blob: 43ff7ef890287809a323f2e853801bff027f7575 [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkScaledImageCache.h"
#include "SkMipMap.h"
#include "SkPixelRef.h"
#include "SkRect.h"
// This can be defined by the caller's build system
//#define SK_USE_DISCARDABLE_SCALEDIMAGECACHE
#ifndef SK_DISCARDABLEMEMORY_SCALEDIMAGECACHE_COUNT_LIMIT
# define SK_DISCARDABLEMEMORY_SCALEDIMAGECACHE_COUNT_LIMIT 1024
#endif
#ifndef SK_DEFAULT_IMAGE_CACHE_LIMIT
#define SK_DEFAULT_IMAGE_CACHE_LIMIT (2 * 1024 * 1024)
#endif
static inline SkScaledImageCache::ID* rec_to_id(SkScaledImageCache::Rec* rec) {
return reinterpret_cast<SkScaledImageCache::ID*>(rec);
}
static inline SkScaledImageCache::Rec* id_to_rec(SkScaledImageCache::ID* id) {
return reinterpret_cast<SkScaledImageCache::Rec*>(id);
}
// Implemented from en.wikipedia.org/wiki/MurmurHash.
static uint32_t compute_hash(const uint32_t data[], int count) {
uint32_t hash = 0;
for (int i = 0; i < count; ++i) {
uint32_t k = data[i];
k *= 0xcc9e2d51;
k = (k << 15) | (k >> 17);
k *= 0x1b873593;
hash ^= k;
hash = (hash << 13) | (hash >> 19);
hash *= 5;
hash += 0xe6546b64;
}
// hash ^= size;
hash ^= hash >> 16;
hash *= 0x85ebca6b;
hash ^= hash >> 13;
hash *= 0xc2b2ae35;
hash ^= hash >> 16;
return hash;
}
struct SkScaledImageCache::Key {
Key(uint32_t genID,
SkScalar scaleX,
SkScalar scaleY,
SkIRect bounds)
: fGenID(genID)
, fScaleX(scaleX)
, fScaleY(scaleY)
, fBounds(bounds) {
fHash = compute_hash(&fGenID, 7);
}
bool operator<(const Key& other) const {
const uint32_t* a = &fGenID;
const uint32_t* b = &other.fGenID;
for (int i = 0; i < 7; ++i) {
if (a[i] < b[i]) {
return true;
}
if (a[i] > b[i]) {
return false;
}
}
return false;
}
bool operator==(const Key& other) const {
const uint32_t* a = &fHash;
const uint32_t* b = &other.fHash;
for (int i = 0; i < 8; ++i) {
if (a[i] != b[i]) {
return false;
}
}
return true;
}
uint32_t fHash;
uint32_t fGenID;
float fScaleX;
float fScaleY;
SkIRect fBounds;
};
struct SkScaledImageCache::Rec {
Rec(const Key& key, const SkBitmap& bm) : fKey(key), fBitmap(bm) {
fLockCount = 1;
fMip = NULL;
}
Rec(const Key& key, const SkMipMap* mip) : fKey(key) {
fLockCount = 1;
fMip = mip;
mip->ref();
}
~Rec() {
SkSafeUnref(fMip);
}
static const Key& GetKey(const Rec& rec) { return rec.fKey; }
static uint32_t Hash(const Key& key) { return key.fHash; }
size_t bytesUsed() const {
return fMip ? fMip->getSize() : fBitmap.getSize();
}
Rec* fNext;
Rec* fPrev;
// this guy wants to be 64bit aligned
Key fKey;
int32_t fLockCount;
// we use either fBitmap or fMip, but not both
SkBitmap fBitmap;
const SkMipMap* fMip;
};
#include "SkTDynamicHash.h"
class SkScaledImageCache::Hash :
public SkTDynamicHash<SkScaledImageCache::Rec, SkScaledImageCache::Key> {};
///////////////////////////////////////////////////////////////////////////////
// experimental hash to speed things up
#define USE_HASH
#if !defined(USE_HASH)
static inline SkScaledImageCache::Rec* find_rec_in_list(
SkScaledImageCache::Rec* head, const Key & key) {
SkScaledImageCache::Rec* rec = head;
while ((rec != NULL) && (rec->fKey != key)) {
rec = rec->fNext;
}
return rec;
}
#endif
void SkScaledImageCache::init() {
fHead = NULL;
fTail = NULL;
#ifdef USE_HASH
fHash = new Hash;
#else
fHash = NULL;
#endif
fTotalBytesUsed = 0;
fCount = 0;
fSingleAllocationByteLimit = 0;
fAllocator = NULL;
// One of these should be explicit set by the caller after we return.
