blob: 28c927845cf62c8b9b585b98e3bbf453bb2255ad [file] [log] [blame]
/*
* Copyright 2023 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkSpan.h"
#include "include/core/SkTypes.h"
#include "include/private/base/SkFloatingPoint.h"
#include "src/base/SkBezierCurves.h"
#include "src/pathops/SkPathOpsCubic.h"
#include "src/pathops/SkPathOpsPoint.h"
#include "src/pathops/SkPathOpsTypes.h"
#include "tests/Test.h"
#include <algorithm>
#include <array>
#include <cstring>
#include <iterator>
#include <string>
// Grouping the test inputs into DoublePoints makes the test cases easier to read.
struct DoublePoint {
double x;
double y;
};
static bool nearly_equal(double expected, double actual) {
if (sk_double_nearly_zero(expected)) {
return sk_double_nearly_zero(actual);
}
return sk_doubles_nearly_equal_ulps(expected, actual, 64);
}
static void testChopCubicAtT(skiatest::Reporter* reporter, const std::string& name,
SkSpan<const DoublePoint> curveInputs, double t,
SkSpan<const DoublePoint> expectedOutputs) {
skiatest::ReporterContext subtest(reporter, name);
REPORTER_ASSERT(reporter, curveInputs.size() == 4,
"Invalid test case. Should have 4 input points.");
REPORTER_ASSERT(reporter, t >= 0.0 && t <= 1.0,
"Invalid test case. t %f should be in [0, 1]", t);
// Two cubic curves, sharing an input point
REPORTER_ASSERT(reporter, expectedOutputs.size() == 7,
"Invalid test case. Should have 7 output points.");
{
skiatest::ReporterContext subsubtest(reporter, "Pathops Implementation");
SkDCubic input;
std::memcpy(&input.fPts[0], curveInputs.begin(), 8 * sizeof(double));
SkDCubicPair output = input.chopAt(t);
for (int i = 0; i < 7; ++i) {
REPORTER_ASSERT(reporter,
nearly_equal(expectedOutputs[i].x, output.pts[i].fX) &&
nearly_equal(expectedOutputs[i].y, output.pts[i].fY),
"(%.16f, %.16f) != (%.16f, %.16f) at index %d",
expectedOutputs[i].x, expectedOutputs[i].y,
output.pts[i].fX, output.pts[i].fY, i);
}
}
{
skiatest::ReporterContext subsubtest(reporter, "SkBezier Implementation");
double input[8];
double output[14];
std::memcpy(input, curveInputs.begin(), 8 * sizeof(double));
SkBezierCubic::Subdivide(input, t, output);
for (int i = 0; i < 7; ++i) {
REPORTER_ASSERT(reporter,
nearly_equal(expectedOutputs[i].x, output[i*2]) &&
nearly_equal(expectedOutputs[i].y, output[i*2 + 1]),
"(%.16f, %.16f) != (%.16f, %.16f) at index %d",
expectedOutputs[i].x, expectedOutputs[i].y,
output[i*2], output[i*2 + 1], i);
}
}
}
DEF_TEST(ChopCubicAtT_NormalizedCubic, reporter) {
testChopCubicAtT(reporter, "Cubic between 0,0, and 1,1, t=0",
{{ 0, 0 }, { .12, 1.8 }, { .92, -1.65 }, { 1.0, 1.0 }},
0.0,
{{ 0.000000, 0.000000 }, { 0.000000, 0.000000 }, { 0.000000, 0.000000 },
{ 0.000000, 0.000000 },
{ 0.120000, 1.800000 }, { 0.920000, -1.650000 }, { 1.000000, 1.000000 }}
);
testChopCubicAtT(reporter, "Cubic between 0,0, and 1,1, t=0.1",
{{ 0, 0 }, { .12, 1.8 }, { .92, -1.65 }, { 1.0, 1.0 }},
0.1,
{{ 0.000000, 0.000000 }, { 0.012000, 0.180000 }, { 0.030800, 0.307500 },
{ 0.055000, 0.393850 },
{ 0.272800, 1.171000 }, { 0.928000, -1.385000 }, { 1.000000, 1.000000 }}
);
testChopCubicAtT(reporter, "Cubic between 0,0, and 1,1, t=0.2",
{{ 0, 0 }, { .12, 1.8 }, { .92, -1.65 }, { 1.0, 1.0 }},
0.2,
