blob: febde5127a791d42601dd8567f80a03d356f0b36 [file] [log] [blame]
/*
* Copyright 2021 Google LLC.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrVertexChunkArray_DEFINED
#define GrVertexChunkArray_DEFINED
#include "include/private/SkNoncopyable.h"
#include "include/private/SkTArray.h"
#include "src/gpu/GrBuffer.h"
#include "src/gpu/GrVertexWriter.h"
#include "src/gpu/ops/GrMeshDrawOp.h"
// Represents a chunk of vertex data. Use with GrVertexChunkArray and GrVertexChunkBuilder. We write
// the data out in chunks when we don't start out knowing exactly how many vertices (or instances)
// we will end up writing.
struct GrVertexChunk {
sk_sp<const GrBuffer> fBuffer;
int fVertexCount = 0;
int fBaseVertex;
};
// Represents an array of GrVertexChunks.
//
// We only preallocate 1 chunk because if the array needs to grow, then we're also allocating a
// brand new GPU buffer anyway.
using GrVertexChunkArray = SkSTArray<1, GrVertexChunk>;
// Builds a GrVertexChunkArray. The provided Target must not be used externally throughout the
// entire lifetime of this object.
class GrVertexChunkBuilder : SkNoncopyable {
public:
GrVertexChunkBuilder(GrMeshDrawOp::Target* target, GrVertexChunkArray* chunks, size_t stride,
int minVerticesPerChunk)
: fTarget(target)
, fChunks(chunks)
, fStride(stride)
, fMinVerticesPerChunk(minVerticesPerChunk) {
SkASSERT(fMinVerticesPerChunk > 0);
}
~GrVertexChunkBuilder() {
if (!fChunks->empty()) {
fTarget->putBackVertices(fCurrChunkVertexCapacity - fCurrChunkVertexCount, fStride);
fChunks->back().fVertexCount = fCurrChunkVertexCount;
}
}
// Appends 'count' contiguous vertices. These vertices are not guaranteed to be contiguous with
// previous or future calls to appendVertices.
SK_ALWAYS_INLINE GrVertexWriter appendVertices(int count) {
SkASSERT(count > 0);
if (fCurrChunkVertexCount + count > fCurrChunkVertexCapacity && !this->allocChunk(count)) {
return {nullptr};
}
SkASSERT(fCurrChunkVertexCount + count <= fCurrChunkVertexCapacity);
fCurrChunkVertexCount += count;
return std::exchange(fCurrChunkVertexWriter,
fCurrChunkVertexWriter.makeOffset(fStride * count));
}
SK_ALWAYS_INLINE GrVertexWriter appendVertex() { return this->appendVertices(1); }
private:
bool allocChunk(int minCount) {
if (!fChunks->empty()) {
// No need to put back vertices; the buffer is full.
fChunks->back().fVertexCount = fCurrChunkVertexCount;
}
fCurrChunkVertexCount = 0;
GrVertexChunk* chunk = &fChunks->push_back();
fCurrChunkVertexWriter = {fTarget->makeVertexSpaceAtLeast(fStride,
fMinVerticesPerChunk * minCount,
fMinVerticesPerChunk * minCount,
&chunk->fBuffer,
&chunk->fBaseVertex,
&fCurrChunkVertexCapacity)};
if (!fCurrChunkVertexWriter || !chunk->fBuffer || fCurrChunkVertexCapacity < minCount) {
SkDebugf("WARNING: Failed to allocate vertex buffer for GrVertexChunk.\n");
fChunks->pop_back();
SkASSERT(fCurrChunkVertexCount == 0);
fCurrChunkVertexCapacity = 0;
return false;
}
fMinVerticesPerChunk *= 2;
return true;
}
GrMeshDrawOp::Target* const fTarget;
GrVertexChunkArray* const fChunks;
const size_t fStride;
size_t fMinVerticesPerChunk;
GrVertexWriter fCurrChunkVertexWriter;
int fCurrChunkVertexCount = 0;
int fCurrChunkVertexCapacity = 0;
};
#endif