| /* |
| * Copyright 2020 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/core/SkPath.h" |
| #include "include/core/SkPathBuilder.h" |
| #include "include/core/SkPathTypes.h" |
| #include "include/core/SkPoint.h" |
| #include "include/core/SkRRect.h" |
| #include "include/core/SkRect.h" |
| #include "include/core/SkScalar.h" |
| #include "src/base/SkRandom.h" |
| #include "src/core/SkPathPriv.h" |
| #include "tests/Test.h" |
| |
| #include <cstddef> |
| #include <cstdint> |
| #include <initializer_list> |
| #include <string> |
| #include <vector> |
| |
| enum class SkPathConvexity; |
| |
| static void is_empty(skiatest::Reporter* reporter, const SkPath& p) { |
| REPORTER_ASSERT(reporter, p.getBounds().isEmpty()); |
| REPORTER_ASSERT(reporter, p.countPoints() == 0); |
| } |
| |
| DEF_TEST(pathbuilder, reporter) { |
| SkPathBuilder b; |
| |
| is_empty(reporter, b.snapshot()); |
| is_empty(reporter, b.detach()); |
| |
| b.moveTo(10, 10).lineTo(20, 20).quadTo(30, 10, 10, 20); |
| |
| SkPath p0 = b.snapshot(); |
| SkPath p1 = b.snapshot(); |
| SkPath p2 = b.detach(); |
| |
| // Builders should always precompute the path's bounds, so there is no race condition later |
| REPORTER_ASSERT(reporter, SkPathPriv::HasComputedBounds(p0)); |
| REPORTER_ASSERT(reporter, SkPathPriv::HasComputedBounds(p1)); |
| REPORTER_ASSERT(reporter, SkPathPriv::HasComputedBounds(p2)); |
| |
| REPORTER_ASSERT(reporter, p0.getBounds() == SkRect::MakeLTRB(10, 10, 30, 20)); |
| REPORTER_ASSERT(reporter, p0.countPoints() == 4); |
| |
| REPORTER_ASSERT(reporter, p0 == p1); |
| REPORTER_ASSERT(reporter, p0 == p2); |
| |
| is_empty(reporter, b.snapshot()); |
| is_empty(reporter, b.detach()); |
| } |
| |
| DEF_TEST(pathbuilder_filltype, reporter) { |
| for (auto fillType : { SkPathFillType::kWinding, |
| SkPathFillType::kEvenOdd, |
| SkPathFillType::kInverseWinding, |
| SkPathFillType::kInverseEvenOdd }) { |
| SkPathBuilder b(fillType); |
| |
| REPORTER_ASSERT(reporter, b.fillType() == fillType); |
| |
| for (const SkPath& path : { b.snapshot(), b.detach() }) { |
| REPORTER_ASSERT(reporter, path.getFillType() == fillType); |
| is_empty(reporter, path); |
| } |
| } |
| } |
| |
| static bool check_points(const SkPath& path, const SkPoint expected[], size_t count) { |
| std::vector<SkPoint> iter_pts; |
| |
| for (auto [v, p, w] : SkPathPriv::Iterate(path)) { |
| switch (v) { |
| case SkPathVerb::kMove: |
| iter_pts.push_back(p[0]); |
| break; |
| case SkPathVerb::kLine: |
| iter_pts.push_back(p[1]); |
| break; |
| case SkPathVerb::kQuad: |
| case SkPathVerb::kConic: |
| iter_pts.push_back(p[1]); |
| iter_pts.push_back(p[2]); |
| break; |
| case SkPathVerb::kCubic: |
| iter_pts.push_back(p[1]); |
| iter_pts.push_back(p[2]); |
| iter_pts.push_back(p[3]); |
| break; |
| case SkPathVerb::kClose: |
| break; |
| } |
| } |
| if (iter_pts.size() != count) { |
| return false; |
| } |
| for (size_t i = 0; i < count; ++i) { |
| if (iter_pts[i] != expected[i]) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| DEF_TEST(pathbuilder_missing_move, reporter) { |
| SkPathBuilder b; |
| |
| b.lineTo(10, 10).lineTo(20, 30); |
| const SkPoint pts0[] = { |
| {0, 0}, {10, 10}, {20, 30}, |
| }; |
