| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/core/SkMatrix.h" |
| #include "include/core/SkPoint.h" |
| #include "include/core/SkScalar.h" |
| #include "include/core/SkSpan.h" |
| #include "include/core/SkTypes.h" |
| #include "include/private/base/SkDebug.h" |
| #include "src/base/SkRandom.h" |
| #include "src/core/SkGeometry.h" |
| #include "src/core/SkPointPriv.h" |
| #include "tests/Test.h" |
| |
| #include <array> |
| #include <cmath> |
| #include <cstdlib> |
| #include <limits> |
| #include <string> |
| |
| static bool nearly_equal(const SkPoint& a, const SkPoint& b) { |
| return SkScalarNearlyEqual(a.fX, b.fX) && SkScalarNearlyEqual(a.fY, b.fY); |
| } |
| |
| static void testChopCubic(skiatest::Reporter* reporter) { |
| /* |
| Inspired by this test, which used to assert that the tValues had dups |
| |
| <path stroke="#202020" d="M0,0 C0,0 1,1 2190,5130 C2190,5070 2220,5010 2205,4980" /> |
| */ |
| const SkPoint src[] = { |
| { SkIntToScalar(2190), SkIntToScalar(5130) }, |
| { SkIntToScalar(2190), SkIntToScalar(5070) }, |
| { SkIntToScalar(2220), SkIntToScalar(5010) }, |
| { SkIntToScalar(2205), SkIntToScalar(4980) }, |
| }; |
| SkPoint dst[13]; |
| SkScalar tValues[3]; |
| // make sure we don't assert internally |
| int count = SkChopCubicAtMaxCurvature(src, dst, tValues); |
| if ((false)) { // avoid bit rot, suppress warning |
| REPORTER_ASSERT(reporter, count); |
| } |
| // Make sure src and dst can be the same pointer. |
| { |
| SkPoint pts[7]; |
| for (int i = 0; i < 7; ++i) { |
| pts[i].set(i, i); |
| } |
| SkChopCubicAt(pts, pts, .5f); |
| for (int i = 0; i < 7; ++i) { |
| REPORTER_ASSERT(reporter, pts[i].fX == pts[i].fY); |
| REPORTER_ASSERT(reporter, pts[i].fX == i * .5f); |
| } |
| } |
| |
| static const float chopTs[] = { |
| 0, 3/83.f, 3/79.f, 3/73.f, 3/71.f, 3/67.f, 3/61.f, 3/59.f, 3/53.f, 3/47.f, 3/43.f, 3/41.f, |
| 3/37.f, 3/31.f, 3/29.f, 3/23.f, 3/19.f, 3/17.f, 3/13.f, 3/11.f, 3/7.f, 3/5.f, 1, |
| }; |
| float ones[] = {1,1,1,1,1}; |
| |
| // Ensure an odd number of T values so we exercise the single chop code at the end of |
| // SkChopCubicAt form multiple T. |
| static_assert(std::size(chopTs) % 2 == 1); |
| static_assert(std::size(ones) % 2 == 1); |
| |
| SkRandom rand; |
| for (int iterIdx = 0; iterIdx < 5; ++iterIdx) { |
| SkPoint pts[4] = {{rand.nextF(), rand.nextF()}, {rand.nextF(), rand.nextF()}, |
| {rand.nextF(), rand.nextF()}, {rand.nextF(), rand.nextF()}}; |
| |
| SkPoint allChops[4 + std::size(chopTs)*3]; |
| SkChopCubicAt(pts, allChops, chopTs, std::size(chopTs)); |
| int i = 3; |
| for (float chopT : chopTs) { |
| // Ensure we chop at approximately the correct points when we chop an entire list. |
| SkPoint expectedPt; |
| SkEvalCubicAt(pts, chopT, &expectedPt, nullptr, nullptr); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(allChops[i].x(), expectedPt.x())); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(allChops[i].y(), expectedPt.y())); |
| if (chopT == 0) { |
| REPORTER_ASSERT(reporter, allChops[i] == pts[0]); |
| } |
| if (chopT == 1) { |
| REPORTER_ASSERT(reporter, allChops[i] == pts[3]); |
| } |
| i += 3; |
| |
| // Ensure the middle is exactly degenerate when we chop at two equal points. |
| SkPoint localChops[10]; |
| SkChopCubicAt(pts, localChops, chopT, chopT); |
| REPORTER_ASSERT(reporter, localChops[3] == localChops[4]); |
| REPORTER_ASSERT(reporter, localChops[3] == localChops[5]); |
| REPORTER_ASSERT(reporter, localChops[3] == localChops[6]); |
| if (chopT == 0) { |
| // Also ensure the first curve is exactly p0 when we chop at T=0. |
| REPORTER_ASSERT(reporter, localChops[0] == pts[0]); |
| REPORTER_ASSERT(reporter, localChops[1] == pts[0]); |
| REPORTER_ASSERT(reporter, localChops[2] == pts[0]); |
| REPORTER_ASSERT(reporter, localChops[3] == pts[0]); |
| } |
| if (chopT == 1) { |
| // Also ensure the last curve is exactly p3 when we chop at T=1. |
| REPORTER_ASSERT(reporter, localChops[6] == pts[3]); |
| REPORTER_ASSERT(reporter, localChops[7] == pts[3]); |
| REPORTER_ASSERT(reporter, localChops[8] == pts[3]); |
| REPORTER_ASSERT(reporter, localChops[9] == pts[3]); |
| } |
| } |
| |
| // Now test what happens when SkChopCubicAt does 0/0 and gets NaN values. |
| SkPoint oneChops[4 + std::size(ones)*3]; |
| SkChopCubicAt(pts, oneChops, ones, std::size(ones)); |
| REPORTER_ASSERT(reporter, oneChops[0] == pts[0]); |
| REPORTER_ASSERT(reporter, oneChops[1] == pts[1]); |
| REPORTER_ASSERT(reporter, oneChops[2] == pts[2]); |
| for (size_t index = 3; index < std::size(oneChops); ++index) { |
| REPORTER_ASSERT(reporter, oneChops[index] == pts[3]); |
| } |
| } |
| } |
| |
| static void check_pairs(skiatest::Reporter* reporter, int index, SkScalar t, const char name[], |
| SkScalar x0, SkScalar y0, SkScalar x1, SkScalar y1) { |
| bool eq = SkScalarNearlyEqual(x0, x1) && SkScalarNearlyEqual(y0, y1); |
| if (!eq) { |
| SkDebugf("%s [%d %g] p0 [%10.8f %10.8f] p1 [%10.8f %10.8f]\n", |
| name, index, t, x0, y0, x1, y1); |
