(false);
} else {
endcap(CapLocation::End);
}
// Walk inner path in reverse, appending to result
appendPathReversed(fInner, &fOuter);
endcap(CapLocation::Start);
return fOuter;
}
SkVarWidthStroker::OffsetSegments SkVarWidthStroker::strokeSegment(
const PathSegment& segment,
const ScalarBezCurve& varWidth,
const ScalarBezCurve& varWidthInner,
bool needsMove) {
viz::outerErr.reset(nullptr);
std::vector<PathSegment> outer = strokeSegment(segment, varWidth);
std::vector<PathSegment> inner = strokeSegment(segment, varWidthInner);
return {inner, outer};
}
std::vector<SkVarWidthStroker::PathSegment> SkVarWidthStroker::strokeSegment(
const PathSegment& seg, const ScalarBezCurve& distanceFunc) const {
// Work item for the recursive splitting stack.
struct Item {
PathSegment fSeg;
ScalarBezCurve fDistFnc, fDistFncSqd;
ScalarBezCurve fSegX, fSegY;
Item(const PathSegment& seg,
const ScalarBezCurve& distFnc,
const ScalarBezCurve& distFncSqd)
: fSeg(seg), fDistFnc(distFnc), fDistFncSqd(distFncSqd) {
const int segDegree = segmentDegree(seg);
fSegX = ScalarBezCurve(segDegree);
fSegY = ScalarBezCurve(segDegree);
for (int i = 0; i <= segDegree; i++) {
fSegX[i] = seg.fPoints[i].fX;
fSegY[i] = seg.fPoints[i].fY;
}
}
};
// Push the initial segment and distance function
std::stack<Item> stack;
stack.push(Item(seg, distanceFunc, ScalarBezCurve::Mul(distanceFunc, distanceFunc)));
std::vector<PathSegment> result;
constexpr int kMaxIters = 5000; /** TODO: this is completely arbitrary */
int iter = 0;
while (!stack.empty()) {
if (iter++ >= kMaxIters) break;
const Item item = stack.top();
stack.pop();
const ScalarBezCurve& distFnc = item.fDistFnc;
ScalarBezCurve distFncSqd = item.fDistFncSqd;
const float kTol = std::abs(0.5f * distFnc.extremumWeight());
// Compute a quad that approximates stroke outline
PathSegment quadApprox;
approximateSegment(item.fSeg, distFnc, &quadApprox);
ScalarBezCurve quadApproxX(2), quadApproxY(2);
for (int i = 0; i < 3; i++) {
quadApproxX[i] = quadApprox.fPoints[i].fX;
quadApproxY[i] = quadApprox.fPoints[i].fY;
}
// Compute control polygon for the delta(t) curve. First must elevate to a common degree.
const int deltaDegree = std::max(quadApproxX.degree(), item.fSegX.degree());
ScalarBezCurve segX = item.fSegX, segY = item.fSegY;
segX.elevateDegree(deltaDegree);
segY.elevateDegree(deltaDegree);
quadApproxX.elevateDegree(deltaDegree);
quadApproxY.elevateDegree(deltaDegree);
ScalarBezCurve deltaX = ScalarBezCurve::Sub(quadApproxX, segX);
ScalarBezCurve deltaY = ScalarBezCurve::Sub(quadApproxY, segY);
// Compute psi(t) = delta_x(t)^2 + delta_y(t)^2.
ScalarBezCurve E = ScalarBezCurve::AddSquares(deltaX, deltaY);
// Promote E and d(t)^2 to a common degree.