| REPORTER_ASSERT(reporter, check_points(b.snapshot(), pts0, std::size(pts0))); |
| |
| b.reset().moveTo(20, 20).lineTo(10, 10).lineTo(20, 30).close().lineTo(60, 60); |
| const SkPoint pts1[] = { |
| {20, 20}, {10, 10}, {20, 30}, |
| {20, 20}, {60, 60}, |
| }; |
| REPORTER_ASSERT(reporter, check_points(b.snapshot(), pts1, std::size(pts1))); |
| } |
| |
| DEF_TEST(pathbuilder_addRect, reporter) { |
| const SkRect r = { 10, 20, 30, 40 }; |
| |
| for (int i = 0; i < 4; ++i) { |
| for (auto dir : {SkPathDirection::kCW, SkPathDirection::kCCW}) { |
| SkPathBuilder b; |
| b.addRect(r, dir, i); |
| auto bp = b.detach(); |
| |
| SkRect r2; |
| bool closed = false; |
| SkPathDirection dir2; |
| REPORTER_ASSERT(reporter, bp.isRect(&r2, &closed, &dir2)); |
| REPORTER_ASSERT(reporter, r2 == r); |
| REPORTER_ASSERT(reporter, closed); |
| REPORTER_ASSERT(reporter, dir == dir2); |
| |
| SkPath p; |
| p.addRect(r, dir, i); |
| REPORTER_ASSERT(reporter, p == bp); |
| } |
| } |
| } |
| |
| static bool is_eq(const SkPath& a, const SkPath& b) { |
| if (a != b) { |
| return false; |
| } |
| |
| { |
| SkRect ra, rb; |
| bool is_a = a.isOval(&ra); |
| bool is_b = b.isOval(&rb); |
| if (is_a != is_b) { |
| return false; |
| } |
| if (is_a && (ra != rb)) { |
| return false; |
| } |
| } |
| |
| { |
| SkRRect rra, rrb; |
| bool is_a = a.isRRect(&rra); |
| bool is_b = b.isRRect(&rrb); |
| if (is_a != is_b) { |
| return false; |
| } |
| if (is_a && (rra != rrb)) { |
| return false; |
| } |
| } |
| |
| // getConvextity() should be sufficient to test, but internally we sometimes don't want |
| // to trigger computing it, so this is the stronger test for equality. |
| { |
| SkPathConvexity ca = SkPathPriv::GetConvexityOrUnknown(a), |
| cb = SkPathPriv::GetConvexityOrUnknown(b); |
| if (ca != cb) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| DEF_TEST(pathbuilder_addOval, reporter) { |
| const SkRect r = { 10, 20, 30, 40 }; |
| SkRect tmp; |
| |
| for (auto dir : {SkPathDirection::kCW, SkPathDirection::kCCW}) { |
| for (int i = 0; i < 4; ++i) { |
| auto bp = SkPathBuilder().addOval(r, dir, i).detach(); |
| SkPath p; |
| p.addOval(r, dir, i); |
| REPORTER_ASSERT(reporter, is_eq(p, bp)); |
| } |
| auto bp = SkPathBuilder().addOval(r, dir).detach(); |
| SkPath p; |
| p.addOval(r, dir); |
| REPORTER_ASSERT(reporter, is_eq(p, bp)); |
| |
| // test negative case -- can't have any other segments |
| bp = SkPathBuilder().addOval(r, dir).lineTo(10, 10).detach(); |
| REPORTER_ASSERT(reporter, !bp.isOval(&tmp)); |
| bp = SkPathBuilder().lineTo(10, 10).addOval(r, dir).detach(); |
| REPORTER_ASSERT(reporter, !bp.isOval(&tmp)); |
| } |
| } |
| |
| DEF_TEST(pathbuilder_addRRect, reporter) { |
| const SkRRect rr = SkRRect::MakeRectXY({ 10, 20, 30, 40 }, 5, 6); |
| |
| for (auto dir : {SkPathDirection::kCW, SkPathDirection::kCCW}) { |
| for (int i = 0; i < 4; ++i) { |
| SkPathBuilder b; |
| b.addRRect(rr, dir, i); |
| auto bp = b.detach(); |
| |
| SkPath p; |
| p.addRRect(rr, dir, i); |
| REPORTER_ASSERT(reporter, is_eq(p, bp)); |
| } |
| auto bp = SkPathBuilder().addRRect(rr, dir).detach(); |
| SkPath p; |
| p.addRRect(rr, dir); |
| REPORTER_ASSERT(reporter, is_eq(p, bp)); |
| |
| // test negative case -- can't have any other segments |