| REPORTER_ASSERT(reporter, eq); |
| } |
| } |
| |
| static void test_evalquadat(skiatest::Reporter* reporter) { |
| SkRandom rand; |
| for (int i = 0; i < 1000; ++i) { |
| SkPoint pts[3]; |
| for (int j = 0; j < 3; ++j) { |
| pts[j].set(rand.nextSScalar1() * 100, rand.nextSScalar1() * 100); |
| } |
| const SkScalar dt = SK_Scalar1 / 128; |
| SkScalar t = dt; |
| for (int j = 1; j < 128; ++j) { |
| SkPoint r0; |
| SkEvalQuadAt(pts, t, &r0); |
| SkPoint r1 = SkEvalQuadAt(pts, t); |
| check_pairs(reporter, i, t, "quad-pos", r0.fX, r0.fY, r1.fX, r1.fY); |
| |
| SkVector v0; |
| SkEvalQuadAt(pts, t, nullptr, &v0); |
| SkVector v1 = SkEvalQuadTangentAt(pts, t); |
| check_pairs(reporter, i, t, "quad-tan", v0.fX, v0.fY, v1.fX, v1.fY); |
| |
| t += dt; |
| } |
| } |
| } |
| |
| static void test_conic_eval_pos(skiatest::Reporter* reporter, const SkConic& conic, SkScalar t) { |
| SkPoint p0, p1; |
| conic.evalAt(t, &p0, nullptr); |
| p1 = conic.evalAt(t); |
| check_pairs(reporter, 0, t, "conic-pos", p0.fX, p0.fY, p1.fX, p1.fY); |
| } |
| |
| static void test_conic_eval_tan(skiatest::Reporter* reporter, const SkConic& conic, SkScalar t) { |
| SkVector v0, v1; |
| conic.evalAt(t, nullptr, &v0); |
| v1 = conic.evalTangentAt(t); |
| check_pairs(reporter, 0, t, "conic-tan", v0.fX, v0.fY, v1.fX, v1.fY); |
| } |
| |
| static void test_conic(skiatest::Reporter* reporter) { |
| SkRandom rand; |
| for (int i = 0; i < 1000; ++i) { |
| SkPoint pts[3]; |
| for (int j = 0; j < 3; ++j) { |
| pts[j].set(rand.nextSScalar1() * 100, rand.nextSScalar1() * 100); |
| } |
| for (int k = 0; k < 10; ++k) { |
| SkScalar w = rand.nextUScalar1() * 2; |
| SkConic conic(pts, w); |
| |
| const SkScalar dt = SK_Scalar1 / 128; |
| SkScalar t = dt; |
| for (int j = 1; j < 128; ++j) { |
| test_conic_eval_pos(reporter, conic, t); |
| test_conic_eval_tan(reporter, conic, t); |
| t += dt; |
| } |
| } |
| } |
| } |
| |
| static void test_quad_tangents(skiatest::Reporter* reporter) { |
| SkPoint pts[] = { |
| {10, 20}, {10, 20}, {20, 30}, |
| {10, 20}, {15, 25}, {20, 30}, |
| {10, 20}, {20, 30}, {20, 30}, |
| }; |
| int count = (int) std::size(pts) / 3; |
| for (int index = 0; index < count; ++index) { |
| SkConic conic(&pts[index * 3], 0.707f); |
| SkVector start = SkEvalQuadTangentAt(&pts[index * 3], 0); |
| SkVector mid = SkEvalQuadTangentAt(&pts[index * 3], .5f); |
| SkVector end = SkEvalQuadTangentAt(&pts[index * 3], 1); |
| REPORTER_ASSERT(reporter, start.fX && start.fY); |
| REPORTER_ASSERT(reporter, mid.fX && mid.fY); |
| REPORTER_ASSERT(reporter, end.fX && end.fY); |
| REPORTER_ASSERT(reporter, SkScalarNearlyZero(start.cross(mid))); |
| REPORTER_ASSERT(reporter, SkScalarNearlyZero(mid.cross(end))); |
| } |
| } |
| |
| static void test_conic_tangents(skiatest::Reporter* reporter) { |
| SkPoint pts[] = { |
| { 10, 20}, {10, 20}, {20, 30}, |
| { 10, 20}, {15, 25}, {20, 30}, |
| { 10, 20}, {20, 30}, {20, 30} |
| }; |
| int count = (int) std::size(pts) / 3; |
| for (int index = 0; index < count; ++index) { |
| SkConic conic(&pts[index * 3], 0.707f); |
| SkVector start = conic.evalTangentAt(0); |
| SkVector mid = conic.evalTangentAt(.5f); |
| SkVector end = conic.evalTangentAt(1); |
| REPORTER_ASSERT(reporter, start.fX && start.fY); |
| REPORTER_ASSERT(reporter, mid.fX && mid.fY); |
| REPORTER_ASSERT(reporter, end.fX && end.fY); |
| REPORTER_ASSERT(reporter, SkScalarNearlyZero(start.cross(mid))); |
| REPORTER_ASSERT(reporter, SkScalarNearlyZero(mid.cross(end))); |
| } |
| } |
| |
| static void test_this_conic_to_quad(skiatest::Reporter* r, const SkPoint pts[3], SkScalar w) { |
| SkAutoConicToQuads quadder; |
| const SkPoint* qpts = quadder.computeQuads(pts, w, 0.25); |
| const int qcount = quadder.countQuads(); |
| const int pcount = qcount * 2 + 1; |
| |
| REPORTER_ASSERT(r, SkPointPriv::AreFinite(qpts, pcount)); |
| } |
| |
| /** |
| * We need to ensure that when a conic is approximated by quads, that we always return finite |
| * values in the quads. |
| * |
| * Inspired by crbug_627414 |
| */ |
| static void test_conic_to_quads(skiatest::Reporter* reporter) { |
| const SkPoint triples[] = { |
| { 0, 0 }, { 1, 0 }, { 1, 1 }, |
| { 0, 0 }, { 3.58732e-43f, 2.72084f }, { 3.00392f, 3.00392f }, |
| { 0, 0 }, { 100000, 0 }, { 100000, 100000 }, |
| { 0, 0 }, { 1e30f, 0 }, { 1e30f, 1e30f }, |
| }; |
| const int N = sizeof(triples) / sizeof(SkPoint); |
| |
| for (int i = 0; i < N; i += 3) { |
| const SkPoint* pts = &triples[i]; |
| |
| SkScalar w = 1e30f; |
| do { |
| w *= 2; |
| test_this_conic_to_quad(reporter, pts, w); |
| } while (SkIsFinite(w)); |
| test_this_conic_to_quad(reporter, pts, SK_ScalarNaN); |
| } |
| } |
| |
| static void test_cubic_tangents(skiatest::Reporter* reporter) { |
| SkPoint pts[] = { |
| { 10, 20}, {10, 20}, {20, 30}, {30, 40}, |
| { 10, 20}, {15, 25}, {20, 30}, {30, 40}, |
| { 10, 20}, {20, 30}, {30, 40}, {30, 40}, |
| }; |
| int count = (int) std::size(pts) / 4; |
| for (int index = 0; index < count; ++index) { |
