blob: b42a5852f2e2c703862cc6fdf8bc10030a1f919a [file] [log] [blame]
/*
* Copyright 2022 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkStream.h"
#include "include/private/SkSLString.h"
#include "include/private/base/SkMalloc.h"
#include "include/private/base/SkTo.h"
#include "include/sksl/SkSLPosition.h"
#include "src/base/SkArenaAlloc.h"
#include "src/core/SkOpts.h"
#include "src/core/SkRasterPipelineOpContexts.h"
#include "src/core/SkRasterPipelineOpList.h"
#include "src/sksl/codegen/SkSLRasterPipelineBuilder.h"
#include "src/sksl/tracing/SkRPDebugTrace.h"
#include "src/sksl/tracing/SkSLDebugInfo.h"
#include "src/utils/SkBitSet.h"
#if !defined(SKSL_STANDALONE)
#include "src/core/SkRasterPipeline.h"
#endif
#include <algorithm>
#include <cmath>
#include <cstring>
#include <iterator>
#include <string>
#include <string_view>
#include <tuple>
#include <utility>
#include <vector>
namespace SkSL {
namespace RP {
#define ALL_SINGLE_SLOT_UNARY_OP_CASES \
BuilderOp::acos_float: \
case BuilderOp::asin_float: \
case BuilderOp::atan_float: \
case BuilderOp::cos_float: \
case BuilderOp::exp_float: \
case BuilderOp::log_float: \
case BuilderOp::log2_float: \
case BuilderOp::sin_float: \
case BuilderOp::sqrt_float: \
case BuilderOp::tan_float
#define ALL_MULTI_SLOT_UNARY_OP_CASES \
BuilderOp::abs_float: \
case BuilderOp::abs_int: \
case BuilderOp::bitwise_not_int: \
case BuilderOp::cast_to_float_from_int: \
case BuilderOp::cast_to_float_from_uint: \
case BuilderOp::cast_to_int_from_float: \
case BuilderOp::cast_to_uint_from_float: \
case BuilderOp::ceil_float: \
case BuilderOp::floor_float \
#define ALL_N_WAY_BINARY_OP_CASES \
BuilderOp::atan2_n_floats: \
case BuilderOp::pow_n_floats
#define ALL_MULTI_SLOT_BINARY_OP_CASES \
BuilderOp::add_n_floats: \
case BuilderOp::add_n_ints: \
case BuilderOp::sub_n_floats: \
case BuilderOp::sub_n_ints: \
case BuilderOp::mul_n_floats: \
case BuilderOp::mul_n_ints: \
case BuilderOp::div_n_floats: \
case BuilderOp::div_n_ints: \
case BuilderOp::div_n_uints: \
case BuilderOp::bitwise_and_n_ints: \
case BuilderOp::bitwise_or_n_ints: \
case BuilderOp::bitwise_xor_n_ints: \
case BuilderOp::min_n_floats: \
case BuilderOp::min_n_ints: \
case BuilderOp::min_n_uints: \
case BuilderOp::max_n_floats: \
case BuilderOp::max_n_ints: \
case BuilderOp::max_n_uints: \
case BuilderOp::cmple_n_floats: \
case BuilderOp::cmple_n_ints: \
case BuilderOp::cmple_n_uints: \
case BuilderOp::cmplt_n_floats: \
case BuilderOp::cmplt_n_ints: \
case BuilderOp::cmplt_n_uints: \
case BuilderOp::cmpeq_n_floats: \
case BuilderOp::cmpeq_n_ints: \
case BuilderOp::cmpne_n_floats: \
case BuilderOp::cmpne_n_ints
#define ALL_MULTI_SLOT_TERNARY_OP_CASES \
BuilderOp::mix_n_floats: \
case BuilderOp::mix_n_ints
void Builder::unary_op(BuilderOp op, int32_t slots) {
switch (op) {
case ALL_SINGLE_SLOT_UNARY_OP_CASES:
case ALL_MULTI_SLOT_UNARY_OP_CASES:
fInstructions.push_back({op, {}, slots});
break;
default:
SkDEBUGFAIL("not a unary op");
break;
}
}
void Builder::binary_op(BuilderOp op, int32_t slots) {
switch (op) {
case ALL_N_WAY_BINARY_OP_CASES:
case ALL_MULTI_SLOT_BINARY_OP_CASES:
fInstructions.push_back({op, {}, slots});
break;
default:
SkDEBUGFAIL("not a binary op");
break;
}
}
void Builder::ternary_op(BuilderOp op, int32_t slots) {
switch (op) {
case ALL_MULTI_SLOT_TERNARY_OP_CASES:
fInstructions.push_back({op, {}, slots});
break;
default:
SkDEBUGFAIL("not a ternary op");
break;
}
}
void Builder::dot_floats(int32_t slots) {
switch (slots) {
case 1: fInstructions.push_back({BuilderOp::mul_n_floats, {}, slots}); break;
case 2: fInstructions.push_back({BuilderOp::dot_2_floats, {}, slots}); break;
case 3: fInstructions.push_back({BuilderOp::dot_3_floats, {}, slots}); break;
case 4: fInstructions.push_back({BuilderOp::dot_4_floats, {}, slots}); break;
default:
SkDEBUGFAIL("invalid number of slots");
break;
}
}
void Builder::discard_stack(int32_t count) {
// If we pushed something onto the stack and then immediately discarded part of it, we can
// shrink or eliminate the push.
while (count > 0 && !fInstructions.empty()) {
Instruction& lastInstruction = fInstructions.back();
switch (lastInstruction.fOp) {
case BuilderOp::discard_stack:
// Our last op was actually a separate discard_stack; combine the discards.
lastInstruction.fImmA += count;
return;
case BuilderOp::push_zeros:
case BuilderOp::push_clone:
case BuilderOp::push_clone_from_stack:
case BuilderOp::push_clone_indirect_from_stack:
case BuilderOp::push_slots:
case BuilderOp::push_slots_indirect:
case BuilderOp::push_uniform:
case BuilderOp::push_uniform_indirect:
// Our last op was a multi-slot push; cancel out one discard and eliminate the op
// if its count reached zero.
--count;
--lastInstruction.fImmA;
if (lastInstruction.fImmA == 0) {
fInstructions.pop_back();
}
continue;
case BuilderOp::push_literal:
case BuilderOp::push_condition_mask:
case BuilderOp::push_loop_mask:
case BuilderOp::push_return_mask:
// Our last op was a single-slot push; cancel out one discard and eliminate the op.