fTotalByteLimit = 0;
fDiscardableFactory = NULL;
}
#include "SkDiscardableMemory.h"
class SkOneShotDiscardablePixelRef : public SkPixelRef {
public:
SK_DECLARE_INST_COUNT(SkOneShotDiscardablePixelRef)
// Ownership of the discardablememory is transfered to the pixelref
SkOneShotDiscardablePixelRef(const SkImageInfo&, SkDiscardableMemory*, size_t rowBytes);
~SkOneShotDiscardablePixelRef();
SK_DECLARE_UNFLATTENABLE_OBJECT()
protected:
virtual bool onNewLockPixels(LockRec*) SK_OVERRIDE;
virtual void onUnlockPixels() SK_OVERRIDE;
virtual size_t getAllocatedSizeInBytes() const SK_OVERRIDE;
private:
SkDiscardableMemory* fDM;
size_t fRB;
bool fFirstTime;
typedef SkPixelRef INHERITED;
};
SkOneShotDiscardablePixelRef::SkOneShotDiscardablePixelRef(const SkImageInfo& info,
SkDiscardableMemory* dm,
size_t rowBytes)
: INHERITED(info)
, fDM(dm)
, fRB(rowBytes)
{
SkASSERT(dm->data());
fFirstTime = true;
}
SkOneShotDiscardablePixelRef::~SkOneShotDiscardablePixelRef() {
SkDELETE(fDM);
}
bool SkOneShotDiscardablePixelRef::onNewLockPixels(LockRec* rec) {
if (fFirstTime) {
// we're already locked
SkASSERT(fDM->data());
fFirstTime = false;
goto SUCCESS;
}
// A previous call to onUnlock may have deleted our DM, so check for that
if (NULL == fDM) {
return false;
}
if (!fDM->lock()) {
// since it failed, we delete it now, to free-up the resource
delete fDM;
fDM = NULL;
return false;
}
SUCCESS:
rec->fPixels = fDM->data();
rec->fColorTable = NULL;
rec->fRowBytes = fRB;
return true;
}
void SkOneShotDiscardablePixelRef::onUnlockPixels() {
SkASSERT(!fFirstTime);
fDM->unlock();
}
size_t SkOneShotDiscardablePixelRef::getAllocatedSizeInBytes() const {
return this->info().getSafeSize(fRB);
}
class SkScaledImageCacheDiscardableAllocator : public SkBitmap::Allocator {
public:
SkScaledImageCacheDiscardableAllocator(
SkScaledImageCache::DiscardableFactory factory) {
SkASSERT(factory);
fFactory = factory;
}
virtual bool allocPixelRef(SkBitmap*, SkColorTable*) SK_OVERRIDE;
private:
SkScaledImageCache::DiscardableFactory fFactory;
};
bool SkScaledImageCacheDiscardableAllocator::allocPixelRef(SkBitmap* bitmap,
SkColorTable* ctable) {
size_t size = bitmap->getSize();
uint64_t size64 = bitmap->computeSize64();
if (0 == size || size64 > (uint64_t)size) {
return false;
}
SkDiscardableMemory* dm = fFactory(size);
if (NULL == dm) {
return false;
}
// can we relax this?