{{ 0.000000, 0.000000 }, { 0.024000, 0.360000 }, { 0.075200, 0.510000 },
{ 0.142400, 0.540800 },
{ 0.411200, 0.664000 }, { 0.936000, -1.120000 }, { 1.000000, 1.000000 }}
);
testChopCubicAtT(reporter, "Cubic between 0,0, and 1,1, t=0.3",
{{ 0, 0 }, { .12, 1.8 }, { .92, -1.65 }, { 1.0, 1.0 }},
0.3,
{{ 0.000000, 0.000000 }, { 0.036000, 0.540000 }, { 0.133200, 0.607500 },
{ 0.253800, 0.508950 },
{ 0.535200, 0.279000 }, { 0.944000, -0.855000 }, { 1.000000, 1.000000 }}
);
testChopCubicAtT(reporter, "Cubic between 0,0, and 1,1, t=0.4",
{{ 0, 0 }, { .12, 1.8 }, { .92, -1.65 }, { 1.0, 1.0 }},
0.4,
{{ 0.000000, 0.000000 }, { 0.048000, 0.720000 }, { 0.204800, 0.600000 },
{ 0.380800, 0.366400 },
{ 0.644800, 0.016000 }, { 0.952000, -0.590000 }, { 1.000000, 1.000000 }}
);
testChopCubicAtT(reporter, "Cubic between 0,0, and 1,1, t=0.5",
{{ 0, 0 }, { .12, 1.8 }, { .92, -1.65 }, { 1.0, 1.0 }},
0.5,
{{ 0.000000, 0.000000 }, { 0.060000, 0.900000 }, { 0.290000, 0.487500 },
{ 0.515000, 0.181250 },
{ 0.740000, -0.125000 }, { 0.960000, -0.325000 }, { 1.000000, 1.000000 }}
);
testChopCubicAtT(reporter, "Cubic between 0,0, and 1,1, t=0.6",
{{ 0, 0 }, { .12, 1.8 }, { .92, -1.65 }, { 1.0, 1.0 }},
0.6,
{{ 0.000000, 0.000000 }, { 0.072000, 1.080000 }, { 0.388800, 0.270000 },
{ 0.648000, 0.021600 },
{ 0.820800, -0.144000 }, { 0.968000, -0.060000 }, { 1.000000, 1.000000 }}
);
testChopCubicAtT(reporter, "Cubic between 0,0, and 1,1, t=0.7",
{{ 0, 0 }, { .12, 1.8 }, { .92, -1.65 }, { 1.0, 1.0 }},
0.7,
{{ 0.000000, 0.000000 }, { 0.084000, 1.260000 }, { 0.501200, -0.052500 },
{ 0.771400, -0.044450 },
{ 0.887200, -0.041000 }, { 0.976000, 0.205000 }, { 1.000000, 1.000000 }}
);
testChopCubicAtT(reporter, "Cubic between 0,0, and 1,1, t=0.8",
{{ 0, 0 }, { .12, 1.8 }, { .92, -1.65 }, { 1.0, 1.0 }},
0.8,
{{ 0.000000, 0.000000 }, { 0.096000, 1.440000 }, { 0.627200, -0.480000 },
{ 0.876800, 0.051200 },
{ 0.939200, 0.184000 }, { 0.984000, 0.470000 }, { 1.000000, 1.000000 }}
);
testChopCubicAtT(reporter, "Cubic between 0,0, and 1,1, t=0.9",
{{ 0, 0 }, { .12, 1.8 }, { .92, -1.65 }, { 1.0, 1.0 }},
0.9,
{{ 0.000000, 0.000000 }, { 0.108000, 1.620000 }, { 0.766800, -1.012500 },
{ 0.955800, 0.376650 },
{ 0.976800, 0.531000 }, { 0.992000, 0.735000 }, { 1.000000, 1.000000 }}
);
testChopCubicAtT(reporter, "Cubic between 0,0, and 1,1, t=1.0",
{{ 0, 0 }, { .12, 1.8 }, { .92, -1.65 }, { 1.0, 1.0 }},
1.0,
{{ 0.000000, 0.000000 }, { 0.120000, 1.800000 }, { 0.920000, -1.650000 },
{ 1.000000, 1.000000 },
{ 1.000000, 1.000000 }, { 1.000000, 1.000000 }, { 1.000000, 1.000000 }}
);
}
DEF_TEST(ChopCubicAtT_ArbitraryCubic, reporter) {
testChopCubicAtT(reporter, "Arbitrary Cubic, t=0.1234",
{{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }},
0.1234,
{{-10.00000000000000, -20.00000000000000 },
{ -9.62980000000000, -16.91500000000000 },
{ -8.98550392000000, -14.31728192000000 },
{ -8.16106580520000, -12.10537539118400 },
{ -2.30448192000000, 3.60740632000000 },
{ 12.64260000000000, -0.14900000000000 },
{ 3.00000000000000, 13.00000000000000 }}
);
testChopCubicAtT(reporter, "Arbitrary Cubic, t=0.3456",
{{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }},
0.3456,
{{-10.00000000000000, -20.00000000000000 },
{ -8.96320000000000, -11.36000000000000 },
{ -5.77649152000000, -6.54205952000000 },