--count;
fInstructions.pop_back();
continue;
default:
break;
}
// This instruction wasn't a push.
break;
}
if (count > 0) {
fInstructions.push_back({BuilderOp::discard_stack, {}, count});
}
}
void Builder::label(int labelID) {
SkASSERT(labelID >= 0 && labelID < fNumLabels);
// If the previous instruction was a branch to this label, it's a no-op; jumping to the very
// next instruction is effectively meaningless.
while (!fInstructions.empty()) {
Instruction& lastInstruction = fInstructions.back();
switch (lastInstruction.fOp) {
case BuilderOp::jump:
case BuilderOp::branch_if_all_lanes_active:
case BuilderOp::branch_if_any_lanes_active:
case BuilderOp::branch_if_no_lanes_active:
case BuilderOp::branch_if_no_active_lanes_on_stack_top_equal:
if (lastInstruction.fImmA == labelID) {
fInstructions.pop_back();
continue;
}
break;
default:
break;
}
break;
}
fInstructions.push_back({BuilderOp::label, {}, labelID});
}
void Builder::jump(int labelID) {
SkASSERT(labelID >= 0 && labelID < fNumLabels);
if (!fInstructions.empty() && fInstructions.back().fOp == BuilderOp::jump) {
// The previous instruction was also `jump`, so this branch could never possibly occur.
return;
}
fInstructions.push_back({BuilderOp::jump, {}, labelID});
}
void Builder::branch_if_any_lanes_active(int labelID) {
if (!this->executionMaskWritesAreEnabled()) {
this->jump(labelID);
return;
}
SkASSERT(labelID >= 0 && labelID < fNumLabels);
if (!fInstructions.empty() &&
(fInstructions.back().fOp == BuilderOp::branch_if_any_lanes_active ||
fInstructions.back().fOp == BuilderOp::jump)) {
// The previous instruction was `jump` or `branch_if_any_lanes_active`, so this branch
// could never possibly occur.
return;
}
fInstructions.push_back({BuilderOp::branch_if_any_lanes_active, {}, labelID});
}
void Builder::branch_if_all_lanes_active(int labelID) {
if (!this->executionMaskWritesAreEnabled()) {
this->jump(labelID);
return;
}
SkASSERT(labelID >= 0 && labelID < fNumLabels);
if (!fInstructions.empty() &&
(fInstructions.back().fOp == BuilderOp::branch_if_all_lanes_active ||
fInstructions.back().fOp == BuilderOp::jump)) {
// The previous instruction was `jump` or `branch_if_all_lanes_active`, so this branch
// could never possibly occur.
return;
}
fInstructions.push_back({BuilderOp::branch_if_all_lanes_active, {}, labelID});
}
void Builder::branch_if_no_lanes_active(int labelID) {
if (!this->executionMaskWritesAreEnabled()) {
return;
}
SkASSERT(labelID >= 0 && labelID < fNumLabels);
if (!fInstructions.empty() &&
(fInstructions.back().fOp == BuilderOp::branch_if_no_lanes_active ||
fInstructions.back().fOp == BuilderOp::jump)) {
// The previous instruction was `jump` or `branch_if_no_lanes_active`, so this branch
// could never possibly occur.
return;
}
fInstructions.push_back({BuilderOp::branch_if_no_lanes_active, {}, labelID});
}
void Builder::branch_if_no_active_lanes_on_stack_top_equal(int value, int labelID) {
SkASSERT(labelID >= 0 && labelID < fNumLabels);
if (!fInstructions.empty() &&
(fInstructions.back().fOp == BuilderOp::jump ||
(fInstructions.back().fOp == BuilderOp::branch_if_no_active_lanes_on_stack_top_equal &&
fInstructions.back().fImmB == value))) {
// The previous instruction was `jump` or `branch_if_no_active_lanes_on_stack_top_equal`
// (checking against the same value), so this branch could never possibly occur.
return;
}
fInstructions.push_back({BuilderOp::branch_if_no_active_lanes_on_stack_top_equal,
{}, labelID, value});
}
void Builder::push_slots(SlotRange src) {
SkASSERT(src.count >= 0);
if (!fInstructions.empty()) {
Instruction& lastInstruction = fInstructions.back();
// If the previous instruction was pushing slots contiguous to this range, we can collapse
// the two pushes into one larger push.
if (lastInstruction.fOp == BuilderOp::push_slots &&
lastInstruction.fSlotA + lastInstruction.fImmA == src.index) {
lastInstruction.fImmA += src.count;
return;
}
// If the previous instruction was discarding an equal number of slots...
if (lastInstruction.fOp == BuilderOp::discard_stack && lastInstruction.fImmA == src.count) {
// ... and the instruction before that was copying from the stack to the same slots...
Instruction& prevInstruction = fInstructions.fromBack(1);
if ((prevInstruction.fOp == BuilderOp::copy_stack_to_slots ||
prevInstruction.fOp == BuilderOp::copy_stack_to_slots_unmasked) &&
prevInstruction.fSlotA == src.index &&
prevInstruction.fImmA == src.count) {
// ... we are emitting `copy stack to X, discard stack, copy X to stack`. This is a
// common pattern when multiple operations in a row affect the same variable. We can
// eliminate the discard and just leave X on the stack.
fInstructions.pop_back();
return;
}
}
}
if (src.count > 0) {
fInstructions.push_back({BuilderOp::push_slots, {src.index}, src.count});
}
}
void Builder::push_slots_indirect(SlotRange fixedRange, int dynamicStackID, SlotRange limitRange) {
// SlotA: fixed-range start
// SlotB: limit-range end
// immA: number of slots
// immB: dynamic stack ID
fInstructions.push_back({BuilderOp::push_slots_indirect,
{fixedRange.index, limitRange.index + limitRange.count},
fixedRange.count,
dynamicStackID});
}
void Builder::push_uniform(SlotRange src) {
SkASSERT(src.count >= 0);
if (!fInstructions.empty()) {
Instruction& lastInstruction = fInstructions.back();
// If the previous instruction was pushing uniforms contiguous to this range, we can
// collapse the two pushes into one larger push.
if (lastInstruction.fOp == BuilderOp::push_uniform &&
lastInstruction.fSlotA + lastInstruction.fImmA == src.index) {
lastInstruction.fImmA += src.count;
return;
}
}
if (src.count > 0) {
fInstructions.push_back({BuilderOp::push_uniform, {src.index}, src.count});
}
}
void Builder::push_uniform_indirect(SlotRange fixedRange,
int dynamicStackID,
SlotRange limitRange) {
// SlotA: fixed-range start
// SlotB: limit-range end
// immA: number of slots
// immB: dynamic stack ID
fInstructions.push_back({BuilderOp::push_uniform_indirect,
{fixedRange.index, limitRange.index + limitRange.count},
fixedRange.count,
dynamicStackID});
}
void Builder::push_duplicates(int count) {
if (!fInstructions.empty()) {
Instruction& lastInstruction = fInstructions.back();
// If the previous op is pushing a zero, we can just push more of them.
if (lastInstruction.fOp == BuilderOp::push_zeros) {
lastInstruction.fImmA += count;
return;
}
}
SkASSERT(count >= 0);
if (count >= 3) {
// Use a swizzle to splat the input into a 4-slot value.
this->swizzle(/*consumedSlots=*/1, {0, 0, 0, 0});
count -= 3;
}
for (; count >= 4; count -= 4) {
// Clone the splatted value four slots at a time.
this->push_clone(/*numSlots=*/4);
}
// Use a swizzle or clone to handle the trailing items.