| SkConic conic(&pts[index * 3], 0.707f); |
| SkVector start, mid, end; |
| SkEvalCubicAt(&pts[index * 4], 0, nullptr, &start, nullptr); |
| SkEvalCubicAt(&pts[index * 4], .5f, nullptr, &mid, nullptr); |
| SkEvalCubicAt(&pts[index * 4], 1, nullptr, &end, nullptr); |
| REPORTER_ASSERT(reporter, start.fX && start.fY); |
| REPORTER_ASSERT(reporter, mid.fX && mid.fY); |
| REPORTER_ASSERT(reporter, end.fX && end.fY); |
| REPORTER_ASSERT(reporter, SkScalarNearlyZero(start.cross(mid))); |
| REPORTER_ASSERT(reporter, SkScalarNearlyZero(mid.cross(end))); |
| } |
| } |
| |
| static void check_cubic_type(skiatest::Reporter* reporter, |
| const std::array<SkPoint, 4>& bezierPoints, SkCubicType expectedType, |
| bool undefined = false) { |
| // Classify the cubic even if the results will be undefined: check for crashes and asserts. |
| SkCubicType actualType = SkClassifyCubic(bezierPoints.data()); |
| if (!undefined) { |
| REPORTER_ASSERT(reporter, actualType == expectedType, |
| "%d != %d", (int)actualType, (int)expectedType); |
| } |
| } |
| |
| static void check_cubic_around_rect(std::string name, skiatest::Reporter* reporter, |
| float x1, float y1, float x2, float y2, |
| bool undefined = false) { |
| skiatest::ReporterContext subtest(reporter, name); |
| static constexpr SkCubicType expectations[24] = { |
| SkCubicType::kLoop, |
| SkCubicType::kCuspAtInfinity, |
| SkCubicType::kLocalCusp, |
| SkCubicType::kLocalCusp, |
| SkCubicType::kCuspAtInfinity, |
| SkCubicType::kLoop, |
| SkCubicType::kCuspAtInfinity, |
| SkCubicType::kLoop, |
| SkCubicType::kCuspAtInfinity, |
| SkCubicType::kLoop, |
| SkCubicType::kLocalCusp, |
| SkCubicType::kLocalCusp, |
| SkCubicType::kLocalCusp, |
| SkCubicType::kLocalCusp, |
| SkCubicType::kLoop, |
| SkCubicType::kCuspAtInfinity, |
| SkCubicType::kLoop, |
| SkCubicType::kCuspAtInfinity, |
| SkCubicType::kLoop, |
| SkCubicType::kCuspAtInfinity, |
| SkCubicType::kLocalCusp, |
| SkCubicType::kLocalCusp, |
| SkCubicType::kCuspAtInfinity, |
| SkCubicType::kLoop, |
| }; |
| SkPoint points[] = {{x1, y1}, {x2, y1}, {x2, y2}, {x1, y2}}; |
| std::array<SkPoint, 4> bezier; |
| for (int i=0; i < 4; ++i) { |
| bezier[0] = points[i]; |
| for (int j=0; j < 3; ++j) { |
| int jidx = (j < i) ? j : j+1; |
| bezier[1] = points[jidx]; |
| for (int k=0, kidx=0; k < 2; ++k, ++kidx) { |
| for (int n = 0; n < 2; ++n) { |
| kidx = (kidx == i || kidx == jidx) ? kidx+1 : kidx; |
| } |
| bezier[2] = points[kidx]; |
| for (int l = 0; l < 4; ++l) { |
| if (l != i && l != jidx && l != kidx) { |
| bezier[3] = points[l]; |
| break; |
| } |
| } |
| check_cubic_type(reporter, bezier, expectations[i*6 + j*2 + k], undefined); |
| } |
| } |
| } |
| for (int i=0; i < 4; ++i) { |
| bezier[0] = points[i]; |
| for (int j=0; j < 3; ++j) { |
| int jidx = (j < i) ? j : j+1; |
| bezier[1] = points[jidx]; |
| bezier[2] = points[jidx]; |
| for (int k=0, kidx=0; k < 2; ++k, ++kidx) { |
| for (int n = 0; n < 2; ++n) { |
| kidx = (kidx == i || kidx == jidx) ? kidx+1 : kidx; |
| } |
| bezier[3] = points[kidx]; |
| check_cubic_type(reporter, bezier, SkCubicType::kSerpentine, undefined); |
| } |
| } |
| } |
| } |
| |
| static std::array<SkPoint, 4> kSerpentines[] = { |
| {{{149.325f, 107.705f}, {149.325f, 103.783f}, {151.638f, 100.127f}, {156.263f, 96.736f}}}, |
| {{{225.694f, 223.15f}, {209.831f, 224.837f}, {195.994f, 230.237f}, {184.181f, 239.35f}}}, |
| {{{4.873f, 5.581f}, {5.083f, 5.2783f}, {5.182f, 4.8593f}, {5.177f, 4.3242f}}}, |
| {{{285.625f, 499.687f}, {411.625f, 808.188f}, {1064.62f, 135.688f}, {1042.63f, 585.187f}}} |
| }; |
| |
| static std::array<SkPoint, 4> kLoops[] = { |
| {{{635.625f, 614.687f}, {171.625f, 236.188f}, {1064.62f, 135.688f}, {516.625f, 570.187f}}}, |
| {{{653.050f, 725.049f}, {663.000f, 176.000f}, {1189.000f, 508.000f}, {288.050f, 564.950f}}}, |
| {{{631.050f, 478.049f}, {730.000f, 302.000f}, {870.000f, 350.000f}, {905.050f, 528.950f}}}, |
| {{{631.050f, 478.0499f}, {221.000f, 230.000f}, {1265.000f, 451.000f}, {905.050f, 528.950f}}} |
| }; |
| |
| static std::array<SkPoint, 4> kLinearCubics[] = { |
| {{{0, 0}, {0, 1}, {0, 2}, {0, 3}}}, // 0-degree flat line. |
| {{{0, 0}, {1, 0}, {1, 0}, {0, 0}}}, // 180-degree flat line |
| {{{0, 1}, {0, 0}, {0, 2}, {0, 3}}}, // 180-degree flat line |
| {{{0, 1}, {0, 0}, {0, 3}, {0, 2}}}, // 360-degree flat line |
| {{{0, 0}, {2, 0}, {1, 0}, {64, 0}}}, // 360-degree flat line |
| {{{1, 0}, {0, 0}, {3, 0}, {-64, 0}}} // 360-degree flat line |
| }; |
| |
| static void test_classify_cubic(skiatest::Reporter* reporter) { |
| for (const auto& serp : kSerpentines) { |
| check_cubic_type(reporter, serp, SkCubicType::kSerpentine); |
| } |
| for (const auto& loop : kLoops) { |
| check_cubic_type(reporter, loop, SkCubicType::kLoop); |
| } |
| for (const auto& loop : kLinearCubics) { |
| check_cubic_type(reporter, loop, SkCubicType::kLineOrPoint); |
| } |
| check_cubic_around_rect("small box", reporter, 0, 0, 1, 1); |
| check_cubic_around_rect("biggest box", reporter, |