if (kN32_SkColorType != bitmap->colorType()) {
return false;
}
SkImageInfo info = bitmap->info();
bitmap->setPixelRef(SkNEW_ARGS(SkOneShotDiscardablePixelRef,
(info, dm, bitmap->rowBytes())))->unref();
bitmap->lockPixels();
return bitmap->readyToDraw();
}
SkScaledImageCache::SkScaledImageCache(DiscardableFactory factory) {
this->init();
fDiscardableFactory = factory;
fAllocator = SkNEW_ARGS(SkScaledImageCacheDiscardableAllocator, (factory));
}
SkScaledImageCache::SkScaledImageCache(size_t byteLimit) {
this->init();
fTotalByteLimit = byteLimit;
}
SkScaledImageCache::~SkScaledImageCache() {
SkSafeUnref(fAllocator);
Rec* rec = fHead;
while (rec) {
Rec* next = rec->fNext;
SkDELETE(rec);
rec = next;
}
delete fHash;
}
////////////////////////////////////////////////////////////////////////////////
SkScaledImageCache::Rec* SkScaledImageCache::findAndLock(uint32_t genID,
SkScalar scaleX,
SkScalar scaleY,
const SkIRect& bounds) {
const Key key(genID, scaleX, scaleY, bounds);
return this->findAndLock(key);
}
/**
This private method is the fully general record finder. All other
record finders should call this function or the one above. */
SkScaledImageCache::Rec* SkScaledImageCache::findAndLock(const SkScaledImageCache::Key& key) {
if (key.fBounds.isEmpty()) {
return NULL;
}
#ifdef USE_HASH
Rec* rec = fHash->find(key);
#else
Rec* rec = find_rec_in_list(fHead, key);
#endif
if (rec) {
this->moveToHead(rec); // for our LRU
rec->fLockCount += 1;
}
return rec;
}
/**
This function finds the bounds of the bitmap *within its pixelRef*.
If the bitmap lacks a pixelRef, it will return an empty rect, since
that doesn't make sense. This may be a useful enough function that
it should be somewhere else (in SkBitmap?). */
static SkIRect get_bounds_from_bitmap(const SkBitmap& bm) {
if (!(bm.pixelRef())) {
return SkIRect::MakeEmpty();
}
SkIPoint origin = bm.pixelRefOrigin();
return SkIRect::MakeXYWH(origin.fX, origin.fY, bm.width(), bm.height());
}
SkScaledImageCache::ID* SkScaledImageCache::findAndLock(uint32_t genID,
int32_t width,
int32_t height,
SkBitmap* bitmap) {
Rec* rec = this->findAndLock(genID, SK_Scalar1, SK_Scalar1,
SkIRect::MakeWH(width, height));
if (rec) {
SkASSERT(NULL == rec->fMip);
SkASSERT(rec->fBitmap.pixelRef());
*bitmap = rec->fBitmap;
}
return rec_to_id(rec);
}
SkScaledImageCache::ID* SkScaledImageCache::findAndLock(const SkBitmap& orig,
SkScalar scaleX,
SkScalar scaleY,
SkBitmap* scaled) {
if (0 == scaleX || 0 == scaleY) {
// degenerate, and the key we use for mipmaps
return NULL;
}
Rec* rec = this->findAndLock(orig.getGenerationID(), scaleX,
scaleY, get_bounds_from_bitmap(orig));
if (rec) {
SkASSERT(NULL == rec->fMip);
SkASSERT(rec->fBitmap.pixelRef());
*scaled = rec->fBitmap;
}
return rec_to_id(rec);
}
SkScaledImageCache::ID* SkScaledImageCache::findAndLockMip(const SkBitmap& orig,
SkMipMap const ** mip) {
Rec* rec = this->findAndLock(orig.getGenerationID(), 0, 0,
get_bounds_from_bitmap(orig));
if (rec) {
SkASSERT(rec->fMip);
SkASSERT(NULL == rec->fBitmap.pixelRef());
*mip = rec->fMip;
}
return rec_to_id(rec);
}
////////////////////////////////////////////////////////////////////////////////
/**
This private method is the fully general record adder. All other
record adders should call this funtion. */
SkScaledImageCache::ID* SkScaledImageCache::addAndLock(SkScaledImageCache::Rec* rec) {
SkASSERT(rec);
// See if we already have this key (racy inserts, etc.)
Rec* existing = this->findAndLock(rec->fKey);
if (NULL != existing) {
// Since we already have a matching entry, just delete the new one and return.
