| /* |
| * Copyright 2023 Google LLC |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/private/base/SkFloatingPoint.h" |
| #include "include/private/base/SkSpan_impl.h" |
| #include "src/base/SkBezierCurves.h" |
| #include "src/base/SkQuads.h" |
| #include "tests/Test.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <cstddef> |
| #include <initializer_list> |
| #include <limits> |
| #include <set> |
| #include <string> |
| |
| // Grouping the test inputs into DoublePoints makes the test cases easier to read. |
| struct DoublePoint { |
| double x; |
| double y; |
| }; |
| |
| static bool nearly_equal(double expected, double actual) { |
| if (sk_double_nearly_zero(expected)) { |
| return sk_double_nearly_zero(actual); |
| } |
| return sk_doubles_nearly_equal_ulps(expected, actual, 64); |
| } |
| |
| static void testCubicEvalAtT(skiatest::Reporter* reporter, const std::string& name, |
| SkSpan<const DoublePoint> curveInputs, double t, |
| const DoublePoint& expectedXY) { |
| skiatest::ReporterContext subtest(reporter, name); |
| REPORTER_ASSERT(reporter, curveInputs.size() == 4, |
| "Invalid test case. Should have 4 input points."); |
| REPORTER_ASSERT(reporter, t >= 0.0 && t <= 1.0, |
| "Invalid test case. t %f should be in [0, 1]", t); |
| |
| auto [x, y] = SkBezierCubic::EvalAt(reinterpret_cast<const double*>(curveInputs.data()), t); |
| |
| REPORTER_ASSERT(reporter, nearly_equal(expectedXY.x, x), |
| "X wrong %1.16f != %1.16f", expectedXY.x, x); |
| REPORTER_ASSERT(reporter, nearly_equal(expectedXY.y, y), |
| "Y wrong %1.16f != %1.16f", expectedXY.y, y); |
| } |
| |
| DEF_TEST(BezierCubicEvalAt, reporter) { |
| testCubicEvalAtT(reporter, "linear curve @0.1234", |
| {{ 0, 0 }, { 0, 0 }, { 10, 10 }, { 10, 10 }}, |
| 0.1234, |
| { 0.4192451819200000, 0.4192451819200000 }); |
| |
| testCubicEvalAtT(reporter, "linear curve @0.2345", |
| {{ 0, 0 }, { 5, 5 }, { 5, 5 }, { 10, 10 }}, |
| 0.2345, |
| { 2.8215983862500000, 2.8215983862500000 }); |
| |
| testCubicEvalAtT(reporter, "Arbitrary Cubic, t=0.0", |
| {{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }}, |
| 0.0, |
| { -10, -20 }); |
| |
| testCubicEvalAtT(reporter, "Arbitrary Cubic, t=0.3456", |
| {{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }}, |
| 0.3456, |
| { -2.503786700800000, -3.31715344793600 }); |
| |
| testCubicEvalAtT(reporter, "Arbitrary Cubic, t=0.5", |
| {{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }}, |
| 0.5, |
| { 1.75, 0.25 }); |
| |
| testCubicEvalAtT(reporter, "Arbitrary Cubic, t=0.7891", |
| {{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }}, |
| 0.7891, |
| { 6.158763291450000, 5.938550084434000 }); |
| |
| testCubicEvalAtT(reporter, "Arbitrary Cubic, t=1.0", |
| {{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }}, |
| 1.0, |
| { 3, 13 }); |
| } |
| |
| static void testCubicConvertToPolynomial(skiatest::Reporter* reporter, const std::string& name, |
| SkSpan<const DoublePoint> curveInputs, bool yValues, |
| double expectedA, double expectedB, |
| double expectedC, double expectedD) { |
| skiatest::ReporterContext subtest(reporter, name); |
| REPORTER_ASSERT(reporter, curveInputs.size() == 4, |