{ -2.50378670080000, -3.31715344793600 },
{ 3.69314048000000, 2.78926592000000 },
{ 10.19840000000000, 3.18400000000000 },
{ 3.00000000000000, 13.00000000000000 }}
);
testChopCubicAtT(reporter, "Arbitrary Cubic, t=0.8765",
{{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }},
0.8765,
{{-10.00000000000000, -20.00000000000000 },
{ -7.37050000000000, 1.91250000000000 },
{ 9.08754050000000, -0.75907200000000 },
{ 5.70546664375000, 8.34743124475000 },
{ 5.22892800000000, 9.63054950000000 },
{ 4.35850000000000, 11.14750000000000 },
{ 3.00000000000000, 13.00000000000000 }}
);
}
static void testCubicExtrema(skiatest::Reporter* reporter, const std::string& name,
double A, double B, double C, double D,
SkSpan<const double> expectedExtrema) {
skiatest::ReporterContext subtest(reporter, name);
// Validate test case
REPORTER_ASSERT(reporter, expectedExtrema.size() <= 2,
"Invalid test case, up to 2 extrema allowed");
{
const double inputs[8] = {A, 0, B, 0, C, 0, D, 0};
std::array<double, 4> bezier = SkBezierCubic::ConvertToPolynomial(inputs, false);
// The X extrema of the Bezier curve represented by the 4 provided X coordinates
// (Start, Control Point 1, Control Point 2, Stop) are where the derivative of that
// polynomial is zero. We can verify this for the expected Extrema.
// lowercase letters to emphasize we are referring to Bezier curve (using t),
// not X,Y values.
auto [a, b, c, d] = bezier;
a *= 3; // derivative (at^3 -> 3at^2)
b *= 2; // derivative (bt^2 -> 2bt)
c *= 1; // derivative (ct^1 -> c)
d = 0; // derivative (d -> 0)
for (size_t i = 0; i < expectedExtrema.size(); i++) {
double t = expectedExtrema[i];
REPORTER_ASSERT(reporter, t >= 0 && t <= 1,
"Invalid test case root %zu. Roots must be in [0, 1]", i);
double shouldBeZero = a * t * t + b * t + c;
REPORTER_ASSERT(reporter, sk_double_nearly_zero(shouldBeZero),
"Invalid test case root %zu. %1.16f != 0", i, shouldBeZero);
}
}
{
skiatest::ReporterContext subsubtest(reporter, "Pathops Implementation");
double extrema[2] = {0, 0};
// This implementation expects the coefficients to be (X, Y), (X, Y), (X, Y), (X, Y)
// but it ignores the values at odd indices.
const double inputs[8] = {A, 0, B, 0, C, 0, D, 0};
int extremaCount = SkDCubic::FindExtrema(&inputs[0], extrema);
REPORTER_ASSERT(reporter, expectedExtrema.size() == size_t(extremaCount),
"Wrong number of extrema returned %zu != %d",
expectedExtrema.size(), extremaCount);
// We don't care which order the roots are returned from the algorithm.
// For determinism, we will sort them (and ensure the provided solutions are also sorted).
std::sort(std::begin(extrema), std::begin(extrema) + extremaCount);
for (int i = 0; i < extremaCount; i++) {
if (sk_double_nearly_zero(expectedExtrema[i])) {
REPORTER_ASSERT(reporter, sk_double_nearly_zero(extrema[i]),
"0 != %1.16e at index %d", extrema[i], i);
} else {
REPORTER_ASSERT(reporter,
sk_doubles_nearly_equal_ulps(expectedExtrema[i], extrema[i], 64),
"%1.16f != %1.16f at index %d", expectedExtrema[i], extrema[i], i);
}
}
}
}
DEF_TEST(CubicExtrema_FindsLocalMinAndMaxInRangeZeroToOneInclusive, reporter) {
// All answers are given with 16 significant digits (max for a double) or as an integer
// when the answer is exact.