const int commonDeg = std::max(distFncSqd.degree(), E.degree());
distFncSqd.elevateDegree(commonDeg);
E.elevateDegree(commonDeg);
// Subtract dist squared curve from E, resulting in:
// eps(t) = delta_x(t)^2 + delta_y(t)^2 - d(t)^2
E.sub(distFncSqd);
// Purely for debugging/testing, save the first approximation and error function:
if (viz::outerErr == nullptr) {
using namespace viz;
outerErr = std::make_unique<ScalarBezCurve>(E);
outerFirstApprox.rewind();
outerFirstApprox.moveTo(quadApprox.fPoints[0]);
outerFirstApprox.quadTo(quadApprox.fPoints[1], quadApprox.fPoints[2]);
}
// Compute maxErr, which is just the max coefficient of eps (using convex hull property
// of bez curves)
float maxAbsErr = std::abs(E.extremumWeight());
if (maxAbsErr > kTol) {
PathSegment left, right;
splitSegment(item.fSeg, 0.5f, &left, &right);
ScalarBezCurve distFncL, distFncR;
distFnc.split(0.5f, &distFncL, &distFncR);
ScalarBezCurve distFncSqdL, distFncSqdR;
distFncSqd.split(0.5f, &distFncSqdL, &distFncSqdR);
stack.push(Item(right, distFncR, distFncSqdR));
stack.push(Item(left, distFncL, distFncSqdL));
} else {
// Approximation is good enough.
quadApprox.fVerb = SkPath::kQuad_Verb;
result.push_back(quadApprox);
}
}
SkASSERT(!result.empty());
return result;
}
void SkVarWidthStroker::endcap(CapLocation loc) {
const auto buttCap = [this](CapLocation loc) {
if (loc == CapLocation::Start) {
// Back at the start of the path: just close the stroked outline
fOuter.close();
} else {
// Inner last pt == first pt when appending in reverse
SkPoint innerLastPt;
fInner.getLastPt(&innerLastPt);
fOuter.lineTo(innerLastPt);
}
};
switch (fCap) {
case SkPaint::kButt_Cap:
buttCap(loc);
break;
default:
SkDebugf("Unhandled endcap %d\n", fCap);
buttCap(loc);
break;
}
}
void SkVarWidthStroker::join(const SkPoint& common,
float innerRadius,
float outerRadius,
const OffsetSegments& prev,
const OffsetSegments& curr) {
const auto miterJoin = [this](const SkPoint& common,
float leftRadius,
float rightRadius,
const OffsetSegments& prev,
const OffsetSegments& curr) {
// With variable-width stroke you can actually have a situation where both sides
// need an "inner" or an "outer" join. So we call the two sides "left" and
// "right" and they can each independently get an inner or outer join.
const auto makeJoin = [this, &common, &prev, &curr](bool left, float radius) {
SkPath* path = left ? &fOuter : &fInner;
const auto& prevSegs = left ? prev.fOuter : prev.fInner;
const auto& currSegs = left ? curr.fOuter : curr.fInner;
SkASSERT(!prevSegs.empty());
SkASSERT(!currSegs.empty());
const SkPoint afterEndpt = currSegs.front().fPoints[0];
SkPoint before = unitNormal(prevSegs.back(), 1, nullptr);
SkPoint after = unitNormal(currSegs.front(), 0, nullptr);
// Don't create any join geometry if the normals are nearly identical.
const float cosTheta = before.dot(after);
if (!SkScalarNearlyZero(1 - cosTheta)) {
bool outerJoin;
if (left) {
outerJoin = isClockwise(before, after);
} else {
before = rotate180(before);
after = rotate180(after);
outerJoin = !isClockwise(before, after);
}
if (outerJoin) {
// Before and after have the same origin and magnitude, so before+after is the
// diagonal of their rhombus. Origin of this vector is the midpoint of the miter
// line.
SkPoint miterVec = before + after;
// Note the relationship (draw a right triangle with the miter line as its
// hypoteneuse):
// sin(theta/2) = strokeWidth / miterLength
// so miterLength = strokeWidth / sin(theta/2)
// where miterLength is the length of the miter from outer point to inner
// corner. miterVec's origin is the midpoint of the miter line, so we use
// strokeWidth/2. Sqrt is just an application of half-angle identities.
const float sinHalfTheta = sqrtf(0.5 * (1 + cosTheta));
const float halfMiterLength = radius / sinHalfTheta;
// TODO: miter length limit
miterVec = setLength(miterVec, halfMiterLength);
// Outer join: connect to the miter point, and then to t=0 of next segment.