| SkRRect tmp; |
| bp = SkPathBuilder().addRRect(rr, dir).lineTo(10, 10).detach(); |
| REPORTER_ASSERT(reporter, !bp.isRRect(&tmp)); |
| bp = SkPathBuilder().lineTo(10, 10).addRRect(rr, dir).detach(); |
| REPORTER_ASSERT(reporter, !bp.isRRect(&tmp)); |
| } |
| } |
| |
| DEF_TEST(pathbuilder_make, reporter) { |
| constexpr int N = 100; |
| uint8_t vbs[N]; |
| SkPoint pts[N]; |
| |
| SkRandom rand; |
| SkPathBuilder b; |
| b.moveTo(0, 0); |
| pts[0] = {0, 0}; vbs[0] = (uint8_t)SkPathVerb::kMove; |
| for (int i = 1; i < N; ++i) { |
| float x = rand.nextF(); |
| float y = rand.nextF(); |
| b.lineTo(x, y); |
| pts[i] = {x, y}; vbs[i] = (uint8_t)SkPathVerb::kLine; |
| } |
| auto p0 = b.detach(); |
| auto p1 = SkPath::Make(pts, N, vbs, N, nullptr, 0, p0.getFillType()); |
| REPORTER_ASSERT(reporter, p0 == p1); |
| } |
| |
| DEF_TEST(pathbuilder_genid, r) { |
| SkPathBuilder builder; |
| |
| builder.lineTo(10, 10); |
| auto p1 = builder.snapshot(); |
| |
| builder.lineTo(10, 20); |
| auto p2 = builder.snapshot(); |
| |
| REPORTER_ASSERT(r, p1.getGenerationID() != p2.getGenerationID()); |
| } |
| |
| DEF_TEST(pathbuilder_addPolygon, reporter) { |
| SkPoint pts[] = {{1, 2}, {3, 4}, {5, 6}, {7, 8}}; |
| |
| auto addpoly = [](const SkPoint pts[], int count, bool isClosed) { |
| SkPathBuilder builder; |
| if (count > 0) { |
| builder.moveTo(pts[0]); |
| for (int i = 1; i < count; ++i) { |
| builder.lineTo(pts[i]); |
| } |
| if (isClosed) { |
| builder.close(); |
| } |
| } |
| return builder.detach(); |
| }; |
| |
| for (bool isClosed : {false, true}) { |
| for (size_t i = 0; i <= std::size(pts); ++i) { |
| auto path0 = SkPathBuilder().addPolygon(pts, i, isClosed).detach(); |
| auto path1 = addpoly(pts, i, isClosed); |
| REPORTER_ASSERT(reporter, path0 == path1); |
| } |
| } |
| } |
| |
| DEF_TEST(pathbuilder_addPath, reporter) { |
| const auto p = SkPath() |
| .moveTo(10, 10) |
| .lineTo(100, 10) |
| .quadTo(200, 100, 100, 200) |
| .close() |
| .moveTo(200, 200) |
| .cubicTo(210, 200, 210, 300, 200, 300) |
| .conicTo(150, 250, 100, 200, 1.4f); |
| |
| REPORTER_ASSERT(reporter, p == SkPathBuilder().addPath(p).detach()); |
| } |
| |
| /* |
| * If paths were immutable, we would not have to track this, but until that day, we need |
| * to ensure that paths are built correctly/consistently with this field, regardless of |
| * either the classic mutable apis, or via SkPathBuilder (SkPath::Polygon uses builder). |
| */ |
| DEF_TEST(pathbuilder_lastmoveindex, reporter) { |
| const SkPoint pts[] = { |
| {0, 1}, {2, 3}, {4, 5}, |
| }; |
| constexpr int N = (int)std::size(pts); |
| |
| for (int ctrCount = 1; ctrCount < 4; ++ctrCount) { |
| const int lastMoveToIndex = (ctrCount - 1) * N; |
| |
| for (bool isClosed : {false, true}) { |
| SkPath a, b; |
| |
| SkPathBuilder builder; |
| for (int i = 0; i < ctrCount; ++i) { |
| builder.addPolygon(pts, N, isClosed); // new-school way |
| b.addPoly(pts, N, isClosed); // old-school way |
| } |
| a = builder.detach(); |
| |
| // We track the last moveTo verb index, and we invert it if the last verb was a close |
| const int expected = isClosed ? ~lastMoveToIndex : lastMoveToIndex; |
| const int a_last = SkPathPriv::LastMoveToIndex(a); |