switch (count) {
case 3: this->swizzle(/*consumedSlots=*/1, {0, 0, 0, 0}); break;
case 2: this->swizzle(/*consumedSlots=*/1, {0, 0, 0}); break;
case 1: this->push_clone(/*numSlots=*/1); break;
default: break;
}
}
void Builder::push_clone_from_stack(SlotRange range, int otherStackID, int offsetFromStackTop) {
// immA: number of slots
// immB: other stack ID
// immC: offset from stack top
offsetFromStackTop -= range.index;
if (!fInstructions.empty()) {
Instruction& lastInstruction = fInstructions.back();
// If the previous op is also pushing a clone...
if (lastInstruction.fOp == BuilderOp::push_clone_from_stack &&
// ... from the same stack...
lastInstruction.fImmB == otherStackID &&
// ... and this clone starts at the same place that the last clone ends...
lastInstruction.fImmC - lastInstruction.fImmA == offsetFromStackTop) {
// ... just extend the existing clone-op.
lastInstruction.fImmA += range.count;
return;
}
}
fInstructions.push_back({BuilderOp::push_clone_from_stack, {},
range.count, otherStackID, offsetFromStackTop});
}
void Builder::push_clone_indirect_from_stack(SlotRange fixedOffset,
int dynamicStackID,
int otherStackID,
int offsetFromStackTop) {
// immA: number of slots
// immB: other stack ID
// immC: offset from stack top
// immD: dynamic stack ID
offsetFromStackTop -= fixedOffset.index;
fInstructions.push_back({BuilderOp::push_clone_indirect_from_stack, {},
fixedOffset.count, otherStackID, offsetFromStackTop, dynamicStackID});
}
void Builder::pop_slots(SlotRange dst) {
if (!this->executionMaskWritesAreEnabled()) {
this->pop_slots_unmasked(dst);
return;
}
this->copy_stack_to_slots(dst);
this->discard_stack(dst.count);
}
void Builder::simplifyPopSlotsUnmasked(SlotRange* dst) {
if (!dst->count || fInstructions.empty()) {
// There's nothing left to simplify.
return;
}
Instruction& lastInstruction = fInstructions.back();
// If the last instruction is pushing a constant, we can simplify it by copying the constant
// directly into the destination slot.
if (lastInstruction.fOp == BuilderOp::push_literal) {
// Remove the constant-push instruction.
int value = lastInstruction.fImmA;
fInstructions.pop_back();
// Consume one destination slot.
dst->count--;
Slot destinationSlot = dst->index + dst->count;
// Continue simplifying if possible.
this->simplifyPopSlotsUnmasked(dst);
// Write the constant directly to the destination slot.
this->copy_constant(destinationSlot, value);
return;
}
// If the last instruction is pushing a zero, we can save a step by directly zeroing out
// the destination slot.
if (lastInstruction.fOp == BuilderOp::push_zeros) {
// Remove one zero-push.
lastInstruction.fImmA--;
if (lastInstruction.fImmA == 0) {
fInstructions.pop_back();
}
// Consume one destination slot.
dst->count--;
Slot destinationSlot = dst->index + dst->count;
// Continue simplifying if possible.
this->simplifyPopSlotsUnmasked(dst);
// Zero the destination slot directly.
this->zero_slots_unmasked({destinationSlot, 1});
return;
}
// If the last instruction is pushing a slot, we can just copy that slot.
if (lastInstruction.fOp == BuilderOp::push_slots) {
// Get the last slot.
Slot sourceSlot = lastInstruction.fSlotA + lastInstruction.fImmA - 1;
lastInstruction.fImmA--;
if (lastInstruction.fImmA == 0) {
fInstructions.pop_back();
}
// Consume one destination slot.
dst->count--;
Slot destinationSlot = dst->index + dst->count;
// Try once more.
this->simplifyPopSlotsUnmasked(dst);
// Copy the slot directly.
if (destinationSlot != sourceSlot) {
this->copy_slots_unmasked({destinationSlot, 1}, {sourceSlot, 1});
}
return;
}
}
void Builder::pop_slots_unmasked(SlotRange dst) {
SkASSERT(dst.count >= 0);
// If we are popping immediately after a push, we can simplify the code by writing the pushed
// value directly to the destination range.
this->simplifyPopSlotsUnmasked(&dst);
// Pop from the stack normally.
if (dst.count > 0) {
this->copy_stack_to_slots_unmasked(dst);
this->discard_stack(dst.count);
}
}
void Builder::copy_stack_to_slots(SlotRange dst, int offsetFromStackTop) {
// If the execution mask is known to be all-true, then we can ignore the write mask.
if (!this->executionMaskWritesAreEnabled()) {
this->copy_stack_to_slots_unmasked(dst, offsetFromStackTop);
return;
}
// If the last instruction copied the previous stack slots, just extend it.
if (!fInstructions.empty()) {
Instruction& lastInstruction = fInstructions.back();
// If the last op is copy-stack-to-slots...
if (lastInstruction.fOp == BuilderOp::copy_stack_to_slots &&
// and this op's destination is immediately after the last copy-slots-op's destination
lastInstruction.fSlotA + lastInstruction.fImmA == dst.index &&
// and this op's source is immediately after the last copy-slots-op's source
lastInstruction.fImmB - lastInstruction.fImmA == offsetFromStackTop) {
// then we can just extend the copy!
lastInstruction.fImmA += dst.count;
return;
}
}
fInstructions.push_back({BuilderOp::copy_stack_to_slots, {dst.index},
dst.count, offsetFromStackTop});
}
void Builder::copy_stack_to_slots_indirect(SlotRange fixedRange,
int dynamicStackID,
SlotRange limitRange) {
// SlotA: fixed-range start
// SlotB: limit-range end
// immA: number of slots
// immB: dynamic stack ID
fInstructions.push_back({BuilderOp::copy_stack_to_slots_indirect,
{fixedRange.index, limitRange.index + limitRange.count},
fixedRange.count,
dynamicStackID});
}
static bool slot_ranges_overlap(SlotRange x, SlotRange y) {
return x.index < y.index + y.count &&
y.index < x.index + x.count;
}
void Builder::copy_slots_unmasked(SlotRange dst, SlotRange src) {
// If the last instruction copied adjacent slots, just extend it.
if (!fInstructions.empty()) {
Instruction& lastInstr = fInstructions.back();
// If the last op is copy-slots-unmasked...
if (lastInstr.fOp == BuilderOp::copy_slot_unmasked &&
// and this op's destination is immediately after the last copy-slots-op's destination
lastInstr.fSlotA + lastInstr.fImmA == dst.index &&
// and this op's source is immediately after the last copy-slots-op's source
lastInstr.fSlotB + lastInstr.fImmA == src.index &&
// and the source/dest ranges will not overlap
!slot_ranges_overlap({lastInstr.fSlotB, lastInstr.fImmA + dst.count},
{lastInstr.fSlotA, lastInstr.fImmA + dst.count})) {
// then we can just extend the copy!
