| /* |
| * Copyright 2016 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/base/SkHalf.h" |
| #include "src/base/SkRandom.h" |
| #include "src/base/SkVx.h" |
| #include "tests/Test.h" |
| |
| #include <cmath> |
| #include <cstdint> |
| #include <cstring> |
| |
| // float = s[31] e[30:23] m[22:0] |
| static constexpr uint32_t kF32_Sign = 1 << 31; |
| static constexpr uint32_t kF32_Exp = 255 << 23; |
| static constexpr uint32_t kF32_Mant = ~(kF32_Sign | kF32_Exp); |
| static constexpr int kF32_Bias = 127; |
| |
| // half = s[15] e[14:10] m[9:0] |
| static constexpr uint32_t kF16_Sign = 1 << 15; |
| static constexpr uint32_t kF16_Exp = 31 << 10; |
| static constexpr uint32_t kF16_Mant = ~(kF16_Sign | kF16_Exp); |
| static constexpr int kF16_Bias = 15; |
| |
| DEF_TEST(FloatToHalf, r) { |
| #if 0 |
| // Exhaustive test (slow) |
| for (uint64_t bits = 0; bits <= 0xffffffff; bits++) { |
| if (bits % (1 << 24) == 0) { |
| SkDebugf("progress 0x%08X\n", (int) bits); |
| } |
| #else |
| // Check all 8-bit exponents and all 10-bit upper mantissas, with a combination of all 0s, |
| // all 1s, and random bits in the remaining 13 fractional mantissa bits. |
| static constexpr int kTestCount = /*sign*/2 * /*exp*/255 * /*man*/1024 * /*frac*/8; |
| SkRandom rand; |
| for (int i = 0; i < kTestCount; ++i) { |
| uint32_t sign = (i & 1) << 31; |
| uint32_t exp = ((i >> 1) & 255) << 23; |
| uint32_t man = ((i >> 9) & 1023) << 13; |
| uint32_t frac = ((i >> 19) & 7); // 0 and 1 are special, 6 other values are random bits |
| uint64_t bits = sign | exp | man | ((frac == 0) ? 0 : // all 0s in lost fraction |
| (frac == 1) ? (1 << 13) - 1 // all 1s in lost fraction |
| : rand.nextBits(13)); // random lost bits |
| #endif |
| |
| float f = SkBits2Float(bits); |
| if (SkIsNaN(f)) { |
| #ifndef SK_DEBUG |
| // We want float->half and half->float to play well with infinities and max |
| // representable values in the 16-bit precision, but NaNs should have been caught ahead |
| // of time, so the conversion logic is allowed to convert them to infinities in release |
| // builds. We skip calling `to_half` in debug since it asserts that NaN isn't passed in. |
| uint16_t actual2 = to_half(skvx::float2{f})[0]; |
| uint16_t actual4 = to_half(skvx::float4{f})[0]; |
| REPORTER_ASSERT(r, (actual2 & kF16_Exp) == kF16_Exp); |
| REPORTER_ASSERT(r, (actual4 & kF16_Exp) == kF16_Exp); |
| #endif |
| continue; |
| } |
| |
| uint32_t s32 = (uint32_t) bits & kF32_Sign; |
| uint32_t e32 = (uint32_t) bits & kF32_Exp; |
| uint32_t m32 = (uint32_t) bits & kF32_Mant; |
| |
| // Half floats can represent a real exponent from -14 to 15. Anything less than that would |
| // need to be a denorm, which is flushed to zero, or overflows and becomes infinity. |
| int e = (int) (e32 >> 23) - kF32_Bias; // the true signed exponent |
| |
| uint32_t s16 = s32 >> 16; |
| uint32_t e16; |
| uint32_t m16; |
| if (e < -kF16_Bias-10 || (e == -kF16_Bias-10 && m32 <= 0)) { |
| // Rounds to zero |
| e16 = 0; |
| m16 = 0; |