| -std::numeric_limits<float>::max(), |
| -std::numeric_limits<float>::max(), |
| +std::numeric_limits<float>::max(), |
| +std::numeric_limits<float>::max()); |
| check_cubic_around_rect("large quadrant", reporter, 1, 1, |
| +std::numeric_limits<float>::min(), |
| +std::numeric_limits<float>::max()); |
| check_cubic_around_rect("smallest box", reporter, |
| -std::numeric_limits<float>::min(), |
| -std::numeric_limits<float>::min(), |
| +std::numeric_limits<float>::min(), |
| +std::numeric_limits<float>::min()); |
| check_cubic_around_rect("slightly negative box",reporter, |
| +1, -std::numeric_limits<float>::min(), -1, -1); |
| check_cubic_around_rect("infinite box", reporter, |
| -std::numeric_limits<float>::infinity(), |
| -std::numeric_limits<float>::infinity(), |
| +std::numeric_limits<float>::infinity(), |
| +std::numeric_limits<float>::infinity(), |
| true); |
| check_cubic_around_rect("one sided infinite box", reporter, |
| 0, 0, 1, +std::numeric_limits<float>::infinity(), true); |
| check_cubic_around_rect("nan box", reporter, |
| -std::numeric_limits<float>::quiet_NaN(), |
| -std::numeric_limits<float>::quiet_NaN(), |
| +std::numeric_limits<float>::quiet_NaN(), |
| +std::numeric_limits<float>::quiet_NaN(), |
| true); |
| check_cubic_around_rect("partial nan box", reporter, |
| 0, 0, 1, +std::numeric_limits<float>::quiet_NaN(), true); |
| } |
| |
| static std::array<SkPoint, 4> kCusps[] = { |
| {{{0, 0}, {1, 1}, {1, 0}, {0, 1}}}, |
| {{{0, 0}, {1, 1}, {0, 1}, {1, 0}}}, |
| {{{0, 1}, {1, 0}, {0, 0}, {1, 1}}}, |
| {{{0, 1}, {1, 0}, {1, 1}, {0, 0}}}, |
| }; |
| |
| static void test_cubic_cusps(skiatest::Reporter* reporter) { |
| std::array<SkPoint, 4> noCusps[] = { |
| {{{0, 0}, {1, 1}, {2, 2}, {3, 3}}}, |
| {{{0, 0}, {1, 0}, {1, 1}, {0, 1}}}, |
| {{{0, 0}, {1, 0}, {2, 1}, {2, 2}}}, |
| {{{0, 0}, {1, 0}, {1, 1}, {2, 1}}}, |
| }; |
| for (auto noCusp : noCusps) { |
| REPORTER_ASSERT(reporter, SkFindCubicCusp(noCusp.data()) < 0); |
| } |
| for (auto cusp : kCusps) { |
| REPORTER_ASSERT(reporter, SkFindCubicCusp(cusp.data()) > 0); |
| } |
| } |
| |
| static SkMatrix kSkewMatrices[] = { |
| SkMatrix::MakeAll(1,0,0, 0,1,0, 0,0,1), |
| SkMatrix::MakeAll(1,-1,0, 1,1,0, 0,0,1), |
| SkMatrix::MakeAll(.889f,.553f,0, -.443f,.123f,0, 0,0,1), |
| }; |
| |
| static void test_chop_quad_at_midtangent(skiatest::Reporter* reporter, const SkPoint pts[3]) { |
| constexpr float kTolerance = 1e-3f; |
| for (const SkMatrix& m : kSkewMatrices) { |
| SkPoint mapped[3]; |
| m.mapPoints(mapped, pts, 3); |
| float fullRotation = SkMeasureQuadRotation(pts); |
| SkPoint chopped[5]; |
| SkChopQuadAtMidTangent(pts, chopped); |
| float leftRotation = SkMeasureQuadRotation(chopped); |
| float rightRotation = SkMeasureQuadRotation(chopped+2); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(leftRotation, fullRotation/2, kTolerance)); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rightRotation, fullRotation/2, kTolerance)); |
| } |
| } |
| |
| static void test_chop_cubic_at_midtangent(skiatest::Reporter* reporter, const SkPoint pts[4], |
| SkCubicType cubicType) { |
| constexpr float kTolerance = 1e-3f; |
| int n = std::size(kSkewMatrices); |
| if (cubicType == SkCubicType::kLocalCusp || cubicType == SkCubicType::kLineOrPoint) { |
| // FP precision isn't always enough to get the exact correct T value of the mid-tangent on |
| // cusps and lines. Only test the identity matrix and the matrix with all 1's. |
| n = 2; |
| } |
| for (int i = 0; i < n; ++i) { |
| SkPoint mapped[4]; |
| kSkewMatrices[i].mapPoints(mapped, pts, 4); |
| float fullRotation = SkMeasureNonInflectCubicRotation(mapped); |
| SkPoint chopped[7]; |
| SkChopCubicAtMidTangent(mapped, chopped); |
| float leftRotation = SkMeasureNonInflectCubicRotation(chopped); |
| float rightRotation = SkMeasureNonInflectCubicRotation(chopped+3); |
| if (cubicType == SkCubicType::kLineOrPoint && |
| (SkScalarNearlyEqual(fullRotation, 2*SK_ScalarPI, kTolerance) || |
| SkScalarNearlyEqual(fullRotation, 0, kTolerance))) { |
| // 0- and 360-degree flat lines don't have single points of midtangent. |
| // (tangent == midtangent at every point on these curves except the cusp points.) |
| // Instead verify the promise from SkChopCubicAtMidTangent that neither side will rotate |
| // more than 180 degrees. |
| REPORTER_ASSERT(reporter, std::abs(leftRotation) - kTolerance <= SK_ScalarPI); |
| REPORTER_ASSERT(reporter, std::abs(rightRotation) - kTolerance <= SK_ScalarPI); |
| continue; |
| } |
| float expectedChoppedRotation = fullRotation/2; |
| if (cubicType == SkCubicType::kLocalCusp || |
| (cubicType == SkCubicType::kLineOrPoint && |
| SkScalarNearlyEqual(fullRotation, SK_ScalarPI, kTolerance))) { |
| // If we chop a cubic at a cusp, we lose 180 degrees of rotation. |
| expectedChoppedRotation = (fullRotation - SK_ScalarPI)/2; |
| } |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(leftRotation, expectedChoppedRotation, |
| kTolerance)); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rightRotation, expectedChoppedRotation, |