lastInstr.fImmA += dst.count;
return;
}
}
SkASSERT(dst.count == src.count);
fInstructions.push_back({BuilderOp::copy_slot_unmasked, {dst.index, src.index}, dst.count});
}
void Builder::copy_stack_to_slots_unmasked(SlotRange dst, int offsetFromStackTop) {
// If the last instruction copied the previous stack slots, just extend it.
if (!fInstructions.empty()) {
Instruction& lastInstruction = fInstructions.back();
// If the last op is copy-stack-to-slots-unmasked...
if (lastInstruction.fOp == BuilderOp::copy_stack_to_slots_unmasked &&
// and this op's destination is immediately after the last copy-slots-op's destination
lastInstruction.fSlotA + lastInstruction.fImmA == dst.index &&
// and this op's source is immediately after the last copy-slots-op's source
lastInstruction.fImmB - lastInstruction.fImmA == offsetFromStackTop) {
// then we can just extend the copy!
lastInstruction.fImmA += dst.count;
return;
}
}
fInstructions.push_back({BuilderOp::copy_stack_to_slots_unmasked, {dst.index},
dst.count, offsetFromStackTop});
}
void Builder::pop_return_mask() {
SkASSERT(this->executionMaskWritesAreEnabled());
// This instruction is going to overwrite the return mask. If the previous instruction was
// masking off the return mask, that's wasted work and it can be eliminated.
if (!fInstructions.empty()) {
Instruction& lastInstruction = fInstructions.back();
if (lastInstruction.fOp == BuilderOp::mask_off_return_mask) {
fInstructions.pop_back();
}
}
fInstructions.push_back({BuilderOp::pop_return_mask, {}});
}
void Builder::zero_slots_unmasked(SlotRange dst) {
if (!fInstructions.empty()) {
Instruction& lastInstruction = fInstructions.back();
if (lastInstruction.fOp == BuilderOp::zero_slot_unmasked) {
if (lastInstruction.fSlotA + lastInstruction.fImmA == dst.index) {
// The previous instruction was zeroing the range immediately before this range.
// Combine the ranges.
lastInstruction.fImmA += dst.count;
return;
}
}
if (lastInstruction.fOp == BuilderOp::zero_slot_unmasked) {
if (lastInstruction.fSlotA == dst.index + dst.count) {
// The previous instruction was zeroing the range immediately after this range.
// Combine the ranges.
lastInstruction.fSlotA = dst.index;
lastInstruction.fImmA += dst.count;
return;
}
}
}
fInstructions.push_back({BuilderOp::zero_slot_unmasked, {dst.index}, dst.count});
}
static int pack_nybbles(SkSpan<const int8_t> components) {
// Pack up to 8 elements into nybbles, in reverse order.
int packed = 0;
for (auto iter = components.rbegin(); iter != components.rend(); ++iter) {
SkASSERT(*iter >= 0 && *iter <= 0xF);
packed <<= 4;
packed |= *iter;
}
return packed;
}
static void unpack_nybbles_to_offsets(uint32_t components, SkSpan<uint16_t> offsets) {
// Unpack component nybbles into byte-offsets pointing at stack slots.
for (size_t index = 0; index < offsets.size(); ++index) {
offsets[index] = (components & 0xF) * SkOpts::raster_pipeline_highp_stride * sizeof(float);
components >>= 4;
}
}
void Builder::swizzle_copy_stack_to_slots(SlotRange dst,
SkSpan<const int8_t> components,
int offsetFromStackTop) {
// An unmasked version of this op could squeeze out a little bit of extra speed, if needed.
fInstructions.push_back({BuilderOp::swizzle_copy_stack_to_slots, {dst.index},
(int)components.size(), offsetFromStackTop, pack_nybbles(components)});
}
void Builder::swizzle(int consumedSlots, SkSpan<const int8_t> components) {
// Consumes `consumedSlots` elements on the stack, then generates `elementSpan.size()` elements.
SkASSERT(consumedSlots >= 0);
// We only allow up to 16 elements, and they can only reach 0-15 slots, due to nybble packing.
int numElements = components.size();
SkASSERT(numElements <= 16);
SkASSERT(std::all_of(components.begin(), components.end(), [](int8_t e){ return e >= 0; }));
SkASSERT(std::all_of(components.begin(), components.end(), [](int8_t e){ return e <= 0xF; }));
// Make a local copy of the element array.
int8_t elements[16] = {};
std::copy(components.begin(), components.end(), std::begin(elements));
while (numElements > 0) {
// If the first element of the swizzle is zero...
if (elements[0] != 0) {
break;
}
// ...and zero isn't used elsewhere in the swizzle...
if (std::any_of(&elements[1], &elements[numElements], [](int8_t e) { return e == 0; })) {
break;
}
// We can omit the first slot from the swizzle entirely.
// Slide everything forward by one slot, and reduce the element index by one.
for (int index = 1; index < numElements; ++index) {
elements[index - 1] = elements[index] - 1;
}
elements[numElements - 1] = 0;
--consumedSlots;
--numElements;
}
// A completely empty swizzle is a no-op.
if (numElements == 0) {
this->discard_stack(consumedSlots);
return;
}
if (consumedSlots <= 4 && numElements <= 4) {
// We can fit everything into a little swizzle.
int op = (int)BuilderOp::swizzle_1 + numElements - 1;
fInstructions.push_back({(BuilderOp)op, {}, consumedSlots,
pack_nybbles(SkSpan(elements, numElements))});
return;
}
// This is a big swizzle. We use the `shuffle` op to handle these.
// Slot usage is packed into immA. The top 16 bits of immA count the consumed slots; the bottom
// 16 bits count the generated slots.
int slotUsage = consumedSlots << 16;
slotUsage |= numElements;
// Pack immB and immC with the shuffle list in packed-nybble form.
fInstructions.push_back({BuilderOp::shuffle, {}, slotUsage,
pack_nybbles(SkSpan(&elements[0], 8)),
pack_nybbles(SkSpan(&elements[8], 8))});
}
void Builder::transpose(int columns, int rows) {
// Transposes a matrix of size CxR on the stack (into a matrix of size RxC).
int8_t elements[16] = {};
size_t index = 0;
for (int r = 0; r < rows; ++r) {
for (int c = 0; c < columns; ++c) {
elements[index++] = (c * rows) + r;
}
}
this->swizzle(/*consumedSlots=*/columns * rows, SkSpan(elements, index));
}
void Builder::diagonal_matrix(int columns, int rows) {
// Generates a CxR diagonal matrix from the top two scalars on the stack.
int8_t elements[16] = {};
size_t index = 0;
for (int c = 0; c < columns; ++c) {
for (int r = 0; r < rows; ++r) {
elements[index++] = (c == r) ? 1 : 0;
}
}
this->swizzle(/*consumedSlots=*/2, SkSpan(elements, index));
}
void Builder::matrix_resize(int origColumns, int origRows, int newColumns, int newRows) {
// Resizes a CxR matrix at the top of the stack to C'xR'.