| } else if ((e32 | m32) < 0x38fe'0000) { |
| // A subnormal non-zero f16 value |
| e16 = 0; |
| m16 = 0xffff & sk_bit_cast<uint32_t>(0.5f + SkBits2Float(e32 | m32)); |
| } else if ((e32 | m32) < 0x3880'0000) { |
| // Rounds up to smallest normal f16 (2^-14) |
| e16 = 1; |
| m16 = 0; |
| } else if (e > kF16_Bias) { |
| // Either f32 infinity or a value larger than what rounds down to the max normal half. |
| e16 = kF16_Exp; |
| m16 = 0; |
| } else { |
| // A normal half value, which is rounded towards nearest even. |
| e16 = (uint32_t) (e + kF16_Bias) << 10; |
| SkASSERT((e16 & ~kF16_Exp) == 0); |
| |
| // round to nearest even |
| m32 += 0xfff + ((m32>>13)&1); |
| |
| if (m32 > kF32_Mant) { |
| // overflow |
| e16 += (1 << 10); |
| m16 = 0; |
| } else { |
| m16 = m32 >> 13; |
| } |
| } |
| |
| // Expected conversion from f32 to f16 |
| uint16_t expected = s16 | e16 | m16; |
| uint16_t actual2 = to_half(skvx::float2{f})[0]; |
| uint16_t actual4 = to_half(skvx::float4{f})[0]; |
| REPORTER_ASSERT(r, expected == actual2); |
| REPORTER_ASSERT(r, expected == actual4); |
| } |
| } |
| |
| DEF_TEST(FloatToHalf_Constants, r) { |
| auto to_half = [](float f) { return skvx::to_half(skvx::float4{f})[0]; }; |
| REPORTER_ASSERT(r, 0 == to_half(0.f)); |
| REPORTER_ASSERT(r, kF16_Sign == to_half(-0.f)); |
| REPORTER_ASSERT(r, SK_Half1 == to_half(1.f)); |
| REPORTER_ASSERT(r, (kF16_Sign | SK_Half1) == to_half(-1.f)); |
| REPORTER_ASSERT(r, SK_HalfMax == to_half(65504.f)); |
| REPORTER_ASSERT(r, SK_HalfMin == to_half(1.f / (1 << 14))); |
| } |
| |
| DEF_TEST(HalfToFloat, r) { |
| for (uint32_t bits = 0; bits <= 0xffff; bits++) { |
| uint32_t s16 = bits & kF16_Sign; |
| uint32_t e16 = bits & kF16_Exp; |
| uint32_t m16 = bits & kF16_Mant; |
| |
| float actual2 = from_half(skvx::half2{(uint16_t) bits})[0]; |
| float actual4 = from_half(skvx::half4{(uint16_t) bits})[0]; |
| |
| if (e16 == 0) { |
| // De-normal f16 or a zero = 2^-14 * 0.[m16] = 2^-14 * 2^-10 * [m16].0 |
| float expected = (1.f / (1 << 14)) * (1.f / (1 << 10)) * m16; |
| if (s16 != 0) { |
| expected *= -1.f; |
| } |
| REPORTER_ASSERT(r, actual2 == expected); |
| REPORTER_ASSERT(r, actual4 == expected); |
| } else if (e16 == kF16_Exp) { |
| if (m16 != 0) { |
| // A NaN stays NaN |
| REPORTER_ASSERT(r, SkIsNaN(actual2)); |
| REPORTER_ASSERT(r, SkIsNaN(actual4)); |
| } else { |
| // +/- infinity stays infinite |
| if (s16) { |
| REPORTER_ASSERT(r, actual2 == SK_ScalarNegativeInfinity); |
| REPORTER_ASSERT(r, actual4 == SK_ScalarNegativeInfinity); |
| } else { |
| REPORTER_ASSERT(r, actual2 == SK_ScalarInfinity); |
| REPORTER_ASSERT(r, actual4 == SK_ScalarInfinity); |
| } |
| } |
| } else { |
| // A normal f16 is exactly representable in f32 |
| uint32_t s32 = s16 << 16; |
| uint32_t e32 = ((e16 >> 10) + kF32_Bias - kF16_Bias) << 23; |
| uint32_t m32 = m16 << 13; |
| |
| float expected = SkBits2Float(s32 | e32 | m32); |
| REPORTER_ASSERT(r, actual2 == expected); |
| REPORTER_ASSERT(r, actual4 == expected); |
| } |
| } |
| } |