| kTolerance)); |
| } |
| } |
| |
| static std::array<SkPoint, 3> kQuads[] = { |
| {{{10, 20}, {15, 35}, {30, 40}}}, |
| {{{176.324f, 392.705f}, {719.325f, 205.782f}, {297.263f, 347.735f}}}, |
| {{{652.050f, 602.049f}, {481.000f, 533.000f}, {288.050f, 564.950f}}}, |
| {{{460.625f, 557.187f}, {707.121f, 209.688f}, {779.628f, 577.687f}}}, |
| {{{359.050f, 578.049f}, {759.000f, 274.000f}, {288.050f, 564.950f}}} |
| }; |
| |
| SkPoint lerp(const SkPoint& a, const SkPoint& b, float t) { |
| return a * (1 - t) + b * t; |
| } |
| |
| static void test_measure_rotation(skiatest::Reporter* reporter) { |
| static SkPoint kFlatCubic[4] = {{0, 0}, {0, 1}, {0, 2}, {0, 3}}; |
| REPORTER_ASSERT(reporter, SkScalarNearlyZero(SkMeasureNonInflectCubicRotation(kFlatCubic))); |
| |
| static SkPoint kFlatCubic180_1[4] = {{0, 0}, {1, 0}, {3, 0}, {2, 0}}; |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SkMeasureNonInflectCubicRotation(kFlatCubic180_1), |
| SK_ScalarPI)); |
| |
| static SkPoint kFlatCubic180_2[4] = {{0, 1}, {0, 0}, {0, 2}, {0, 3}}; |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SkMeasureNonInflectCubicRotation(kFlatCubic180_2), |
| SK_ScalarPI)); |
| |
| static SkPoint kFlatCubic360[4] = {{0, 1}, {0, 0}, {0, 3}, {0, 2}}; |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SkMeasureNonInflectCubicRotation(kFlatCubic360), |
| 2*SK_ScalarPI)); |
| |
| static SkPoint kSquare180[4] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}}; |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SkMeasureNonInflectCubicRotation(kSquare180), |
| SK_ScalarPI)); |
| |
| auto checkQuadRotation = [=](const SkPoint pts[3], float expectedRotation) { |
| float r = SkMeasureQuadRotation(pts); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(r, expectedRotation)); |
| |
| SkPoint cubic1[4] = {pts[0], pts[0], pts[1], pts[2]}; |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SkMeasureNonInflectCubicRotation(cubic1), |
| expectedRotation)); |
| |
| SkPoint cubic2[4] = {pts[0], pts[1], pts[1], pts[2]}; |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SkMeasureNonInflectCubicRotation(cubic2), |
| expectedRotation)); |
| |
| SkPoint cubic3[4] = {pts[0], pts[1], pts[2], pts[2]}; |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SkMeasureNonInflectCubicRotation(cubic3), |
| expectedRotation)); |
| }; |
| |
| static SkPoint kFlatQuad[4] = {{0, 0}, {0, 1}, {0, 2}}; |
| checkQuadRotation(kFlatQuad, 0); |
| |
| static SkPoint kFlatQuad180_1[4] = {{1, 0}, {0, 0}, {2, 0}}; |
| checkQuadRotation(kFlatQuad180_1, SK_ScalarPI); |
| |
| static SkPoint kFlatQuad180_2[4] = {{0, 0}, {0, 2}, {0, 1}}; |
| checkQuadRotation(kFlatQuad180_2, SK_ScalarPI); |
| |
| static SkPoint kTri120[3] = {{0, 0}, {.5f, std::sqrt(3.f)/2}, {1, 0}}; |
| checkQuadRotation(kTri120, 2*SK_ScalarPI/3); |
| } |
| |
| static void test_chop_at_midtangent(skiatest::Reporter* reporter) { |
| SkPoint chops[10]; |
| for (const auto& serp : kSerpentines) { |
| REPORTER_ASSERT(reporter, SkClassifyCubic(serp.data()) == SkCubicType::kSerpentine); |
| int n = SkChopCubicAtInflections(serp.data(), chops); |
| for (int i = 0; i < n; ++i) { |
| test_chop_cubic_at_midtangent(reporter, chops + i*3, SkCubicType::kSerpentine); |
| } |
| } |
| for (const auto& loop : kLoops) { |
| REPORTER_ASSERT(reporter, SkClassifyCubic(loop.data()) == SkCubicType::kLoop); |
| test_chop_cubic_at_midtangent(reporter, loop.data(), SkCubicType::kLoop); |
| } |
| for (const auto& line : kLinearCubics) { |
| REPORTER_ASSERT(reporter, SkClassifyCubic(line.data()) == SkCubicType::kLineOrPoint); |
| test_chop_cubic_at_midtangent(reporter, line.data(), SkCubicType::kLineOrPoint); |
| } |
| for (const auto& cusp : kCusps) { |
| REPORTER_ASSERT(reporter, SkClassifyCubic(cusp.data()) == SkCubicType::kLocalCusp); |
| test_chop_cubic_at_midtangent(reporter, cusp.data(), SkCubicType::kLocalCusp); |
| } |
| for (const auto& quad : kQuads) { |
| test_chop_quad_at_midtangent(reporter, quad.data()); |
| SkPoint asCubic[4] = { |
| quad[0], lerp(quad[0], quad[1], 2/3.f), lerp(quad[1], quad[2], 1/3.f), quad[2]}; |
| test_chop_cubic_at_midtangent(reporter, asCubic, SkCubicType::kQuadratic); |
| } |
| |
| static const SkPoint kExactQuad[4] = {{0,0}, {6,2}, {10,2}, {12,0}}; |
| REPORTER_ASSERT(reporter, SkClassifyCubic(kExactQuad) == SkCubicType::kQuadratic); |
| test_chop_cubic_at_midtangent(reporter, kExactQuad, SkCubicType::kQuadratic); |
| |
| static const SkPoint kExactCuspAtInf[4] = {{0,0}, {1,0}, {0,1}, {1,1}}; |
| REPORTER_ASSERT(reporter, SkClassifyCubic(kExactCuspAtInf) == SkCubicType::kCuspAtInfinity); |
| int n = SkChopCubicAtInflections(kExactCuspAtInf, chops); |
| for (int i = 0; i < n; ++i) { |
| test_chop_cubic_at_midtangent(reporter, chops + i*3, SkCubicType::kCuspAtInfinity); |
| } |
| } |
| |
| DEF_TEST(Geometry, reporter) { |
| SkPoint pts[5]; |
| |
| pts[0].set(0, 0); |
| pts[1].set(100, 50); |
| pts[2].set(0, 100); |
| |