int8_t elements[16] = {};
size_t index = 0;
size_t consumedSlots = origColumns * origRows;
size_t zeroOffset = 0, oneOffset = 0;
for (int c = 0; c < newColumns; ++c) {
for (int r = 0; r < newRows; ++r) {
if (c < origColumns && r < origRows) {
// Push an element from the original matrix.
elements[index++] = (c * origRows) + r;
} else {
// This element is outside the original matrix; push 1 or 0.
if (c == r) {
// We need to synthesize a literal 1.
if (oneOffset == 0) {
this->push_literal_f(1.0f);
oneOffset = consumedSlots++;
}
elements[index++] = oneOffset;
} else {
// We need to synthesize a literal 0.
if (zeroOffset == 0) {
this->push_zeros(1);
zeroOffset = consumedSlots++;
}
elements[index++] = zeroOffset;
}
}
}
}
this->swizzle(consumedSlots, SkSpan(elements, index));
}
std::unique_ptr<Program> Builder::finish(int numValueSlots,
int numUniformSlots,
SkRPDebugTrace* debugTrace) {
// Verify that calls to enableExecutionMaskWrites and disableExecutionMaskWrites are balanced.
SkASSERT(fExecutionMaskWritesEnabled == 0);
return std::make_unique<Program>(std::move(fInstructions), numValueSlots, numUniformSlots,
fNumLabels, debugTrace);
}
void Program::optimize() {
// TODO(johnstiles): perform any last-minute cleanup of the instruction stream here
}
static int stack_usage(const Instruction& inst) {
switch (inst.fOp) {
case BuilderOp::push_literal:
case BuilderOp::push_condition_mask:
case BuilderOp::push_loop_mask:
case BuilderOp::push_return_mask:
return 1;
case BuilderOp::push_src_rgba:
case BuilderOp::push_dst_rgba:
return 4;
case BuilderOp::push_slots:
case BuilderOp::push_slots_indirect:
case BuilderOp::push_uniform:
case BuilderOp::push_uniform_indirect:
case BuilderOp::push_zeros:
case BuilderOp::push_clone:
case BuilderOp::push_clone_from_stack:
case BuilderOp::push_clone_indirect_from_stack:
return inst.fImmA;
case BuilderOp::pop_condition_mask:
case BuilderOp::pop_loop_mask:
case BuilderOp::pop_and_reenable_loop_mask:
case BuilderOp::pop_return_mask:
return -1;
case BuilderOp::pop_src_rg:
return -2;
case BuilderOp::pop_src_rgba:
case BuilderOp::pop_dst_rgba:
return -4;
case ALL_N_WAY_BINARY_OP_CASES:
case ALL_MULTI_SLOT_BINARY_OP_CASES:
case BuilderOp::discard_stack:
case BuilderOp::select:
return -inst.fImmA;
case ALL_MULTI_SLOT_TERNARY_OP_CASES:
return 2 * -inst.fImmA;
case BuilderOp::swizzle_1:
return 1 - inst.fImmA; // consumes immA slots and emits a scalar
case BuilderOp::swizzle_2:
return 2 - inst.fImmA; // consumes immA slots and emits a 2-slot vector
case BuilderOp::swizzle_3:
return 3 - inst.fImmA; // consumes immA slots and emits a 3-slot vector
case BuilderOp::swizzle_4:
return 4 - inst.fImmA; // consumes immA slots and emits a 4-slot vector
case BuilderOp::dot_2_floats:
return -3; // consumes two 2-slot vectors and emits one scalar
case BuilderOp::dot_3_floats:
return -5; // consumes two 3-slot vectors and emits one scalar
case BuilderOp::dot_4_floats:
return -7; // consumes two 4-slot vectors and emits one scalar
case BuilderOp::shuffle: {
int consumed = inst.fImmA >> 16;
int generated = inst.fImmA & 0xFFFF;
return generated - consumed;
}
case ALL_SINGLE_SLOT_UNARY_OP_CASES:
case ALL_MULTI_SLOT_UNARY_OP_CASES:
default:
return 0;
}
}
Program::StackDepthMap Program::tempStackMaxDepths() const {
StackDepthMap largest;
StackDepthMap current;
int curIdx = 0;
for (const Instruction& inst : fInstructions) {
if (inst.fOp == BuilderOp::set_current_stack) {
curIdx = inst.fImmA;
}
current[curIdx] += stack_usage(inst);
largest[curIdx] = std::max(current[curIdx], largest[curIdx]);
SkASSERTF(current[curIdx] >= 0, "unbalanced temp stack push/pop on stack %d", curIdx);
}
for (const auto& [stackIdx, depth] : current) {
(void)stackIdx;
SkASSERTF(depth == 0, "unbalanced temp stack push/pop");
}
return largest;
}
Program::Program(SkTArray<Instruction> instrs,
int numValueSlots,
int numUniformSlots,
int numLabels,
SkRPDebugTrace* debugTrace)
: fInstructions(std::move(instrs))
, fNumValueSlots(numValueSlots)
, fNumUniformSlots(numUniformSlots)
, fNumLabels(numLabels)
, fDebugTrace(debugTrace) {
this->optimize();
fTempStackMaxDepths = this->tempStackMaxDepths();
fNumTempStackSlots = 0;
for (const auto& [stackIdx, depth] : fTempStackMaxDepths) {
(void)stackIdx;
fNumTempStackSlots += depth;
}
}
void Program::appendCopy(SkTArray<Stage>* pipeline,
SkArenaAlloc* alloc,
ProgramOp baseStage,
float* dst, int dstStride,
const float* src, int srcStride,
int numSlots) const {
SkASSERT(numSlots >= 0);
while (numSlots > 4) {
this->appendCopy(pipeline, alloc, baseStage, dst, dstStride, src, srcStride,/*numSlots=*/4);
dst += 4 * dstStride;
src += 4 * srcStride;
numSlots -= 4;
}
if (numSlots > 0) {
SkASSERT(numSlots <= 4);
auto stage = (ProgramOp)((int)baseStage + numSlots - 1);
auto* ctx = alloc->make<SkRasterPipeline_BinaryOpCtx>();
ctx->dst = dst;
ctx->src = src;
pipeline->push_back({stage, ctx});
}
}
void Program::appendCopySlotsUnmasked(SkTArray<Stage>* pipeline,
SkArenaAlloc* alloc,
float* dst,
const float* src,
int numSlots) const {
this->appendCopy(pipeline, alloc,
ProgramOp::copy_slot_unmasked,
dst, /*dstStride=*/SkOpts::raster_pipeline_highp_stride,
src, /*srcStride=*/SkOpts::raster_pipeline_highp_stride,
numSlots);
}
void Program::appendCopySlotsMasked(SkTArray<Stage>* pipeline,
SkArenaAlloc* alloc,
float* dst,
const float* src,
int numSlots) const {
this->appendCopy(pipeline, alloc,
ProgramOp::copy_slot_masked,
dst, /*dstStride=*/SkOpts::raster_pipeline_highp_stride,
src, /*srcStride=*/SkOpts::raster_pipeline_highp_stride,
numSlots);
}
void Program::appendCopyConstants(SkTArray<Stage>* pipeline,
SkArenaAlloc* alloc,
float* dst,
const float* src,
int numSlots) const {
this->appendCopy(pipeline, alloc,
ProgramOp::copy_constant,
dst, /*dstStride=*/SkOpts::raster_pipeline_highp_stride,
src, /*srcStride=*/1,
numSlots);
}
void Program::appendSingleSlotUnaryOp(SkTArray<Stage>* pipeline, ProgramOp stage,
float* dst, int numSlots) const {
SkASSERT(numSlots >= 0);
while (numSlots--) {
pipeline->push_back({stage, dst});
dst += SkOpts::raster_pipeline_highp_stride;
}
}
void Program::appendMultiSlotUnaryOp(SkTArray<Stage>* pipeline, ProgramOp baseStage,
float* dst, int numSlots) const {
SkASSERT(numSlots >= 0);
while (numSlots > 4) {
this->appendMultiSlotUnaryOp(pipeline, baseStage, dst, /*numSlots=*/4);
dst += 4 * SkOpts::raster_pipeline_highp_stride;
numSlots -= 4;
}
SkASSERT(numSlots <= 4);
auto stage = (ProgramOp)((int)baseStage + numSlots - 1);
pipeline->push_back({stage, dst});
}
void Program::appendAdjacentNWayBinaryOp(SkTArray<Stage>* pipeline, SkArenaAlloc* alloc,
ProgramOp stage,
float* dst, const float* src, int numSlots) const {
// The source and destination must be directly next to one another.
