blob: a380af514d21f74a4da493dfe5dfff4b83ff31d2 [file] [log] [blame]
/*
* Copyright 2023 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/private/base/SkFloatingPoint.h"
#include "include/private/base/SkSpan_impl.h"
#include "src/base/SkBezierCurves.h"
#include "src/base/SkQuads.h"
#include "tests/Test.h"
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <initializer_list>
#include <limits>
#include <set>
#include <string>
// Grouping the test inputs into DoublePoints makes the test cases easier to read.
struct DoublePoint {
double x;
double y;
};
static bool nearly_equal(double expected, double actual) {
if (sk_double_nearly_zero(expected)) {
return sk_double_nearly_zero(actual);
}
return sk_doubles_nearly_equal_ulps(expected, actual, 64);
}
static void testCubicEvalAtT(skiatest::Reporter* reporter, const std::string& name,
SkSpan<const DoublePoint> curveInputs, double t,
const DoublePoint& expectedXY) {
skiatest::ReporterContext subtest(reporter, name);
REPORTER_ASSERT(reporter, curveInputs.size() == 4,
"Invalid test case. Should have 4 input points.");
REPORTER_ASSERT(reporter, t >= 0.0 && t <= 1.0,
"Invalid test case. t %f should be in [0, 1]", t);
auto [x, y] = SkBezierCubic::EvalAt(reinterpret_cast<const double*>(curveInputs.data()), t);
REPORTER_ASSERT(reporter, nearly_equal(expectedXY.x, x),
"X wrong %1.16f != %1.16f", expectedXY.x, x);
REPORTER_ASSERT(reporter, nearly_equal(expectedXY.y, y),
"Y wrong %1.16f != %1.16f", expectedXY.y, y);
}
DEF_TEST(BezierCubicEvalAt, reporter) {
testCubicEvalAtT(reporter, "linear curve @0.1234",
{{ 0, 0 }, { 0, 0 }, { 10, 10 }, { 10, 10 }},
0.1234,
{ 0.4192451819200000, 0.4192451819200000 });
testCubicEvalAtT(reporter, "linear curve @0.2345",
{{ 0, 0 }, { 5, 5 }, { 5, 5 }, { 10, 10 }},
0.2345,
{ 2.8215983862500000, 2.8215983862500000 });
testCubicEvalAtT(reporter, "Arbitrary Cubic, t=0.0",
{{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }},
0.0,
{ -10, -20 });
testCubicEvalAtT(reporter, "Arbitrary Cubic, t=0.3456",
{{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }},
0.3456,
{ -2.503786700800000, -3.31715344793600 });
testCubicEvalAtT(reporter, "Arbitrary Cubic, t=0.5",
{{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }},
0.5,
{ 1.75, 0.25 });
testCubicEvalAtT(reporter, "Arbitrary Cubic, t=0.7891",
{{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }},
0.7891,
{ 6.158763291450000, 5.938550084434000 });
testCubicEvalAtT(reporter, "Arbitrary Cubic, t=1.0",
{{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }},
1.0,
{ 3, 13 });
}
static void testCubicConvertToPolynomial(skiatest::Reporter* reporter, const std::string& name,
SkSpan<const DoublePoint> curveInputs, bool yValues,
double expectedA, double expectedB,
double expectedC, double expectedD) {
skiatest::ReporterContext subtest(reporter, name);
REPORTER_ASSERT(reporter, curveInputs.size() == 4,
"Invalid test case. Need 4 points (start, control, control, end)");
skiatest::ReporterContext subsubtest(reporter, "SkBezierCurve Implementation");
const double* input = &curveInputs[0].x;
auto [A, B, C, D] = SkBezierCubic::ConvertToPolynomial(input, yValues);
REPORTER_ASSERT(reporter, nearly_equal(expectedA, A), "%f != %f", expectedA, A);
REPORTER_ASSERT(reporter, nearly_equal(expectedB, B), "%f != %f", expectedB, B);
REPORTER_ASSERT(reporter, nearly_equal(expectedC, C), "%f != %f", expectedC, C);
REPORTER_ASSERT(reporter, nearly_equal(expectedD, D), "%f != %f", expectedD, D);
}
DEF_TEST(BezierCubicToPolynomials, reporter) {
// See also tests/PathOpsDCubicTest.cpp->SkDCubicPolynomialCoefficients
testCubicConvertToPolynomial(reporter, "Arbitrary control points X direction",
{{1, 2}, {-3, 4}, {5, -6}, {7, 8}}, false, /*=yValues*/
-18, 36, -12, 1
);
testCubicConvertToPolynomial(reporter, "Arbitrary control points Y direction",
{{1, 2}, {-3, 4}, {5, -6}, {7, 8}}, true, /*=yValues*/
36, -36, 6, 2
);
}
// Since, Roots and EvalAt are separately unit tested, make sure that the parametric pramater t
// is correctly in range, and checked.