// Call sites cannot assume the passed in object will live past this call.
existing->fBitmap = rec->fBitmap;
SkDELETE(rec);
return rec_to_id(existing);
}
this->addToHead(rec);
SkASSERT(1 == rec->fLockCount);
#ifdef USE_HASH
SkASSERT(fHash);
fHash->add(rec);
#endif
// We may (now) be overbudget, so see if we need to purge something.
this->purgeAsNeeded();
return rec_to_id(rec);
}
SkScaledImageCache::ID* SkScaledImageCache::addAndLock(uint32_t genID,
int32_t width,
int32_t height,
const SkBitmap& bitmap) {
Key key(genID, SK_Scalar1, SK_Scalar1, SkIRect::MakeWH(width, height));
Rec* rec = SkNEW_ARGS(Rec, (key, bitmap));
return this->addAndLock(rec);
}
SkScaledImageCache::ID* SkScaledImageCache::addAndLock(const SkBitmap& orig,
SkScalar scaleX,
SkScalar scaleY,
const SkBitmap& scaled) {
if (0 == scaleX || 0 == scaleY) {
// degenerate, and the key we use for mipmaps
return NULL;
}
SkIRect bounds = get_bounds_from_bitmap(orig);
if (bounds.isEmpty()) {
return NULL;
}
Key key(orig.getGenerationID(), scaleX, scaleY, bounds);
Rec* rec = SkNEW_ARGS(Rec, (key, scaled));
return this->addAndLock(rec);
}
SkScaledImageCache::ID* SkScaledImageCache::addAndLockMip(const SkBitmap& orig,
const SkMipMap* mip) {
SkIRect bounds = get_bounds_from_bitmap(orig);
if (bounds.isEmpty()) {
return NULL;
}
Key key(orig.getGenerationID(), 0, 0, bounds);
Rec* rec = SkNEW_ARGS(Rec, (key, mip));
return this->addAndLock(rec);
}
void SkScaledImageCache::unlock(SkScaledImageCache::ID* id) {
SkASSERT(id);
#ifdef SK_DEBUG
{
bool found = false;
Rec* rec = fHead;
while (rec != NULL) {
if (rec == id_to_rec(id)) {
found = true;
break;
}
rec = rec->fNext;
}
SkASSERT(found);
}
#endif
Rec* rec = id_to_rec(id);
SkASSERT(rec->fLockCount > 0);
rec->fLockCount -= 1;
// we may have been over-budget, but now have released something, so check
// if we should purge.
if (0 == rec->fLockCount) {
this->purgeAsNeeded();
}
}
void SkScaledImageCache::purgeAsNeeded() {
size_t byteLimit;
int countLimit;
if (fDiscardableFactory) {
countLimit = SK_DISCARDABLEMEMORY_SCALEDIMAGECACHE_COUNT_LIMIT;
byteLimit = SK_MaxU32; // no limit based on bytes
} else {
countLimit = SK_MaxS32; // no limit based on count
byteLimit = fTotalByteLimit;
}
size_t bytesUsed = fTotalBytesUsed;
int countUsed = fCount;
Rec* rec = fTail;
while (rec) {
if (bytesUsed < byteLimit && countUsed < countLimit) {
break;
}
Rec* prev = rec->fPrev;
if (0 == rec->fLockCount) {
size_t used = rec->bytesUsed();
SkASSERT(used <= bytesUsed);
this->detach(rec);
#ifdef USE_HASH
fHash->remove(rec->fKey);
#endif
SkDELETE(rec);
bytesUsed -= used;
countUsed -= 1;
}
rec = prev;
}
fTotalBytesUsed = bytesUsed;
fCount = countUsed;
}
size_t SkScaledImageCache::setTotalByteLimit(size_t newLimit) {
size_t prevLimit = fTotalByteLimit;
fTotalByteLimit = newLimit;
if (newLimit < prevLimit) {
this->purgeAsNeeded();
}
return prevLimit;
}
///////////////////////////////////////////////////////////////////////////////