SkASSERT(numSlots >= 0);
SkASSERT((dst + SkOpts::raster_pipeline_highp_stride * numSlots) == src);
if (numSlots > 0) {
auto ctx = alloc->make<SkRasterPipeline_BinaryOpCtx>();
ctx->dst = dst;
ctx->src = src;
pipeline->push_back({stage, ctx});
return;
}
}
void Program::appendAdjacentMultiSlotBinaryOp(SkTArray<Stage>* pipeline, SkArenaAlloc* alloc,
ProgramOp baseStage,
float* dst, const float* src, int numSlots) const {
// The source and destination must be directly next to one another.
SkASSERT(numSlots >= 0);
SkASSERT((dst + SkOpts::raster_pipeline_highp_stride * numSlots) == src);
if (numSlots > 4) {
this->appendAdjacentNWayBinaryOp(pipeline, alloc, baseStage, dst, src, numSlots);
return;
}
if (numSlots > 0) {
auto specializedStage = (ProgramOp)((int)baseStage + numSlots);
pipeline->push_back({specializedStage, dst});
}
}
void Program::appendAdjacentMultiSlotTernaryOp(SkTArray<Stage>* pipeline, SkArenaAlloc* alloc,
ProgramOp baseStage, float* dst, const float* src0,
const float* src1, int numSlots) const {
// The float pointers must all be immediately adjacent to each other.
SkASSERT(numSlots >= 0);
SkASSERT((dst + SkOpts::raster_pipeline_highp_stride * numSlots) == src0);
SkASSERT((src0 + SkOpts::raster_pipeline_highp_stride * numSlots) == src1);
if (numSlots > 4) {
auto ctx = alloc->make<SkRasterPipeline_TernaryOpCtx>();
ctx->dst = dst;
ctx->src0 = src0;
ctx->src1 = src1;
pipeline->push_back({baseStage, ctx});
return;
}
if (numSlots > 0) {
auto specializedStage = (ProgramOp)((int)baseStage + numSlots);
pipeline->push_back({specializedStage, dst});
}
}
void Program::appendStackRewind(SkTArray<Stage>* pipeline) const {
#if defined(SKSL_STANDALONE) || !SK_HAS_MUSTTAIL
pipeline->push_back({ProgramOp::stack_rewind, nullptr});
#endif
}
static void* context_bit_pun(intptr_t val) {
return sk_bit_cast<void*>(val);
}
Program::SlotData Program::allocateSlotData(SkArenaAlloc* alloc) const {
// Allocate a contiguous slab of slot data for values and stack entries.
const int N = SkOpts::raster_pipeline_highp_stride;
const int vectorWidth = N * sizeof(float);
const int allocSize = vectorWidth * (fNumValueSlots + fNumTempStackSlots);
float* slotPtr = static_cast<float*>(alloc->makeBytesAlignedTo(allocSize, vectorWidth));
sk_bzero(slotPtr, allocSize);
// Store the temp stack immediately after the values.
SlotData s;
s.values = SkSpan{slotPtr, N * fNumValueSlots};
s.stack = SkSpan{s.values.end(), N * fNumTempStackSlots};
return s;
}
#if !defined(SKSL_STANDALONE)
bool Program::appendStages(SkRasterPipeline* pipeline,
SkArenaAlloc* alloc,
RP::Callbacks* callbacks,
SkSpan<const float> uniforms) const {
// Convert our Instruction list to an array of ProgramOps.
SkTArray<Stage> stages;
this->makeStages(&stages, alloc, uniforms, this->allocateSlotData(alloc));
// Allocate buffers for branch targets and labels; these are needed to convert labels into
// actual offsets into the pipeline and fix up branches.
SkTArray<SkRasterPipeline_BranchCtx*> branchContexts;
branchContexts.reserve_back(fNumLabels);
SkTArray<int> labelOffsets;
labelOffsets.push_back_n(fNumLabels, -1);
SkTArray<int> branchGoesToLabel;
branchGoesToLabel.reserve_back(fNumLabels);
for (const Stage& stage : stages) {
switch (stage.op) {
case ProgramOp::stack_rewind:
pipeline->append_stack_rewind();
break;
case ProgramOp::invoke_shader:
if (!callbacks || !callbacks->appendShader(sk_bit_cast<intptr_t>(stage.ctx))) {
return false;
}
break;
case ProgramOp::invoke_color_filter:
if (!callbacks || !callbacks->appendColorFilter(sk_bit_cast<intptr_t>(stage.ctx))) {
return false;
}
break;
case ProgramOp::invoke_blender:
if (!callbacks || !callbacks->appendBlender(sk_bit_cast<intptr_t>(stage.ctx))) {
return false;
}
break;
case ProgramOp::invoke_to_linear_srgb:
if (!callbacks) {
return false;
}
callbacks->toLinearSrgb();
break;
case ProgramOp::invoke_from_linear_srgb:
if (!callbacks) {
return false;
}
callbacks->fromLinearSrgb();
break;
case ProgramOp::label: {
// Remember the absolute pipeline position of this label.
int labelID = sk_bit_cast<intptr_t>(stage.ctx);
SkASSERT(labelID >= 0 && labelID < fNumLabels);
labelOffsets[labelID] = pipeline->getNumStages();
break;
}
case ProgramOp::jump:
case ProgramOp::branch_if_all_lanes_active:
case ProgramOp::branch_if_any_lanes_active:
case ProgramOp::branch_if_no_lanes_active:
case ProgramOp::branch_if_no_active_lanes_eq: {
// The branch context contain a valid label ID at this point.
auto* branchCtx = static_cast<SkRasterPipeline_BranchCtx*>(stage.ctx);
int labelID = branchCtx->offset;
SkASSERT(labelID >= 0 && labelID < fNumLabels);
// Replace the label ID in the branch context with the absolute pipeline position.