| "Invalid test case. Need 4 points (start, control, control, end)"); |
| |
| skiatest::ReporterContext subsubtest(reporter, "SkBezierCurve Implementation"); |
| const double* input = &curveInputs[0].x; |
| auto [A, B, C, D] = SkBezierCubic::ConvertToPolynomial(input, yValues); |
| |
| REPORTER_ASSERT(reporter, nearly_equal(expectedA, A), "%f != %f", expectedA, A); |
| REPORTER_ASSERT(reporter, nearly_equal(expectedB, B), "%f != %f", expectedB, B); |
| REPORTER_ASSERT(reporter, nearly_equal(expectedC, C), "%f != %f", expectedC, C); |
| REPORTER_ASSERT(reporter, nearly_equal(expectedD, D), "%f != %f", expectedD, D); |
| } |
| |
| DEF_TEST(BezierCubicToPolynomials, reporter) { |
| // See also tests/PathOpsDCubicTest.cpp->SkDCubicPolynomialCoefficients |
| testCubicConvertToPolynomial(reporter, "Arbitrary control points X direction", |
| {{1, 2}, {-3, 4}, {5, -6}, {7, 8}}, false, /*=yValues*/ |
| -18, 36, -12, 1 |
| ); |
| testCubicConvertToPolynomial(reporter, "Arbitrary control points Y direction", |
| {{1, 2}, {-3, 4}, {5, -6}, {7, 8}}, true, /*=yValues*/ |
| 36, -36, 6, 2 |
| ); |
| } |
| |
| // Since, Roots and EvalAt are separately unit tested, make sure that the parametric pramater t |
| // is correctly in range, and checked. |
| DEF_TEST(QuadRoots_CheckTRange, reporter) { |
| // Pick interesting numbers around 0 and 1. |
| const double interestingRoots[] = |
| {-1000, -10, -1, -0.1, -0.0001, 0, 0.0001, 0.1, 0.9, 0.9999, 1, 1.0001, 1.1, 10, 1000}; |
| |
| // Interesting scales to make the quadratic. |
| const double interestingScales[] = |
| {-1000, -10, -1, -0.1, -0.0001, 0.0001, 0.1, 1, 10, 1000}; |
| |
| auto outsideTRange = [](double r) { |
| return r < 0 || 1 < r; |
| }; |
| |
| auto insideTRange = [&] (double r) { |
| return !outsideTRange(r); |
| }; |
| |
| // The original test for AddValidTs (which quad intersect was based on) used 1 float ulp of |
| // leeway for comparison. Tighten this up to half a float ulp. |
| auto equalAsFloat = [] (double a, double b) { |
| // When converted to float, a double will be rounded up to half a float ulp for a double |
| // value between two float values. |
| return sk_double_to_float(a) == sk_double_to_float(b); |
| }; |
| |
| for (double r1 : interestingRoots) { |
| for (double r0 : interestingRoots) { |
| for (double s : interestingScales) { |
| // Create a quadratic using the roots r0 and r1. |
| // s(x-r0)(x-r1) = s(x^2 - r0*x - r1*x + r0*r1) |
| const double A = s; |
| // Normally B = -(r0 + r1) but this needs the modified B' = (r0 + r1) / 2. |
| const double B = s * 0.5 * (r0 + r1); |
| const double C = s*r0*r1; |
| |
| float storage[2]; |
| // The X coefficients are set to return t's generated by root intersection. |
| // The offset is set to 0, because an arbitrary offset is essentially encoded in C. |
| auto intersections = SkBezierQuad::Intersect(0, -0.5, 0, A, B, C, 0, storage); |
| |
| if (intersections.empty()) { |
| // Either imaginary or both roots are outside [0, 1]. |
| REPORTER_ASSERT(reporter, |
| SkQuads::Discriminant(A, B, C) < 0 |
| || (outsideTRange(r0) && outsideTRange(r1))); |
| } else if (intersections.size() == 1) { |
| // One of the roots is outside [0, 1] |