void SkScaledImageCache::detach(Rec* rec) {
Rec* prev = rec->fPrev;
Rec* next = rec->fNext;
if (!prev) {
SkASSERT(fHead == rec);
fHead = next;
} else {
prev->fNext = next;
}
if (!next) {
fTail = prev;
} else {
next->fPrev = prev;
}
rec->fNext = rec->fPrev = NULL;
}
void SkScaledImageCache::moveToHead(Rec* rec) {
if (fHead == rec) {
return;
}
SkASSERT(fHead);
SkASSERT(fTail);
this->validate();
this->detach(rec);
fHead->fPrev = rec;
rec->fNext = fHead;
fHead = rec;
this->validate();
}
void SkScaledImageCache::addToHead(Rec* rec) {
this->validate();
rec->fPrev = NULL;
rec->fNext = fHead;
if (fHead) {
fHead->fPrev = rec;
}
fHead = rec;
if (!fTail) {
fTail = rec;
}
fTotalBytesUsed += rec->bytesUsed();
fCount += 1;
this->validate();
}
///////////////////////////////////////////////////////////////////////////////
#ifdef SK_DEBUG
void SkScaledImageCache::validate() const {
if (NULL == fHead) {
SkASSERT(NULL == fTail);
SkASSERT(0 == fTotalBytesUsed);
return;
}
if (fHead == fTail) {
SkASSERT(NULL == fHead->fPrev);
SkASSERT(NULL == fHead->fNext);
SkASSERT(fHead->bytesUsed() == fTotalBytesUsed);
return;
}
SkASSERT(NULL == fHead->fPrev);
SkASSERT(NULL != fHead->fNext);
SkASSERT(NULL == fTail->fNext);
SkASSERT(NULL != fTail->fPrev);
size_t used = 0;
int count = 0;
const Rec* rec = fHead;
while (rec) {
count += 1;
used += rec->bytesUsed();
SkASSERT(used <= fTotalBytesUsed);
rec = rec->fNext;
}
SkASSERT(fCount == count);
rec = fTail;
while (rec) {
SkASSERT(count > 0);
count -= 1;
SkASSERT(used >= rec->bytesUsed());
used -= rec->bytesUsed();
rec = rec->fPrev;
}
SkASSERT(0 == count);
SkASSERT(0 == used);
}
#endif
void SkScaledImageCache::dump() const {
this->validate();
const Rec* rec = fHead;
int locked = 0;
while (rec) {
locked += rec->fLockCount > 0;
rec = rec->fNext;
}
SkDebugf("SkScaledImageCache: count=%d bytes=%d locked=%d %s\n",
fCount, fTotalBytesUsed, locked,
fDiscardableFactory ? "discardable" : "malloc");
}
size_t SkScaledImageCache::setSingleAllocationByteLimit(size_t newLimit) {
size_t oldLimit = fSingleAllocationByteLimit;
fSingleAllocationByteLimit = newLimit;
return oldLimit;
}
size_t SkScaledImageCache::getSingleAllocationByteLimit() const {
return fSingleAllocationByteLimit;
}
///////////////////////////////////////////////////////////////////////////////
#include "SkThread.h"
SK_DECLARE_STATIC_MUTEX(gMutex);
static SkScaledImageCache* gScaledImageCache = NULL;
static void cleanup_gScaledImageCache() {
// We'll clean this up in our own tests, but disable for clients.
// Chrome seems to have funky multi-process things going on in unit tests that
// makes this unsafe to delete when the main process atexit()s.
// SkLazyPtr does the same sort of thing.
#if SK_DEVELOPER
SkDELETE(gScaledImageCache);
#endif
}
/** Must hold gMutex when calling. */
static SkScaledImageCache* get_cache() {
// gMutex is always held when this is called, so we don't need to be fancy in here.