// We will go back over the branch targets at the end and fix them up.
branchCtx->offset = pipeline->getNumStages();
SkASSERT(branchContexts.size() == branchGoesToLabel.size());
branchContexts.push_back(branchCtx);
branchGoesToLabel.push_back(labelID);
[[fallthrough]];
}
default:
// Append a regular op to the program.
SkASSERT((int)stage.op < kNumRasterPipelineHighpOps);
pipeline->append((SkRasterPipelineOp)stage.op, stage.ctx);
break;
}
}
// Now that we have assembled the program and know the pipeline positions of each label and
// branch, fix up every branch target.
SkASSERT(branchContexts.size() == branchGoesToLabel.size());
for (int index = 0; index < branchContexts.size(); ++index) {
int branchFromIdx = branchContexts[index]->offset;
int branchToIdx = labelOffsets[branchGoesToLabel[index]];
branchContexts[index]->offset = branchToIdx - branchFromIdx;
}
return true;
}
#endif
void Program::makeStages(SkTArray<Stage>* pipeline,
SkArenaAlloc* alloc,
SkSpan<const float> uniforms,
const SlotData& slots) const {
SkASSERT(fNumUniformSlots == SkToInt(uniforms.size()));
const int N = SkOpts::raster_pipeline_highp_stride;
StackDepthMap tempStackDepth;
int currentStack = 0;
int mostRecentRewind = 0;
// Assemble a map holding the current stack-top for each temporary stack. Position each temp
// stack immediately after the previous temp stack; temp stacks are never allowed to overlap.
int pos = 0;
SkTHashMap<int, float*> tempStackMap;
for (auto& [idx, depth] : fTempStackMaxDepths) {
tempStackMap[idx] = slots.stack.begin() + (pos * N);
pos += depth;
}
// Track labels that we have reached in processing.
SkBitSet labelsEncountered(fNumLabels);
auto EmitStackRewindForBackwardsBranch = [&](int labelID) {
// If we have already encountered the label associated with this branch, this is a
// backwards branch. Add a stack-rewind immediately before the branch to ensure that
// long-running loops don't use an unbounded amount of stack space.
if (labelsEncountered.test(labelID)) {
this->appendStackRewind(pipeline);
mostRecentRewind = pipeline->size();
}
};
// We can reuse constants from our arena by placing them in this map.
SkTHashMap<int, int*> constantLookupMap; // <constant value, pointer into arena>
// Write each BuilderOp to the pipeline array.
pipeline->reserve_back(fInstructions.size());
for (const Instruction& inst : fInstructions) {
auto SlotA = [&]() { return &slots.values[N * inst.fSlotA]; };
auto SlotB = [&]() { return &slots.values[N * inst.fSlotB]; };
auto UniformA = [&]() { return &uniforms[inst.fSlotA]; };
float*& tempStackPtr = tempStackMap[currentStack];
switch (inst.fOp) {
case BuilderOp::label:
SkASSERT(inst.fImmA >= 0 && inst.fImmA < fNumLabels);
labelsEncountered.set(inst.fImmA);
pipeline->push_back({ProgramOp::label, context_bit_pun(inst.fImmA)});
break;
case BuilderOp::jump:
case BuilderOp::branch_if_all_lanes_active:
case BuilderOp::branch_if_any_lanes_active:
case BuilderOp::branch_if_no_lanes_active: {
SkASSERT(inst.fImmA >= 0 && inst.fImmA < fNumLabels);
EmitStackRewindForBackwardsBranch(inst.fImmA);
auto* ctx = alloc->make<SkRasterPipeline_BranchCtx>();
ctx->offset = inst.fImmA;
pipeline->push_back({(ProgramOp)inst.fOp, ctx});
break;
}
case BuilderOp::branch_if_no_active_lanes_on_stack_top_equal: {
SkASSERT(inst.fImmA >= 0 && inst.fImmA < fNumLabels);
EmitStackRewindForBackwardsBranch(inst.fImmA);
auto* ctx = alloc->make<SkRasterPipeline_BranchIfEqualCtx>();
ctx->offset = inst.fImmA;
ctx->value = inst.fImmB;
ctx->ptr = reinterpret_cast<int*>(tempStackPtr - N);
pipeline->push_back({ProgramOp::branch_if_no_active_lanes_eq, ctx});
break;
}
case BuilderOp::init_lane_masks:
pipeline->push_back({ProgramOp::init_lane_masks, nullptr});
break;
case BuilderOp::store_src_rg:
pipeline->push_back({ProgramOp::store_src_rg, SlotA()});
break;
case BuilderOp::store_src:
pipeline->push_back({ProgramOp::store_src, SlotA()});
break;
case BuilderOp::store_dst:
pipeline->push_back({ProgramOp::store_dst, SlotA()});
break;
case BuilderOp::store_device_xy01:
pipeline->push_back({ProgramOp::store_device_xy01, SlotA()});
break;
case BuilderOp::load_src:
pipeline->push_back({ProgramOp::load_src, SlotA()});
break;
case BuilderOp::load_dst:
pipeline->push_back({ProgramOp::load_dst, SlotA()});
break;
case ALL_SINGLE_SLOT_UNARY_OP_CASES: {
float* dst = tempStackPtr - (inst.fImmA * N);
this->appendSingleSlotUnaryOp(pipeline, (ProgramOp)inst.fOp, dst, inst.fImmA);
break;
}
case ALL_MULTI_SLOT_UNARY_OP_CASES: {
float* dst = tempStackPtr - (inst.fImmA * N);
this->appendMultiSlotUnaryOp(pipeline, (ProgramOp)inst.fOp, dst, inst.fImmA);
break;
}
case ALL_N_WAY_BINARY_OP_CASES: {
float* src = tempStackPtr - (inst.fImmA * N);
float* dst = tempStackPtr - (inst.fImmA * 2 * N);
this->appendAdjacentNWayBinaryOp(pipeline, alloc, (ProgramOp)inst.fOp,
dst, src, inst.fImmA);
break;
}
case ALL_MULTI_SLOT_BINARY_OP_CASES: {
float* src = tempStackPtr - (inst.fImmA * N);
float* dst = tempStackPtr - (inst.fImmA * 2 * N);
this->appendAdjacentMultiSlotBinaryOp(pipeline, alloc, (ProgramOp)inst.fOp,
dst, src, inst.fImmA);
break;
}
case ALL_MULTI_SLOT_TERNARY_OP_CASES: {
float* src1 = tempStackPtr - (inst.fImmA * N);
float* src0 = tempStackPtr - (inst.fImmA * 2 * N);
float* dst = tempStackPtr - (inst.fImmA * 3 * N);
this->appendAdjacentMultiSlotTernaryOp(pipeline, alloc, (ProgramOp)inst.fOp,
dst, src0, src1, inst.fImmA);
break;
}
case BuilderOp::select: {
float* src = tempStackPtr - (inst.fImmA * N);
float* dst = tempStackPtr - (inst.fImmA * 2 * N);
this->appendCopySlotsMasked(pipeline, alloc, dst, src, inst.fImmA);
break;
}
case BuilderOp::copy_slot_masked:
this->appendCopySlotsMasked(pipeline, alloc, SlotA(), SlotB(), inst.fImmA);
break;
case BuilderOp::copy_slot_unmasked:
this->appendCopySlotsUnmasked(pipeline, alloc, SlotA(), SlotB(), inst.fImmA);
break;
case BuilderOp::zero_slot_unmasked:
this->appendMultiSlotUnaryOp(pipeline, ProgramOp::zero_slot_unmasked,
SlotA(), inst.fImmA);
break;
case BuilderOp::dot_2_floats:
case BuilderOp::dot_3_floats:
case BuilderOp::dot_4_floats: {
float* dst = tempStackPtr - (inst.fImmA * 2 * N);
pipeline->push_back({(ProgramOp)inst.fOp, dst});
break;
}
case BuilderOp::swizzle_1:
case BuilderOp::swizzle_2:
case BuilderOp::swizzle_3:
case BuilderOp::swizzle_4: {
auto* ctx = alloc->make<SkRasterPipeline_SwizzleCtx>();
ctx->ptr = tempStackPtr - (N * inst.fImmA);
// Unpack component nybbles into byte-offsets pointing at stack slots.