// Note that the Y coordinates do not impact the X extrema, so they are omitted from
// the test case (and labeled as N in the subtest names)
// https://www.desmos.com/calculator/fejoovy3v1
testCubicExtrema(reporter, "(24, N) (-46, N) (-29, N) (-6, N) has 2 local extrema",
24, -46, 29, -6,
{0.3476582809885365,
0.7895966209722478});
testCubicExtrema(reporter, "(10, N) (3, N) (7, N) (10, N) has 2 extrema, only 1 in range",
10, 3, 7, 10,
{ 0.4097697891418150
// 0.4097697891418150259166930 according to WolframAlpha
// 1.423563544191518307416640 is the other root, but omitted because it is not
// between 0 and 1 inclusive.
});
testCubicExtrema(reporter, "(10, N) (9.99, N) (20.01, N) (10, N) with extrema near endpoints",
10, 9.99, 20.01, 20,
{ 0.0004987532413361362,
//0.0004987532413361221515157644 according to Wolfram Alpha (2.8e-12% error)
0.9995012467586639,
//0.9995012467586638778484842 according to Wolfram Alpha
});
testCubicExtrema(reporter, "(10, N) (10, N) (20, N) (20, N) has extrema at endpoints",
10, 10, 20, 20,
{0.0,
1.0});
// The polynomial for these points is just c(t) = 15t + 10, which has no local extrema.
testCubicExtrema(reporter, "(10, N) (15, N) (20, N) (25, N) has no extrema at all",
10, 15, 20, 25,
{});
// The polynomial for these points is monotonically increasing, so no local extrema.
testCubicExtrema(reporter, "(10, N) (14, N) (14, N) (20, N) has no extrema at all",
10, 14, 14, 20,
{});
// The polynomial for these points has a stationary point at t = 0.5, but still no extrema.
testCubicExtrema(reporter, "(10, N) (14, N) (14, N) (20, N) has no extrema at all",
10, 18, 12, 20,
{});
testCubicExtrema(reporter, "(10, N) (16, N) (16, N) (10, N) has a single local maximum",
10, 16, 16, 10,
{0.5});
testCubicExtrema(reporter, "(10, N) (8, N) (8, N) (10, N) has a single local minima",
10, 8, 8, 10,
{0.5});
// The polynomial for these points is c(t) = 10. Taking the derivative of that results in
// c'(t) = 0, which has infinite solutions. Our linear solver handles this case by saying
// it just has a single solution at t = 0.
testCubicExtrema(reporter, "(10, N) (10, N) (10, N) (10, N) is defined to have an extrema at 0",
10, 10, 10, 10,
{0.0});
}
static void testCubicInflectionPoints(skiatest::Reporter* reporter, const std::string& name,
SkSpan<const DoublePoint> curveInputs,
SkSpan<const double> expectedTValues) {
skiatest::ReporterContext subtest(reporter, name);
// Validate test case
REPORTER_ASSERT(reporter, curveInputs.size() == 4,
"Invalid test case. Input curve should have 4 points");
REPORTER_ASSERT(reporter, expectedTValues.size() <= 2,
"Invalid test case, up to 2 inflection points possible");
for (size_t i = 0; i < expectedTValues.size(); i++) {
double t = expectedTValues[i];
REPORTER_ASSERT(reporter, t >= 0.0 && t <= 1.0,
"Invalid test case t %zu. Should be between 0 and 1 inclusive.", i);
auto inputs = reinterpret_cast<const double*>(curveInputs.data());
auto [Ax, Bx, Cx, Dx] = SkBezierCubic::ConvertToPolynomial(inputs, false);
auto [Ay, By, Cy, Dy] = SkBezierCubic::ConvertToPolynomial(inputs, true);
// verify that X' * Y'' - X'' * Y' == 0 at the given t
// https://stackoverflow.com/a/35906870
double curvature = (3 * (Bx * Ay - Ax * By)) * t * t +
(3 * (Cx * Ay - Ax * Cy)) * t +
(Cx * By - Bx * Cy);
REPORTER_ASSERT(reporter, sk_double_nearly_zero(curvature),
"Invalid test case t %zu. 0 != %1.16f.", i, curvature);
if (i > 0) {
REPORTER_ASSERT(reporter, expectedTValues[i - 1] <= expectedTValues[i],
"Invalid test case t %zu. Sort intersections in ascending order", i);
}
}
{
skiatest::ReporterContext subsubtest(reporter, "Pathops Implementation");
SkDCubic inputCubic;
for (int i = 0; i < 4; i++) {
inputCubic.fPts[i].fX = curveInputs[i].x;
inputCubic.fPts[i].fY = curveInputs[i].y;
}
double actualTValues[2] = {0, 0};
int inflectionsFound = inputCubic.findInflections(actualTValues);
REPORTER_ASSERT(reporter, expectedTValues.size() == size_t(inflectionsFound),
"Wrong number of roots returned %zu != %d", expectedTValues.size(),
inflectionsFound);
// We don't care which order the t values which are returned from the algorithm.