path->lineTo(common + miterVec);
path->lineTo(afterEndpt);
} else {
// Connect to the miter midpoint (common path endpoint of the two segments),
// and then to t=0 of the next segment. This adds an interior "loop"
// of geometry that handles edge cases where segment lengths are shorter than
// the stroke width.
path->lineTo(common);
path->lineTo(afterEndpt);
}
}
};
makeJoin(true, leftRadius);
makeJoin(false, rightRadius);
};
switch (fJoin) {
case SkPaint::kMiter_Join:
miterJoin(common, innerRadius, outerRadius, prev, curr);
break;
default:
SkDebugf("Unhandled join %d\n", fJoin);
miterJoin(common, innerRadius, outerRadius, prev, curr);
break;
}
}
void SkVarWidthStroker::appendPathReversed(const SkPath& path, SkPath* result) {
const int numVerbs = path.countVerbs();
const int numPoints = path.countPoints();
std::vector<uint8_t> verbs;
std::vector<SkPoint> points;
verbs.resize(numVerbs);
points.resize(numPoints);
path.getVerbs(verbs.data(), numVerbs);
path.getPoints(points.data(), numPoints);
for (int i = numVerbs - 1, j = numPoints; i >= 0; i--) {
auto verb = static_cast<SkPath::Verb>(verbs[i]);
switch (verb) {
case SkPath::kLine_Verb: {
j -= 1;
SkASSERT(j >= 1);
result->lineTo(points[j - 1]);
break;
}
case SkPath::kQuad_Verb: {
j -= 1;
SkASSERT(j >= 2);
result->quadTo(points[j - 1], points[j - 2]);
j -= 1;
break;
}
case SkPath::kMove_Verb:
// Ignore
break;
default:
SkASSERT(false);
break;
}
}
}
int SkVarWidthStroker::segmentDegree(const PathSegment& seg) {
static constexpr int lut[] = {
-1, // move,
1, // line
2, // quad
-1, // conic
3, // cubic
-1 // done
};
const int deg = lut[static_cast<uint8_t>(seg.fVerb)];
SkASSERT(deg > 0);
return deg;
}
void SkVarWidthStroker::splitSegment(const PathSegment& seg,
float t,
PathSegment* segA,
PathSegment* segB) {
// TODO: although general, this is a pretty slow way to do this
const int degree = segmentDegree(seg);
ScalarBezCurve x(degree), y(degree);
for (int i = 0; i <= degree; i++) {
x[i] = seg.fPoints[i].fX;
y[i] = seg.fPoints[i].fY;
}
ScalarBezCurve leftX(degree), rightX(degree), leftY(degree), rightY(degree);
x.split(t, &leftX, &rightX);
y.split(t, &leftY, &rightY);
segA->fVerb = segB->fVerb = seg.fVerb;
for (int i = 0; i <= degree; i++) {
segA->fPoints[i] = {leftX[i], leftY[i]};
segB->fPoints[i] = {rightX[i], rightY[i]};
}
}
void SkVarWidthStroker::approximateSegment(const PathSegment& seg,
const ScalarBezCurve& distFnc,
PathSegment* approxQuad) {
// This is a simple control polygon transformation.
// From F. Yzerman. "Precise offsetting of quadratic Bezier curves". 2019.