| int count = SkChopQuadAtMaxCurvature(pts, pts); // Ensure src and dst can be the same pointer. |
| REPORTER_ASSERT(reporter, count == 1 || count == 2); |
| |
| // This previously crashed because the computed t of max curvature is NaN and SkChopQuadAt |
| // asserts that the passed t is in 0..1. Passes by not asserting. |
| pts[0].set(15.1213f, 7.77647f); |
| pts[1].set(6.2168e+19f, 1.51338e+20f); |
| pts[2].set(1.4579e+19f, 1.55558e+21f); |
| count = SkChopQuadAtMaxCurvature(pts, pts); |
| |
| pts[0].set(0, 0); |
| pts[1].set(3, 0); |
| pts[2].set(3, 3); |
| SkConvertQuadToCubic(pts, pts); |
| const SkPoint cubic[] = { |
| { 0, 0, }, { 2, 0, }, { 3, 1, }, { 3, 3 }, |
| }; |
| for (int i = 0; i < 4; ++i) { |
| REPORTER_ASSERT(reporter, nearly_equal(cubic[i], pts[i])); |
| } |
| |
| testChopCubic(reporter); |
| test_evalquadat(reporter); |
| test_conic(reporter); |
| test_cubic_tangents(reporter); |
| test_quad_tangents(reporter); |
| test_conic_tangents(reporter); |
| test_conic_to_quads(reporter); |
| test_classify_cubic(reporter); |
| test_cubic_cusps(reporter); |
| test_measure_rotation(reporter); |
| test_chop_at_midtangent(reporter); |
| } |
| |
| static void testChopMonoCubicAtY(skiatest::Reporter* reporter, std::string name, |
| SkSpan<const SkPoint> curveInputs, SkScalar yToChopAt, |
| SkSpan<const SkPoint> expectedOutputs) { |
| skiatest::ReporterContext subtest(reporter, name); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(expectedOutputs[3].y(), yToChopAt), |
| "Invalid test case. 4th point's Y should be %f", yToChopAt); |
| |
| SkPoint outputs[7]; |
| // Make sure it actually chopped |
| REPORTER_ASSERT(reporter, SkChopMonoCubicAtY(curveInputs.begin(), yToChopAt, outputs)); |
| |
| for (int i = 0; i < 7; ++i) { |
| REPORTER_ASSERT(reporter, nearly_equal(expectedOutputs[i], outputs[i]), |
| "(%f, %f) != (%f, %f) at index %d", |
| expectedOutputs[i].x(), expectedOutputs[i].y(), |
| outputs[i].x(), outputs[i].y(), i); |
| } |
| } |
| |
| DEF_TEST(GeometryChopMonoCubicAtY_Successful, reporter) { |
| // These cubics are all arbitrary, picked using Desmos for something that looked "nice". |
| |
| testChopMonoCubicAtY(reporter, "straight, positive slope @ 2.5", |
| {{ 0, 0 }, { 0, 0 }, { 10, 10 }, { 10, 10 }}, |
| 2.5f, |
| {{ 0.000000f, 0.000000f }, { 0.000000f, 0.000000f }, { 1.065055f, 1.065055f }, |
| { 2.500000f, 2.500000f }, |
| { 5.461981f, 5.461981f }, { 10.000000f, 10.000000f }, { 10.000000f, 10.000000f }} |
| ); |
| testChopMonoCubicAtY(reporter, "straight, positive slope @ 5.0", |
| {{ 0, 0 }, { 0, 0 }, { 10, 10 }, { 10, 10 }}, |
| 5.0f, |
| {{ 0.000000f, 0.000000f }, { 0.000000f, 0.000000f }, { 2.500000f, 2.500000f }, |
| { 5.000000f, 5.000000f }, |
| { 7.500000f, 7.500000f }, { 10.000000f, 10.000000f }, { 10.000000f, 10.000000f }} |
| ); |
| testChopMonoCubicAtY(reporter, "straight, positive slope @ 9.0", |
| {{ 0, 0 }, { 0, 0 }, { 10, 10 }, { 10, 10 }}, |
| 9.0f, |
| {{ 0.000000f, 0.000000f }, { 0.000000f, 0.000000f }, { 6.467375f, 6.467375f }, |
| { 9.000000f, 9.000000f }, |
| { 9.616623f, 9.616623f }, { 10.000000f, 10.000000f }, { 10.000000f, 10.000000f }} |
| ); |
| testChopMonoCubicAtY(reporter, "straight, positive slope @ 10.0", |
| {{ 0, 0 }, { 0, 0 }, { 10, 10 }, { 10, 10 }}, |
| 10.0f, |
| {{ 0.000000f, 0.000000f }, { 0.000000f, 0.000000f }, { 10.000000f, 10.000000f }, |
| { 10.000000f, 10.000000f }, |
| { 10.000000f, 10.000000f }, { 10.000000f, 10.000000f }, { 10.000000f, 10.000000f }} |
| ); |
| |
| testChopMonoCubicAtY(reporter, "curve, positive slope @ 2.0", |
| {{ 1, 1 }, { 5, 2 }, { 7, 4 }, { 8, 7 }}, |
| 2.0f, |
| {{ 1.000000f, 1.000000f }, { 2.055050f, 1.263763f }, { 2.970959f, 1.597096f }, |
| { 3.766077f, 2.000000f }, |
| { 5.985480f, 3.124621f }, { 7.263762f, 4.791288f }, { 8.000000f, 7.000000f }} |
| ); |
| testChopMonoCubicAtY(reporter, "curve, positive slope @ 5.0", |
| {{ 1, 1 }, { 5, 2 }, { 7, 4 }, { 8, 7 }}, |
| 5.0f, |
| {{ 1.000000f, 1.000000f }, { 4.033223f, 1.758306f }, { 5.916391f, 3.091639f }, |
| { 7.085550f, 5.000000f }, |
| { 7.458195f, 5.608251f }, { 7.758306f, 6.274917f }, { 8.000000f, 7.000000f }} |
| ); |
| |
| testChopMonoCubicAtY(reporter, "curve, negative slope @ 5.0", |
| {{ 2, 7 }, { 3, 2 }, { 6, 3 }, { 11, 2 }}, |
| 5.0f, |
| {{ 2.000000f, 7.000000f }, { 2.162856f, 6.185719f }, { 2.378757f, 5.530570f }, |
| { 2.647702f, 5.000000f }, |
| { 4.030182f, 2.272668f }, { 6.814281f, 2.837144f }, { 11.000000f, 2.000000f }} |
| ); |
| testChopMonoCubicAtY(reporter, "curve, negative slope @ 3.0", |
| {{ 2, 7 }, { 3, 2 }, { 6, 3 }, { 11, 2 }}, |
| 3.0f, |
| {{ 2.000000f, 7.000000f }, { 2.500000f, 4.500000f }, { 3.500000f, 3.500000f }, |
| { 5.000000f, 3.000000f }, |
| { 6.500000f, 2.500000f }, { 8.500000f, 2.500000f }, { 11.000000f, 2.000000f }} |
| ); |
| testChopMonoCubicAtY(reporter, "curve, negative slope @ 2.5", |
| {{ 2, 7 }, { 3, 2 }, { 6, 3 }, { 11, 2 }}, |
| 2.5f, |
| {{ 2.000000f, 7.000000f }, { 2.750000f, 3.250000f }, { 4.625000f, 2.875000f }, |