DEF_TEST(QuadRoots_CheckTRange, reporter) {
// Pick interesting numbers around 0 and 1.
const double interestingRoots[] =
{-1000, -10, -1, -0.1, -0.0001, 0, 0.0001, 0.1, 0.9, 0.9999, 1, 1.0001, 1.1, 10, 1000};
// Interesting scales to make the quadratic.
const double interestingScales[] =
{-1000, -10, -1, -0.1, -0.0001, 0.0001, 0.1, 1, 10, 1000};
auto outsideTRange = [](double r) {
return r < 0 || 1 < r;
};
auto insideTRange = [&] (double r) {
return !outsideTRange(r);
};
// The original test for AddValidTs (which quad intersect was based on) used 1 float ulp of
// leeway for comparison. Tighten this up to half a float ulp.
auto equalAsFloat = [] (double a, double b) {
// When converted to float, a double will be rounded up to half a float ulp for a double
// value between two float values.
return sk_double_to_float(a) == sk_double_to_float(b);
};
for (double r1 : interestingRoots) {
for (double r0 : interestingRoots) {
for (double s : interestingScales) {
// Create a quadratic using the roots r0 and r1.
// s(x-r0)(x-r1) = s(x^2 - r0*x - r1*x + r0*r1)
const double A = s;
// Normally B = -(r0 + r1) but this needs the modified B' = (r0 + r1) / 2.
const double B = s * 0.5 * (r0 + r1);
const double C = s*r0*r1;
float storage[2];
// The X coefficients are set to return t's generated by root intersection.
// The offset is set to 0, because an arbitrary offset is essentially encoded in C.
auto intersections = SkBezierQuad::Intersect(0, -0.5, 0, A, B, C, 0, storage);
if (intersections.empty()) {
// Either imaginary or both roots are outside [0, 1].
REPORTER_ASSERT(reporter,
SkQuads::Discriminant(A, B, C) < 0
|| (outsideTRange(r0) && outsideTRange(r1)));
} else if (intersections.size() == 1) {
// One of the roots is outside [0, 1]
REPORTER_ASSERT(reporter, insideTRange(r0) || insideTRange(r1));
const double insideRoot = insideTRange(r0) ? r0 : r1;
REPORTER_ASSERT(reporter, equalAsFloat(insideRoot, intersections[0]));
} else {
REPORTER_ASSERT(reporter, intersections.size() == 2);
REPORTER_ASSERT(reporter, insideTRange(r0) && insideTRange(r1));
auto [smaller, bigger] = std::minmax(intersections[0], intersections[1]);
auto [smallerRoot, biggerRoot] = std::minmax(r0, r1);
REPORTER_ASSERT(reporter, equalAsFloat(smaller, smallerRoot));
REPORTER_ASSERT(reporter, equalAsFloat(bigger, biggerRoot));
}
}
}
}
// Check when A == 0.
{
const double A = 0;
// We need M = 4, so that will be a Kahan style B of -0.5 * M = -2.
const double B = -2;
const double C = -1;
float storage[2];
// Assume the offset is already encoded in C.
auto intersections = SkBezierQuad::Intersect(0, -0.5, 0, A, B, C, 0, storage);
REPORTER_ASSERT(reporter, intersections.size() == 1);
REPORTER_ASSERT(reporter, intersections[0] == 0.25);
}
}
// Since, Roots and EvalAt are separately unit tested, make sure that the parametric pramater t
// is correctly in range, and checked.
DEF_TEST(SkBezierCubic_CheckTRange, reporter) {
// Pick interesting numbers around 0 and 1.
const double interestingRoots[] =
{-10, -5, -2, -1, 0, 0.5, 1, 2, 5, 10};
// Interesting scales to make the quadratic.
const double interestingScales[] =
{-1000, -10, -1, -0.1, -0.0001, 0.0001, 0.1, 1, 10, 1000};
auto outsideTRange = [](double r) {
return r < 0 || 1 < r;
};
auto insideTRange = [&] (double r) {
return !outsideTRange(r);
};
auto specialEqual = [] (double actual, double test) {
// At least a floats worth of digits are correct.
const double errorFactor = std::numeric_limits<float>::epsilon();
return std::abs(test - actual) <= errorFactor * std::max(std::abs(test), std::abs(actual));
};
for (double r2 : interestingRoots) {
for (double r1 : interestingRoots) {
for (double r0 : interestingRoots) {
for (double s : interestingScales) {
// Create a cubic using the roots r0, r1, and r2.
// s(x-r0)(x-r1)(x-r2) = s(x^3 - (r0+r1+r2)x^2 + (r0r1+r1r2+r0r2)x - r0r1r2)
const double A = s,
B = -s * (r0+r1+r2),
C = s * (r0*r1 + r1*r2 + r0*r2),
D = -s * r0 * r1 * r2;
// Accumulate all the valid t's.
std::set<double> inRangeRoots;
for (auto r : {r0, r1, r2}) {
if (insideTRange(r)) {
inRangeRoots.insert(r);
}
}
float storage[3];
// The X coefficients are set to return t's generated by root intersection.
// The offset is set to 0, because an arbitrary offset is essentially encoded
// in C.
auto intersections =
SkBezierCubic::Intersect(0, 0, 1, 0, A, B, C, D, 0, storage);
size_t correct = 0;
for (auto candidate : intersections) {
for (auto answer : inRangeRoots) {
if (specialEqual(candidate, answer)) {
correct += 1;
break;
}
}
}
REPORTER_ASSERT(reporter, correct == intersections.size());
}
}
}
}
}