| const int b_last = SkPathPriv::LastMoveToIndex(b); |
| |
| REPORTER_ASSERT(reporter, a_last == expected); |
| REPORTER_ASSERT(reporter, b_last == expected); |
| } |
| } |
| } |
| |
| static void assertIsMoveTo(skiatest::Reporter* reporter, SkPathPriv::RangeIter* iter, |
| SkScalar x0, SkScalar y0) { |
| auto [v, pts, w] = *(*iter)++; |
| REPORTER_ASSERT(reporter, v == SkPathVerb::kMove, "%d != %d (move)", |
| (int)v, (int)SkPathVerb::kMove); |
| REPORTER_ASSERT(reporter, pts[0].fX == x0, "X mismatch %f != %f", pts[0].fX, x0); |
| REPORTER_ASSERT(reporter, pts[0].fY == y0, "Y mismatch %f != %f", pts[0].fY, y0); |
| } |
| |
| static void assertIsLineTo(skiatest::Reporter* reporter, SkPathPriv::RangeIter* iter, |
| SkScalar x1, SkScalar y1) { |
| auto [v, pts, w] = *(*iter)++; |
| REPORTER_ASSERT(reporter, v == SkPathVerb::kLine, "%d != %d (line)", |
| (int)v, (int)SkPathVerb::kLine); |
| // pts[0] is the moveTo before this line. See pts_backset_for_verb in SkPath::RangeIter |
| REPORTER_ASSERT(reporter, pts[1].fX == x1, "X mismatch %f != %f", pts[1].fX, x1); |
| REPORTER_ASSERT(reporter, pts[1].fY == y1, "Y mismatch %f != %f", pts[1].fY, y1); |
| } |
| |
| static void assertIsDone(skiatest::Reporter* reporter, SkPathPriv::RangeIter* iter, SkPath* p) { |
| REPORTER_ASSERT(reporter, *iter == SkPathPriv::Iterate(*p).end(), "Iterator is not done yet"); |
| } |
| |
| DEF_TEST(SkPathBuilder_lineToMoveTo, reporter) { |
| SkPathBuilder pb; |
| pb.moveTo(5, -1); |
| pb.moveTo(20, 3); |
| pb.lineTo(7, 11); |
| pb.lineTo(8, 12); |
| pb.moveTo(2, 3); |
| pb.lineTo(20, 30); |
| |
| SkPath result = pb.detach(); |
| |
| auto iter = SkPathPriv::Iterate(result).begin(); |
| assertIsMoveTo(reporter, &iter, 5, -1); |
| assertIsMoveTo(reporter, &iter, 20, 3); |
| assertIsLineTo(reporter, &iter, 7, 11); |
| assertIsLineTo(reporter, &iter, 8, 12); |
| assertIsMoveTo(reporter, &iter, 2, 3); |
| assertIsLineTo(reporter, &iter, 20, 30); |
| assertIsDone(reporter, &iter, &result); |
| } |
| |
| DEF_TEST(SkPathBuilder_arcToPtPtRad_invalidInputsResultInALine, reporter) { |
| auto test = [&](const std::string& name, SkPoint start, SkPoint end, SkScalar radius, |
| SkPoint expectedLineTo) { |
| SkPathBuilder pb; |
| // Remember there is an implicit moveTo(0, 0) if arcTo is the first command called. |
| pb.arcTo(start, end, radius); |
| SkPath result = pb.detach(); |
| |
| reporter->push(name); |
| auto iter = SkPathPriv::Iterate(result).begin(); |
| assertIsMoveTo(reporter, &iter, 0, 0); |
| assertIsLineTo(reporter, &iter, expectedLineTo.fX, expectedLineTo.fY); |
| assertIsDone(reporter, &iter, &result); |
| reporter->pop(); |
| }; |
| // From SkPathBuilder docs: |
| // Arc is contained by tangent from last SkPath point to p1, and tangent from p1 to p2. Arc |
| // is part of circle sized to radius, positioned so it touches both tangent lines. |
| // If the values cannot construct an arc, a line to the first point is constructed instead. |
| test("first point equals previous point", {0, 0}, {1, 2}, 1, {0, 0}); |
| test("two points equal", {5, 7}, {5, 7}, 1, {5, 7}); |
| test("radius is zero", {-3, 5}, {-7, 11}, 0, {-3, 5}); |
| test("second point equals previous point", {5, 4}, {0, 0}, 1, {5, 4}); |
| } |