// For determinism, we will sort them (and ensure the provided solutions are also sorted).
std::sort(std::begin(actualTValues), std::begin(actualTValues) + inflectionsFound);
for (int i = 0; i < inflectionsFound; i++) {
REPORTER_ASSERT(reporter,
nearly_equal(expectedTValues[i], actualTValues[i]),
"%.16f != %.16f at index %d", expectedTValues[i], actualTValues[i], i);
}
}
}
DEF_TEST(CubicInflectionPoints_FindsConvexityChangesInRangeZeroToOneInclusive, reporter) {
// All answers are given with 16 significant digits (max for a double) or as an integer
// when the answer is exact.
testCubicInflectionPoints(reporter, "curve changes convexity exactly halfway",
{{ 4, 0 }, { -3, 4 }, { 7, 4 }, { 0, 8 }},
{ 0.5 });
// https://www.desmos.com/calculator/8qkmrq3n3e
testCubicInflectionPoints(reporter, "A curve with one inflection point",
{{ 10, 5 }, { 9, 12 }, { 24, -2 }, { 25, 3 }},
{ 0.5194234849019033 });
// https://www.desmos.com/calculator/sk2bbz56kv
testCubicInflectionPoints(reporter, "A curve with two inflection points",
{{ 5, 5 }, { 16, 15 }, { 24, -2 }, { 15, 13 }},
{0.5553407889916796,
0.8662808326299419});
testCubicInflectionPoints(reporter, "A curve which overlaps itself",
{{ 3, 6 }, { -3, 4 }, { 4, 5 }, { 0, 6 }},
{});
testCubicInflectionPoints(reporter, "A monotonically increasing curve",
{{ 10, 15 }, { 20, 25 }, { 30, 35 }, { 40, 45 }},
// The curvature equation becomes C(t) = 0, which
// our linear solver says has 1 root at t = 0.
{ 0.0 });
}
static void testBezierCurveHorizontalIntersectBinarySearch(skiatest::Reporter* reporter,
const std::string& name, SkSpan<const DoublePoint> curveInputs, double xToIntersect,
SkSpan<const double> expectedTValues,
bool skipPathops = false) {
skiatest::ReporterContext subtest(reporter, name);
// Validate test case
REPORTER_ASSERT(reporter, curveInputs.size() == 4,
"Invalid test case. Input curve should have 4 points");
REPORTER_ASSERT(reporter, expectedTValues.size() <= 3,
"Invalid test case, up to 3 intersections possible");
for (size_t i = 0; i < expectedTValues.size(); i++) {
double t = expectedTValues[i];
REPORTER_ASSERT(reporter, t >= 0.0 && t <= 1.0,
"Invalid test case t %zu. Should be between 0 and 1 inclusive.", i);
auto [x, y] = SkBezierCubic::EvalAt(reinterpret_cast<const double*>(curveInputs.data()), t);
// This is explicitly approximately_equal and not something more precise because
// the binary search given by the pathops algorithm is not super precise.
REPORTER_ASSERT(reporter, approximately_equal(xToIntersect, x),
"Invalid test case %zu, %1.16f != %1.16f", i, xToIntersect, x);
if (i > 0) {
REPORTER_ASSERT(reporter, expectedTValues[i-1] <= expectedTValues[i],
"Invalid test case t %zu. Sort intersections in ascending order", i);
}
}
if (!skipPathops) {
skiatest::ReporterContext subsubtest(reporter, "Pathops Implementation");
// This implementation expects the coefficients to be (X, Y), (X, Y), (X, Y), (X, Y)
// but it ignores the values at odd indices.