// TODO: detect and handle more degenerate cases (e.g. linear)
// TODO: Tiller-Hanson works better in many cases but does not generalize well
SkPoint tangentStart, tangentEnd;
SkPoint offsetStart = unitNormal(seg, 0, &tangentStart);
SkPoint offsetEnd = unitNormal(seg, 1, &tangentEnd);
SkPoint offsetMid = offsetStart + offsetEnd;
const float radiusStart = distFnc.eval(0);
const float radiusMid = distFnc.eval(0.5f);
const float radiusEnd = distFnc.eval(1);
offsetStart = radiusStart == 0 ? SkPoint::Make(0, 0) : setLength(offsetStart, radiusStart);
offsetMid = radiusMid == 0 ? SkPoint::Make(0, 0) : setLength(offsetMid, radiusMid);
offsetEnd = radiusEnd == 0 ? SkPoint::Make(0, 0) : setLength(offsetEnd, radiusEnd);
SkPoint start, mid, end;
switch (segmentDegree(seg)) {
case 1:
start = seg.fPoints[0];
end = seg.fPoints[1];
mid = (start + end) * 0.5f;
break;
case 2:
start = seg.fPoints[0];
mid = seg.fPoints[1];
end = seg.fPoints[2];
break;
case 3:
start = seg.fPoints[0];
mid = (seg.fPoints[1] + seg.fPoints[2]) * 0.5f;
end = seg.fPoints[3];
break;
default:
SkDebugf("Unhandled degree for segment approximation");
SkASSERT(false);
break;
}
approxQuad->fPoints[0] = start + offsetStart;
approxQuad->fPoints[1] = mid + offsetMid;
approxQuad->fPoints[2] = end + offsetEnd;
}
SkPoint SkVarWidthStroker::unitNormal(const PathSegment& seg, float t, SkPoint* tangentOut) {
switch (seg.fVerb) {
case SkPath::kLine_Verb: {
const SkPoint tangent = setLength(seg.fPoints[1] - seg.fPoints[0], 1);
const SkPoint normal = rotate90(tangent);
if (tangentOut) {
*tangentOut = tangent;
}
return normal;
}
case SkPath::kQuad_Verb: {
SkPoint tangent;
if (t == 0) {
tangent = seg.fPoints[1] - seg.fPoints[0];
} else if (t == 1) {
tangent = seg.fPoints[2] - seg.fPoints[1];
} else {
tangent = ((seg.fPoints[1] - seg.fPoints[0]) * (1 - t) +
(seg.fPoints[2] - seg.fPoints[1]) * t) *
2;
}
if (!tangent.normalize()) {
SkDebugf("Failed to normalize quad tangent\n");
SkASSERT(false);
}
if (tangentOut) {
*tangentOut = tangent;
}
return rotate90(tangent);
}
case SkPath::kCubic_Verb: {
SkPoint tangent;
SkEvalCubicAt(seg.fPoints.data(), t, nullptr, &tangent, nullptr);
if (!tangent.normalize()) {
SkDebugf("Failed to normalize cubic tangent\n");
SkASSERT(false);
}
if (tangentOut) {
*tangentOut = tangent;
}
return rotate90(tangent);
}
default:
SkDebugf("Unhandled verb for unit normal %d\n", seg.fVerb);
SkASSERT(false);
return {};
}
}
} // namespace
//////////////////////////////////////////////////////////////////////////////
class VariableWidthStrokerSlide : public ClickHandlerSlide {
public:
VariableWidthStrokerSlide()
: fShowHidden(true)
, fShowSkeleton(true)
, fShowStrokePoints(false)
, fShowUI(false)
, fDifferentInnerFunc(false)
, fShowErrorCurve(false) {
resetToDefaults();
fPtsPaint.setAntiAlias(true);
fPtsPaint.setStrokeWidth(10);
fPtsPaint.setStrokeCap(SkPaint::kRound_Cap);
fStrokePointsPaint.setAntiAlias(true);
fStrokePointsPaint.setStrokeWidth(5);
fStrokePointsPaint.setStrokeCap(SkPaint::kRound_Cap);
fStrokePaint.setAntiAlias(true);
fStrokePaint.setStyle(SkPaint::kStroke_Style);