| { 7.625000f, 2.500000f }, |
| { 8.625000f, 2.375000f }, { 9.750000f, 2.250000f }, { 11.000000f, 2.000000f }} |
| ); |
| |
| // This is the same curve as above, just the 4 points given in the opposite order. |
| // We would expect the math to result in the same chop points, with the outputs |
| // in the opposite order too. |
| testChopMonoCubicAtY(reporter, "inverted curve, negative slope @ 5.0", |
| {{ 11, 2 }, { 6, 3 }, { 3, 2 }, { 2, 7 }}, |
| 5.0f, |
| {{ 11.000000f, 2.000000f }, { 6.814281f, 2.837144f }, { 4.030182f, 2.272668f }, |
| { 2.647702f, 5.000000f }, |
| { 2.378757f, 5.530570f }, { 2.162856f, 6.185719f }, { 2.000000f, 7.000000f }} |
| ); |
| testChopMonoCubicAtY(reporter, "inverted curve, negative slope @ 3.0", |
| {{ 11, 2 }, { 6, 3 }, { 3, 2 }, { 2, 7 }}, |
| 3.0f, |
| {{ 11.000000f, 2.000000f }, { 8.500000f, 2.500000f }, { 6.500000f, 2.500000f }, |
| { 5.000000f, 3.000000f }, |
| { 3.500000f, 3.500000f }, { 2.500000f, 4.500000f }, { 2.000000f, 7.000000f }} |
| ); |
| testChopMonoCubicAtY(reporter, "inverted curve, negative slope @ 2.5", |
| {{ 11, 2 }, { 6, 3 }, { 3, 2 }, { 2, 7 }}, |
| 2.5f, |
| {{ 11.000000f, 2.000000f }, { 9.750000f, 2.250000f }, { 8.625000f, 2.375000f }, |
| { 7.625000f, 2.500000f }, |
| { 4.625000f, 2.875000f }, { 2.750000f, 3.250000f }, { 2.000000f, 7.000000f }} |
| ); |
| |
| testChopMonoCubicAtY(reporter, "big curve, negative slope @ 90", |
| {{ -2, 100 }, { 0, 0 }, { 0, 0 }, { 100, -2 }}, |
| 90.f, |
| {{ -2.000000f,100.000000f }, { -1.930979f, 96.548965f }, { -1.864341f, 93.217033f }, |
| { -1.795892f, 90.000000f }, |
| { 0.119096f, -0.002382f }, { 3.451032f, -0.069021f }, {100.000000f, -2.000000f }} |
| ); |
| testChopMonoCubicAtY(reporter, "big curve, negative slope @ 10", |
| {{ -2, 100 }, { 0, 0 }, { 0, 0 }, { 100, -2 }}, |
| 10.f, |
| {{ -2.000000f,100.000000f }, { -0.937505f, 46.875271f }, { -0.439458f, 21.972910f }, |
| { 14.787060f, 10.000000f }, |
| { 28.222368f, -0.564447f }, { 53.124729f, -1.062495f }, {100.000000f, -2.000000f }} |
| ); |
| testChopMonoCubicAtY(reporter, "big curve, negative slope @ 0", |
| {{ -2, 100 }, { 0, 0 }, { 0, 0 }, { 100, -2 }}, |
| 0.f, |
| {{ -2.000000f,100.000000f }, { -0.426983f, 21.349131f }, { -0.091157f, 4.557854f }, |
| { 48.633648f, 0.000000f }, |
| { 61.859592f, -1.237192f }, { 78.650871f, -1.573017f }, {100.000000f, -2.000000f }} |
| ); |
| |
| testChopMonoCubicAtY(reporter, "ossfuzz:55680 curve barely crosses Y axis", |
| {{-250.121582f, -1180.09509f}, {10.007843f, -1180.09509f}, |
| {20.015685f, -786.041259f}, {40.0313721f, 2.0664072f}}, |
| 0.f, |
| {{-250.121582f, -1180.095093f}, {9.780392f, -1180.095093f}, {19.997992f, -786.730042f}, |
| {39.978889f, 0.000000f}, |
| {39.996376f, 0.688501f}, {40.013870f, 1.377304f}, {40.031372f, 2.066407f}} |
| ); |
| } |
| |
| DEF_TEST(GeometryChopMonoCubicAtY_OutOfRangeReturnFalse, reporter) { |
| SkPoint inputs[] = {{ 0, 0 }, { 0, 0 }, { 10, 10 }, { 10, 10 }}; |
| SkPoint outputs[7]; |
| |
| // Too low |
| REPORTER_ASSERT(reporter, !SkChopMonoCubicAtY(inputs, -10, outputs)); |
| // Too high |
| REPORTER_ASSERT(reporter, !SkChopMonoCubicAtY(inputs, 20, outputs)); |
| } |
| |
| static void testChopMonoCubicAtX(skiatest::Reporter* reporter, std::string name, |
| SkSpan<const SkPoint> curveInputs, SkScalar xToChopAt, |
| SkSpan<const SkPoint> expectedOutputs) { |
| skiatest::ReporterContext subtest(reporter, name); |
| REPORTER_ASSERT(reporter, curveInputs.size() == 4, |
| "Invalid test case. Input curve should have 4 points"); |
| REPORTER_ASSERT(reporter, expectedOutputs.size() == 7, |
| "Invalid test case. Outputs should have 7 points"); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(expectedOutputs[3].x(), xToChopAt), |
| "Invalid test case. 4th point's X should be %f", xToChopAt); |
| |
| SkPoint outputs[7]; |
| // Make sure it actually chopped |
| REPORTER_ASSERT(reporter, SkChopMonoCubicAtX(curveInputs.begin(), xToChopAt, outputs)); |
| |
| for (int i = 0; i < 7; ++i) { |
| REPORTER_ASSERT(reporter, nearly_equal(expectedOutputs[i], outputs[i]), |
| "(%f, %f) != (%f, %f) at index %d", |
| expectedOutputs[i].x(), expectedOutputs[i].y(), |
| outputs[i].x(), outputs[i].y(), i); |
| } |
| } |
| |
| DEF_TEST(GeometryChopMonoCubicAtX_Successful, reporter) { |
| // These cubics are all arbitrary, picked using Desmos for something that looked "nice". |
| |
| testChopMonoCubicAtX(reporter, "straight, positive slope @ 2.5", |
| {{ 0, 0 }, { 0, 0 }, { 10, 10 }, { 10, 10 }}, |
| 2.5f, |
| {{ 0.000000f, 0.000000f }, { 0.000000f, 0.000000f }, { 1.065055f, 1.065055f }, |
| { 2.500000f, 2.500000f }, |
| { 5.461981f, 5.461981f }, { 10.000000f, 10.000000f }, { 10.000000f, 10.000000f }} |
| ); |
| testChopMonoCubicAtX(reporter, "straight, positive slope @ 5.0", |
| {{ 0, 0 }, { 0, 0 }, { 10, 10 }, { 10, 10 }}, |
| 5.0f, |
| {{ 0.000000f, 0.000000f }, { 0.000000f, 0.000000f }, { 2.500000f, 2.500000f }, |
| { 5.000000f, 5.000000f }, |