| REPORTER_ASSERT(reporter, insideTRange(r0) || insideTRange(r1)); |
| const double insideRoot = insideTRange(r0) ? r0 : r1; |
| REPORTER_ASSERT(reporter, equalAsFloat(insideRoot, intersections[0])); |
| } else { |
| REPORTER_ASSERT(reporter, intersections.size() == 2); |
| REPORTER_ASSERT(reporter, insideTRange(r0) && insideTRange(r1)); |
| auto [smaller, bigger] = std::minmax(intersections[0], intersections[1]); |
| auto [smallerRoot, biggerRoot] = std::minmax(r0, r1); |
| REPORTER_ASSERT(reporter, equalAsFloat(smaller, smallerRoot)); |
| REPORTER_ASSERT(reporter, equalAsFloat(bigger, biggerRoot)); |
| } |
| } |
| } |
| } |
| |
| // Check when A == 0. |
| { |
| const double A = 0; |
| |
| // We need M = 4, so that will be a Kahan style B of -0.5 * M = -2. |
| const double B = -2; |
| const double C = -1; |
| float storage[2]; |
| |
| // Assume the offset is already encoded in C. |
| auto intersections = SkBezierQuad::Intersect(0, -0.5, 0, A, B, C, 0, storage); |
| REPORTER_ASSERT(reporter, intersections.size() == 1); |
| REPORTER_ASSERT(reporter, intersections[0] == 0.25); |
| } |
| } |
| |
| // Since, Roots and EvalAt are separately unit tested, make sure that the parametric pramater t |
| // is correctly in range, and checked. |
| DEF_TEST(SkBezierCubic_CheckTRange, reporter) { |
| // Pick interesting numbers around 0 and 1. |
| const double interestingRoots[] = |
| {-10, -5, -2, -1, 0, 0.5, 1, 2, 5, 10}; |
| |
| // Interesting scales to make the quadratic. |
| const double interestingScales[] = |
| {-1000, -10, -1, -0.1, -0.0001, 0.0001, 0.1, 1, 10, 1000}; |
| |
| auto outsideTRange = [](double r) { |
| return r < 0 || 1 < r; |
| }; |
| |
| auto insideTRange = [&] (double r) { |
| return !outsideTRange(r); |
| }; |
| |
| auto specialEqual = [] (double actual, double test) { |
| // At least a floats worth of digits are correct. |
| const double errorFactor = std::numeric_limits<float>::epsilon(); |
| return std::abs(test - actual) <= errorFactor * std::max(std::abs(test), std::abs(actual)); |
| }; |
| |
| for (double r2 : interestingRoots) { |
| for (double r1 : interestingRoots) { |
| for (double r0 : interestingRoots) { |
| for (double s : interestingScales) { |
| // Create a cubic using the roots r0, r1, and r2. |
| // s(x-r0)(x-r1)(x-r2) = s(x^3 - (r0+r1+r2)x^2 + (r0r1+r1r2+r0r2)x - r0r1r2) |
| const double A = s, |
| B = -s * (r0+r1+r2), |
| C = s * (r0*r1 + r1*r2 + r0*r2), |
| D = -s * r0 * r1 * r2; |
| |
| // Accumulate all the valid t's. |
| std::set<double> inRangeRoots; |
| for (auto r : {r0, r1, r2}) { |
| if (insideTRange(r)) { |
| inRangeRoots.insert(r); |
| } |
| } |
| |
| float storage[3]; |
| // The X coefficients are set to return t's generated by root intersection. |
| // The offset is set to 0, because an arbitrary offset is essentially encoded |
| // in C. |
| auto intersections = |
| SkBezierCubic::Intersect(0, 0, 1, 0, A, B, C, D, 0, storage); |
| |
| size_t correct = 0; |
| for (auto candidate : intersections) { |
| for (auto answer : inRangeRoots) { |
| if (specialEqual(candidate, answer)) { |
| correct += 1; |
| break; |
| } |
| } |
| } |
| REPORTER_ASSERT(reporter, correct == intersections.size()); |
| } |
| } |
| } |
| } |
| } |
| |