fStrokePaint.setColor(0x80FF0000);
fNewFillPaint.setAntiAlias(true);
fNewFillPaint.setColor(0x8000FF00);
fHiddenPaint.setAntiAlias(true);
fHiddenPaint.setStyle(SkPaint::kStroke_Style);
fHiddenPaint.setColor(0xFF0000FF);
fSkeletonPaint.setAntiAlias(true);
fSkeletonPaint.setStyle(SkPaint::kStroke_Style);
fSkeletonPaint.setColor(SK_ColorRED);
fName = "VariableWidthStroker";
}
void load(SkScalar w, SkScalar h) override { fWinSize = {w, h}; }
void resize(SkScalar w, SkScalar h) override { fWinSize = {w, h}; }
bool onChar(SkUnichar uni) override {
switch (uni) {
case '0':
this->toggle(fShowUI);
return true;
case '1':
this->toggle(fShowSkeleton);
return true;
case '2':
this->toggle(fShowHidden);
return true;
case '3':
this->toggle(fShowStrokePoints);
return true;
case '4':
this->toggle(fShowErrorCurve);
return true;
case '5':
this->toggle(fLengthMetric);
return true;
case 'x':
resetToDefaults();
return true;
case '-':
fWidth -= 5;
return true;
case '=':
fWidth += 5;
return true;
default:
break;
}
return false;
}
void draw(SkCanvas* canvas) override {
canvas->drawColor(0xFFEEEEEE);
SkPath path;
this->makePath(&path);
fStrokePaint.setStrokeWidth(fWidth);
// Elber-Cohen stroker result
ScalarBezCurve distFnc = makeDistFnc(fDistFncs, fWidth);
ScalarBezCurve distFncInner =
fDifferentInnerFunc ? makeDistFnc(fDistFncsInner, fWidth) : distFnc;
SkVarWidthStroker stroker;
SkPath fillPath =
stroker.getFillPath(path, fStrokePaint, distFnc, distFncInner, fLengthMetric);
fillPath.setFillType(SkPathFillType::kWinding);
canvas->drawPath(fillPath, fNewFillPaint);
if (fShowHidden) {
canvas->drawPath(fillPath, fHiddenPaint);
}
if (fShowSkeleton) {
canvas->drawPath(path, fSkeletonPaint);
canvas->drawPoints(SkCanvas::kPoints_PointMode, fPathPts.size(), fPathPts.data(),
fPtsPaint);
}
if (fShowStrokePoints) {
drawStrokePoints(canvas, fillPath);
}
if (fShowUI) {
drawUI();
}
if (fShowErrorCurve && viz::outerErr != nullptr) {
SkPaint firstApproxPaint;
firstApproxPaint.setStrokeWidth(4);
firstApproxPaint.setStyle(SkPaint::kStroke_Style);
firstApproxPaint.setColor(SK_ColorRED);
canvas->drawPath(viz::outerFirstApprox, firstApproxPaint);
drawErrorCurve(canvas, *viz::outerErr);
}
}
protected:
Click* onFindClickHandler(SkScalar x, SkScalar y, skui::ModifierKey modi) override {
const SkScalar tol = 4;
const SkRect r = SkRect::MakeXYWH(x - tol, y - tol, tol * 2, tol * 2);
for (size_t i = 0; i < fPathPts.size(); ++i) {
if (r.intersects(SkRect::MakeXYWH(fPathPts[i].fX, fPathPts[i].fY, 1, 1))) {
return new Click([this, i](Click* c) {
fPathPts[i] = c->fCurr;
return true;
});
}
}
return nullptr;
}
bool onClick(ClickHandlerSlide::Click *) override { return false; }
private:
/** Selectable menu item for choosing distance functions */
struct DistFncMenuItem {
std::string fName;
int fDegree;
bool fSelected;
std::vector<float> fWeights;
DistFncMenuItem(const std::string& name, int degree, bool selected) {
fName = name;
fDegree = degree;
fSelected = selected;
fWeights.resize(degree + 1, 1.0f);
}
};
void toggle(bool& value) { value = !value; }
void toggle(SkVarWidthStroker::LengthMetric& value) {