gMutex.assertHeld();
if (NULL == gScaledImageCache) {
#ifdef SK_USE_DISCARDABLE_SCALEDIMAGECACHE
gScaledImageCache = SkNEW_ARGS(SkScaledImageCache, (SkDiscardableMemory::Create));
#else
gScaledImageCache = SkNEW_ARGS(SkScaledImageCache, (SK_DEFAULT_IMAGE_CACHE_LIMIT));
#endif
atexit(cleanup_gScaledImageCache);
}
return gScaledImageCache;
}
SkScaledImageCache::ID* SkScaledImageCache::FindAndLock(
uint32_t pixelGenerationID,
int32_t width,
int32_t height,
SkBitmap* scaled) {
SkAutoMutexAcquire am(gMutex);
return get_cache()->findAndLock(pixelGenerationID, width, height, scaled);
}
SkScaledImageCache::ID* SkScaledImageCache::AddAndLock(
uint32_t pixelGenerationID,
int32_t width,
int32_t height,
const SkBitmap& scaled) {
SkAutoMutexAcquire am(gMutex);
return get_cache()->addAndLock(pixelGenerationID, width, height, scaled);
}
SkScaledImageCache::ID* SkScaledImageCache::FindAndLock(const SkBitmap& orig,
SkScalar scaleX,
SkScalar scaleY,
SkBitmap* scaled) {
SkAutoMutexAcquire am(gMutex);
return get_cache()->findAndLock(orig, scaleX, scaleY, scaled);
}
SkScaledImageCache::ID* SkScaledImageCache::FindAndLockMip(const SkBitmap& orig,
SkMipMap const ** mip) {
SkAutoMutexAcquire am(gMutex);
return get_cache()->findAndLockMip(orig, mip);
}
SkScaledImageCache::ID* SkScaledImageCache::AddAndLock(const SkBitmap& orig,
SkScalar scaleX,
SkScalar scaleY,
const SkBitmap& scaled) {
SkAutoMutexAcquire am(gMutex);
return get_cache()->addAndLock(orig, scaleX, scaleY, scaled);
}
SkScaledImageCache::ID* SkScaledImageCache::AddAndLockMip(const SkBitmap& orig,
const SkMipMap* mip) {
SkAutoMutexAcquire am(gMutex);
return get_cache()->addAndLockMip(orig, mip);
}
void SkScaledImageCache::Unlock(SkScaledImageCache::ID* id) {
SkAutoMutexAcquire am(gMutex);
get_cache()->unlock(id);
// get_cache()->dump();
}
size_t SkScaledImageCache::GetTotalBytesUsed() {
SkAutoMutexAcquire am(gMutex);
return get_cache()->getTotalBytesUsed();
}
size_t SkScaledImageCache::GetTotalByteLimit() {
SkAutoMutexAcquire am(gMutex);
return get_cache()->getTotalByteLimit();
}
size_t SkScaledImageCache::SetTotalByteLimit(size_t newLimit) {
SkAutoMutexAcquire am(gMutex);
return get_cache()->setTotalByteLimit(newLimit);
}
SkBitmap::Allocator* SkScaledImageCache::GetAllocator() {
SkAutoMutexAcquire am(gMutex);
return get_cache()->allocator();
}
void SkScaledImageCache::Dump() {
SkAutoMutexAcquire am(gMutex);
get_cache()->dump();
}
size_t SkScaledImageCache::SetSingleAllocationByteLimit(size_t size) {
SkAutoMutexAcquire am(gMutex);
return get_cache()->setSingleAllocationByteLimit(size);
}
size_t SkScaledImageCache::GetSingleAllocationByteLimit() {
SkAutoMutexAcquire am(gMutex);
return get_cache()->getSingleAllocationByteLimit();
}
///////////////////////////////////////////////////////////////////////////////
#include "SkGraphics.h"
size_t SkGraphics::GetImageCacheTotalBytesUsed() {
return SkScaledImageCache::GetTotalBytesUsed();
}
size_t SkGraphics::GetImageCacheTotalByteLimit() {
return SkScaledImageCache::GetTotalByteLimit();
}
size_t SkGraphics::SetImageCacheTotalByteLimit(size_t newLimit) {
return SkScaledImageCache::SetTotalByteLimit(newLimit);
}
size_t SkGraphics::GetImageCacheSingleAllocationByteLimit() {
return SkScaledImageCache::GetSingleAllocationByteLimit();
}
size_t SkGraphics::SetImageCacheSingleAllocationByteLimit(size_t newLimit) {
return SkScaledImageCache::SetSingleAllocationByteLimit(newLimit);
}