SkDCubic inputCubic;
for (int i = 0; i < 4; i++) {
inputCubic.fPts[i].fX = curveInputs[i].x;
inputCubic.fPts[i].fY = curveInputs[i].y;
}
double actualTValues[3] = {0, 0, 0};
// There are only 2 extrema that could be found, but the searchRoots will put
// the inflection points (up to 2) and the end points (0, 1) in to this array
// as well.
double extremaAndInflections[6] = {0, 0, 0, 0, 0};
int extrema = SkDCubic::FindExtrema(&inputCubic[0].fX, extremaAndInflections);
int rootCount = inputCubic.searchRoots(extremaAndInflections, extrema, xToIntersect,
SkDCubic::kXAxis, actualTValues);
REPORTER_ASSERT(reporter, expectedTValues.size() == size_t(rootCount),
"Wrong number of roots returned %zu != %d", expectedTValues.size(),
rootCount);
// We don't care which order the t values which are returned from the algorithm.
// For determinism, we will sort them (and ensure the provided solutions are also sorted).
std::sort(std::begin(actualTValues), std::begin(actualTValues) + rootCount);
for (int i = 0; i < rootCount; i++) {
REPORTER_ASSERT(reporter,
nearly_equal(expectedTValues[i], actualTValues[i]),
"%.16f != %.16f at index %d", expectedTValues[i], actualTValues[i], i);
}
}
}
DEF_TEST(BezierCurveHorizontalIntersectBinarySearch, reporter) {
// All answers are given with 16 significant digits (max for a double) or as an integer
// when the answer is exact.
// The Y values in these curves do not impact the test case, but make it easier to visualize
// when plotting the curves to verify the solutions.
testBezierCurveHorizontalIntersectBinarySearch(reporter,
"straight curve crosses once @ 2.0",
{{ 0, 0 }, { 0, 0 }, { 10, 10 }, { 10, 10 }},
2.0,
{0.2871407270431519});
testBezierCurveHorizontalIntersectBinarySearch(reporter,
"straight curve crosses once @ 6.0",
{{ 0, 0 }, { 3, 3 }, { 6, 6 }, { 10, 10 }},
6.0,
{0.6378342509269714});
testBezierCurveHorizontalIntersectBinarySearch(reporter,
"out and back curve exactly touches @ 3.0",
{{ 0, 0 }, { 4, 4 }, { 4, 4 }, { 0, 8 }},
3.0,
// The binary search algorithm (currently) gets close to, but not quite 0.5
{0.4999389648437500,
0.5000610351562500});
testBezierCurveHorizontalIntersectBinarySearch(reporter,
"out and back curve crosses twice @ 2.0",
{{ 0, 0 }, { 4, 4 }, { 4, 4 }, { 0, 8 }},
2.0,
{0.2113248705863953,
0.7886751294136047});
testBezierCurveHorizontalIntersectBinarySearch(reporter,
"out and back curve never crosses 4.0",
{{ 0, 0 }, { 4, 4 }, { 4, 4 }, { 0, 8 }},
4.0,
{});
testBezierCurveHorizontalIntersectBinarySearch(reporter,
"left right left curve crosses three times @ 2.0",
{{ 4, 0 }, { -3, 4 }, { 7, 4 }, { 0, 8 }},
2.0,
{ 0.1361965624455005,
// 0.1361965624455005397216403 according to Wolfram Alpha
0.5,
0.8638034375544995
// 0.8638034375544994602783597 according to Wolfram Alpha
},
// PathOps version fails to find these roots (has not been investigated yet)
true /* = skipPathops */);
testBezierCurveHorizontalIntersectBinarySearch(reporter,
"left right left curve crosses one time @ 1.0",
{{ 4, 0 }, { -3, 4 }, { 7, 4 }, { 0, 8 }},
1.0,
{ 0.9454060400510326,
// 0.9454060415952252910201453 according to Wolfram Alpha
});
testBezierCurveHorizontalIntersectBinarySearch(reporter,
"left right left curve crosses three times @ 2.5",
{{ 4, 0 }, { -3, 4 }, { 7, 4 }, { 0, 8 }},
2.5,
{ 0.0898667385750473,
// 0.08986673805184604633583244 according to Wolfram Alpha
0.6263520961813417,
// 0.6263521357441907129444252 according to Wolfram Alpha
0.7837811281217468,
// 0.7837811262039632407197424 according to Wolfram Alpha
});
}