value = value == SkVarWidthStroker::LengthMetric::kPathLength
? SkVarWidthStroker::LengthMetric::kNumSegments
: SkVarWidthStroker::LengthMetric::kPathLength;
}
void resetToDefaults() {
fPathPts[0] = {300, 400};
fPathPts[1] = {500, 400};
fPathPts[2] = {700, 400};
fPathPts[3] = {900, 400};
fPathPts[4] = {1100, 400};
fWidth = 175;
fLengthMetric = SkVarWidthStroker::LengthMetric::kPathLength;
fDistFncs = fDefaultsDistFncs;
fDistFncsInner = fDefaultsDistFncs;
}
void makePath(SkPath* path) {
path->moveTo(fPathPts[0]);
path->quadTo(fPathPts[1], fPathPts[2]);
path->quadTo(fPathPts[3], fPathPts[4]);
}
static ScalarBezCurve makeDistFnc(const std::vector<DistFncMenuItem>& fncs, float strokeWidth) {
const float radius = strokeWidth / 2;
for (const auto& df : fncs) {
if (df.fSelected) {
return ScalarBezCurve::Mul(ScalarBezCurve(df.fDegree, df.fWeights), radius);
}
}
SkASSERT(false);
return ScalarBezCurve(0, {radius});
}
void drawStrokePoints(SkCanvas* canvas, const SkPath& fillPath) {
SkPath::Iter it(fillPath, false);
SkPoint points[4];
SkPath::Verb verb;
std::vector<SkPoint> pointsVec, ctrlPts;
while ((verb = it.next(&points[0])) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kLine_Verb:
pointsVec.push_back(points[1]);
break;
case SkPath::kQuad_Verb:
ctrlPts.push_back(points[1]);
pointsVec.push_back(points[2]);
break;
case SkPath::kMove_Verb:
pointsVec.push_back(points[0]);
break;
case SkPath::kClose_Verb:
break;
default:
SkDebugf("Unhandled path verb %d for stroke points\n", verb);
SkASSERT(false);
break;
}
}
canvas->drawPoints(SkCanvas::kPoints_PointMode, pointsVec.size(), pointsVec.data(),
fStrokePointsPaint);
fStrokePointsPaint.setColor(SK_ColorBLUE);
fStrokePointsPaint.setStrokeWidth(3);
canvas->drawPoints(SkCanvas::kPoints_PointMode, ctrlPts.size(), ctrlPts.data(),
fStrokePointsPaint);
fStrokePointsPaint.setColor(SK_ColorBLACK);
fStrokePointsPaint.setStrokeWidth(5);
}
void drawErrorCurve(SkCanvas* canvas, const ScalarBezCurve& E) {
const float winW = fWinSize.width() * 0.75f, winH = fWinSize.height() * 0.25f;
const float padding = 25;
const SkRect box = SkRect::MakeXYWH(padding, fWinSize.height() - winH - padding,
winW - 2 * padding, winH);
constexpr int nsegs = 100;
constexpr float dt = 1.0f / nsegs;
constexpr float dx = 10.0f;
const int deg = E.degree();
SkPath path;
for (int i = 0; i < nsegs; i++) {
const float tmin = i * dt, tmax = (i + 1) * dt;
ScalarBezCurve left(deg), right(deg);
E.split(tmax, &left, &right);
const float tRel = tmin / tmax;
ScalarBezCurve rl(deg), rr(deg);
left.split(tRel, &rl, &rr);
const float x = i * dx;
if (i == 0) {
path.moveTo(x, -rr[0]);
}
path.lineTo(x + dx, -rr[deg]);
}
SkPaint paint;
paint.setStyle(SkPaint::kStroke_Style);
paint.setAntiAlias(true);
paint.setStrokeWidth(0);
paint.setColor(SK_ColorRED);
const SkRect pathBounds = path.computeTightBounds();
constexpr float yAxisMax = 8000;
const float sx = box.width() / pathBounds.width();
const float sy = box.height() / (2 * yAxisMax);
canvas->save();
canvas->translate(box.left(), box.top() + box.height() / 2);
canvas->scale(sx, sy);