| { 7.500000f, 7.500000f }, { 10.000000f, 10.000000f }, { 10.000000f, 10.000000f }} |
| ); |
| testChopMonoCubicAtX(reporter, "straight, positive slope @ 9.0", |
| {{ 0, 0 }, { 0, 0 }, { 10, 10 }, { 10, 10 }}, |
| 9.0f, |
| {{ 0.000000f, 0.000000f }, { 0.000000f, 0.000000f }, { 6.467375f, 6.467375f }, |
| { 9.000000f, 9.000000f }, |
| { 9.616623f, 9.616623f }, { 10.000000f, 10.000000f }, { 10.000000f, 10.000000f }} |
| ); |
| testChopMonoCubicAtX(reporter, "straight, positive slope @ 10.0", |
| {{ 0, 0 }, { 0, 0 }, { 10, 10 }, { 10, 10 }}, |
| 10.0f, |
| {{ 0.000000f, 0.000000f }, { 0.000000f, 0.000000f }, { 10.000000f, 10.000000f }, |
| { 10.000000f, 10.000000f }, |
| { 10.000000f, 10.000000f }, { 10.000000f, 10.000000f }, { 10.000000f, 10.000000f }} |
| ); |
| |
| testChopMonoCubicAtX(reporter, "curve, positive slope @ 2.0", |
| {{ 1, 1 }, { 5, 2 }, { 7, 4 }, { 8, 7 }}, |
| 2.0f, |
| {{ 1.000000f, 1.000000f }, { 1.348275f, 1.087069f }, { 1.681389f, 1.181719f }, |
| { 2.000000f, 1.283949f }, |
| { 5.340694f, 2.355856f }, { 7.087069f, 4.261207f }, { 8.000000f, 7.000000f }} |
| ); |
| testChopMonoCubicAtX(reporter, "curve, positive slope @ 5.0", |
| {{ 1, 1 }, { 5, 2 }, { 7, 4 }, { 8, 7 }}, |
| 5.0f, |
| {{ 1.000000f, 1.000000f }, { 2.650396f, 1.412599f }, { 3.960316f, 1.995436f }, |
| { 5.000000f, 2.748511f }, |
| { 6.480158f, 3.820634f }, { 7.412599f, 5.237797f }, { 8.000000f, 7.000000f }} |
| ); |
| |
| testChopMonoCubicAtX(reporter, "curve, negative slope @ 5.0", |
| {{ 2, 7 }, { 3, 2 }, { 6, 3 }, { 11, 2 }}, |
| 5.0f, |
| {{ 2.000000f, 7.000000f }, { 2.500000f, 4.500000f }, { 3.500000f, 3.500000f }, |
| { 5.000000f, 3.000000f }, |
| { 6.500000f, 2.500000f }, { 8.500000f, 2.500000f }, { 11.000000f, 2.000000f }} |
| ); |
| testChopMonoCubicAtX(reporter, "curve, negative slope @ 3.0", |
| {{ 2, 7 }, { 3, 2 }, { 6, 3 }, { 11, 2 }}, |
| 3.0f, |
| {{ 2.000000f, 7.000000f }, { 2.228714f, 5.856432f }, { 2.562047f, 5.026724f }, |
| { 3.000000f, 4.415163f }, |
| { 4.476901f, 2.352807f }, { 7.143568f, 2.771286f }, { 11.000000f, 2.000000f }} |
| ); |
| testChopMonoCubicAtX(reporter, "curve, negative slope @ 2.5", |
| {{ 2, 7 }, { 3, 2 }, { 6, 3 }, { 11, 2 }}, |
| 2.5f, |
| {{ 2.000000f, 7.000000f }, { 2.131881f, 6.340593f }, { 2.298548f, 5.785543f }, |
| { 2.500000f, 5.316498f }, |
| { 3.826073f, 2.228977f }, { 6.659407f, 2.868119f }, { 11.000000f, 2.000000f }} |
| ); |
| |
| // This is the same curve as above, just the 4 points given in the opposite order. |
| // We would expect the math to result in the same chop points, with the outputs |
| // in the opposite order too. |
| testChopMonoCubicAtX(reporter, "inverted curve, negative slope @ 5.0", |
| {{ 11, 2 }, { 6, 3 }, { 3, 2 }, { 2, 7 }}, |
| 5.0f, |
| {{ 11.000000f, 2.000000f }, { 8.500000f, 2.500000f }, { 6.500000f, 2.500000f }, |
| { 5.000000f, 3.000000f }, |
| { 3.500000f, 3.500000f }, { 2.500000f, 4.500000f }, { 2.000000f, 7.000000f }} |
| ); |
| testChopMonoCubicAtX(reporter, "inverted curve, negative slope @ 3.0", |
| {{ 11, 2 }, { 6, 3 }, { 3, 2 }, { 2, 7 }}, |
| 3.0f, |
| {{ 11.000000f, 2.000000f }, { 7.143568f, 2.771286f }, { 4.476901f, 2.352807f }, |
| { 3.000000f, 4.415163f }, |
| { 2.562047f, 5.026724f }, { 2.228714f, 5.856432f }, { 2.000000f, 7.000000f }} |
| ); |
| testChopMonoCubicAtX(reporter, "inverted curve, negative slope @ 2.5", |
| {{ 11, 2 }, { 6, 3 }, { 3, 2 }, { 2, 7 }}, |
| 2.5f, |
| {{ 11.000000f, 2.000000f }, { 6.659407f, 2.868119f }, { 3.826073f, 2.228977f }, |
| { 2.500000f, 5.316498f }, |
| { 2.298548f, 5.785543f }, { 2.131881f, 6.340593f }, { 2.000000f, 7.000000f }} |
| ); |
| |
| testChopMonoCubicAtX(reporter, "big curve, negative slope @ 90", |
| {{ -2, 100 }, { 0, 0 }, { 0, 0 }, { 100, -2 }}, |
| 90.f, |
| {{ -2.000000f,100.000000f }, { -0.069021f, 3.451032f }, { -0.002382f, 0.119096f }, |
| { 90.000000f, -1.795892f }, |
| { 93.217033f, -1.864341f }, { 96.548965f, -1.930979f }, {100.000000f, -2.000000f }} |
| ); |
| testChopMonoCubicAtX(reporter, "big curve, negative slope @ 10", |
| {{ -2, 100 }, { 0, 0 }, { 0, 0 }, { 100, -2 }}, |
| 10.f, |
| {{ -2.000000f,100.000000f }, { -1.062495f, 53.124729f }, { -0.564447f, 28.222368f }, |
| { 10.000000f, 14.787060f }, |
| { 21.972910f, -0.439458f }, { 46.875271f, -0.937505f }, {100.000000f, -2.000000f }} |
| ); |
| testChopMonoCubicAtX(reporter, "big curve, negative slope @ 0", |
| {{ -2, 100 }, { 0, 0 }, { 0, 0 }, { 100, -2 }}, |
| 0.f, |
| {{ -2.000000f,100.000000f }, { -1.573017f, 78.650871f }, { -1.237192f, 61.859592f }, |
| { 0.000000f, 48.633648f }, |
| { 4.557854f, -0.091157f }, { 21.349131f, -0.426983f }, {100.000000f, -2.000000f }} |
| ); |
| } |
| |
| DEF_TEST(GeometryChopMonoCubicAtX_OutOfRangeReturnFalse, reporter) { |
| SkPoint inputs[] = {{ 0, 0 }, { 0, 0 }, { 10, 10 }, { 10, 10 }}; |
| SkPoint outputs[7]; |
| |
| // Too low |
| REPORTER_ASSERT(reporter, !SkChopMonoCubicAtX(inputs, -10, outputs)); |
| // Too high |
| REPORTER_ASSERT(reporter, !SkChopMonoCubicAtX(inputs, 20, outputs)); |
| } |