canvas->drawPath(path, paint);
SkPath axes;
axes.moveTo(0, 0);
axes.lineTo(pathBounds.width(), 0);
axes.moveTo(0, -yAxisMax);
axes.lineTo(0, yAxisMax);
paint.setColor(SK_ColorBLACK);
paint.setAntiAlias(false);
canvas->drawPath(axes, paint);
canvas->restore();
}
void drawUI() {
static constexpr auto kUIOpacity = 0.35f;
static constexpr float kUIWidth = 200.0f, kUIHeight = 400.0f;
ImGui::SetNextWindowBgAlpha(kUIOpacity);
if (ImGui::Begin("E-C Controls", nullptr,
ImGuiWindowFlags_NoDecoration | ImGuiWindowFlags_NoResize |
ImGuiWindowFlags_NoMove | ImGuiWindowFlags_NoSavedSettings |
ImGuiWindowFlags_NoFocusOnAppearing | ImGuiWindowFlags_NoNav)) {
const SkRect uiArea = SkRect::MakeXYWH(10, 10, kUIWidth, kUIHeight);
ImGui::SetWindowPos(ImVec2(uiArea.x(), uiArea.y()));
ImGui::SetWindowSize(ImVec2(uiArea.width(), uiArea.height()));
const auto drawControls = [](std::vector<DistFncMenuItem>& distFncs,
const std::string& menuPfx,
const std::string& ptPfx) {
std::string degreeMenuLabel = menuPfx + ": ";
for (const auto& df : distFncs) {
if (df.fSelected) {
degreeMenuLabel += df.fName;
break;
}
}
if (ImGui::BeginMenu(degreeMenuLabel.c_str())) {
for (size_t i = 0; i < distFncs.size(); i++) {
if (ImGui::MenuItem(distFncs[i].fName.c_str(), nullptr,
distFncs[i].fSelected)) {
for (size_t j = 0; j < distFncs.size(); j++) {
distFncs[j].fSelected = j == i;
}
}
}
ImGui::EndMenu();
}
for (auto& df : distFncs) {
if (df.fSelected) {
for (int i = 0; i <= df.fDegree; i++) {
const std::string label = ptPfx + std::to_string(i);
ImGui::SliderFloat(label.c_str(), &(df.fWeights[i]), 0, 1);
}
}
}
};
const std::array<std::pair<std::string, SkVarWidthStroker::LengthMetric>, 2> metrics = {
std::make_pair("% path length", SkVarWidthStroker::LengthMetric::kPathLength),
std::make_pair("% segment count",
SkVarWidthStroker::LengthMetric::kNumSegments),
};
if (ImGui::BeginMenu("Interpolation metric:")) {
for (const auto& metric : metrics) {
if (ImGui::MenuItem(metric.first.c_str(), nullptr,
fLengthMetric == metric.second)) {
fLengthMetric = metric.second;
}
}
ImGui::EndMenu();
}
drawControls(fDistFncs, "Degree", "P");
if (ImGui::CollapsingHeader("Inner stroke", true)) {
fDifferentInnerFunc = true;
drawControls(fDistFncsInner, "Degree (inner)", "Q");
} else {
fDifferentInnerFunc = false;
}
}
ImGui::End();
}
bool fShowHidden, fShowSkeleton, fShowStrokePoints, fShowUI, fDifferentInnerFunc,
fShowErrorCurve;
float fWidth = 175;
SkPaint fPtsPaint, fStrokePaint, fNewFillPaint, fHiddenPaint, fSkeletonPaint,
fStrokePointsPaint;
inline static constexpr int kNPts = 5;
std::array<SkPoint, kNPts> fPathPts;
SkSize fWinSize;
SkVarWidthStroker::LengthMetric fLengthMetric;
const std::vector<DistFncMenuItem> fDefaultsDistFncs = {
DistFncMenuItem("Linear", 1, true), DistFncMenuItem("Quadratic", 2, false),
DistFncMenuItem("Cubic", 3, false), DistFncMenuItem("One Louder (11)", 11, false),
DistFncMenuItem("30?!", 30, false)};
std::vector<DistFncMenuItem> fDistFncs = fDefaultsDistFncs;
std::vector<DistFncMenuItem> fDistFncsInner = fDefaultsDistFncs;
};
DEF_SLIDE(return new VariableWidthStrokerSlide;)