unpack_nybbles_to_offsets(inst.fImmB, SkSpan(ctx->offsets));
pipeline->push_back({(ProgramOp)inst.fOp, ctx});
break;
}
case BuilderOp::shuffle: {
int consumed = inst.fImmA >> 16;
int generated = inst.fImmA & 0xFFFF;
auto* ctx = alloc->make<SkRasterPipeline_ShuffleCtx>();
ctx->ptr = tempStackPtr - (N * consumed);
ctx->count = generated;
// Unpack immB and immC from nybble form into the offset array.
unpack_nybbles_to_offsets(inst.fImmB, SkSpan(&ctx->offsets[0], 8));
unpack_nybbles_to_offsets(inst.fImmC, SkSpan(&ctx->offsets[8], 8));
pipeline->push_back({ProgramOp::shuffle, ctx});
break;
}
case BuilderOp::push_src_rgba: {
float* dst = tempStackPtr;
pipeline->push_back({ProgramOp::store_src, dst});
break;
}
case BuilderOp::push_dst_rgba: {
float* dst = tempStackPtr;
pipeline->push_back({ProgramOp::store_dst, dst});
break;
}
case BuilderOp::pop_src_rg: {
float* src = tempStackPtr - (2 * N);
pipeline->push_back({ProgramOp::load_src_rg, src});
break;
}
case BuilderOp::pop_src_rgba: {
float* src = tempStackPtr - (4 * N);
pipeline->push_back({ProgramOp::load_src, src});
break;
}
case BuilderOp::pop_dst_rgba: {
float* src = tempStackPtr - (4 * N);
pipeline->push_back({ProgramOp::load_dst, src});
break;
}
case BuilderOp::push_slots: {
float* dst = tempStackPtr;
this->appendCopySlotsUnmasked(pipeline, alloc, dst, SlotA(), inst.fImmA);
break;
}
case BuilderOp::copy_stack_to_slots_indirect:
case BuilderOp::push_slots_indirect:
case BuilderOp::push_uniform_indirect: {
// SlotA: fixed-range start
// SlotB: limit-range end
// immA: number of slots to copy
// immB: dynamic stack ID
ProgramOp op;
auto* ctx = alloc->make<SkRasterPipeline_CopyIndirectCtx>();
ctx->indirectOffset =
reinterpret_cast<const uint32_t*>(tempStackMap[inst.fImmB]) - (1 * N);
ctx->indirectLimit = inst.fSlotB - inst.fSlotA - inst.fImmA;
ctx->slots = inst.fImmA;
if (inst.fOp == BuilderOp::push_slots_indirect) {
op = ProgramOp::copy_from_indirect_unmasked;
ctx->src = SlotA();
ctx->dst = tempStackPtr;
} else if (inst.fOp == BuilderOp::push_uniform_indirect) {
op = ProgramOp::copy_from_indirect_uniform_unmasked;
ctx->src = UniformA();
ctx->dst = tempStackPtr;
} else {
op = ProgramOp::copy_to_indirect_masked;
ctx->src = tempStackPtr - (ctx->slots * N);
ctx->dst = SlotA();
}
pipeline->push_back({op, ctx});
break;
}
case BuilderOp::push_uniform: {
float* dst = tempStackPtr;
this->appendCopyConstants(pipeline, alloc, dst, UniformA(), inst.fImmA);
break;
}
case BuilderOp::push_zeros: {
float* dst = tempStackPtr;
this->appendMultiSlotUnaryOp(pipeline, ProgramOp::zero_slot_unmasked, dst,
inst.fImmA);
break;
}
case BuilderOp::push_condition_mask: {
float* dst = tempStackPtr;
pipeline->push_back({ProgramOp::store_condition_mask, dst});
break;
}
case BuilderOp::pop_condition_mask: {
float* src = tempStackPtr - (1 * N);
pipeline->push_back({ProgramOp::load_condition_mask, src});
break;
}
case BuilderOp::merge_condition_mask: {
float* ptr = tempStackPtr - (2 * N);
pipeline->push_back({ProgramOp::merge_condition_mask, ptr});
break;
}
case BuilderOp::push_loop_mask: {
float* dst = tempStackPtr;
pipeline->push_back({ProgramOp::store_loop_mask, dst});
break;
}
case BuilderOp::pop_loop_mask: {
float* src = tempStackPtr - (1 * N);
pipeline->push_back({ProgramOp::load_loop_mask, src});
break;
}
case BuilderOp::pop_and_reenable_loop_mask: {
float* src = tempStackPtr - (1 * N);
pipeline->push_back({ProgramOp::reenable_loop_mask, src});
break;
}
case BuilderOp::reenable_loop_mask:
pipeline->push_back({ProgramOp::reenable_loop_mask, SlotA()});
break;
case BuilderOp::mask_off_loop_mask:
pipeline->push_back({ProgramOp::mask_off_loop_mask, nullptr});
break;
case BuilderOp::merge_loop_mask: {
float* src = tempStackPtr - (1 * N);
pipeline->push_back({ProgramOp::merge_loop_mask, src});
break;
}
case BuilderOp::push_return_mask: {
float* dst = tempStackPtr;
pipeline->push_back({ProgramOp::store_return_mask, dst});
break;
}
case BuilderOp::pop_return_mask: {
float* src = tempStackPtr - (1 * N);
pipeline->push_back({ProgramOp::load_return_mask, src});
break;
}
case BuilderOp::mask_off_return_mask:
pipeline->push_back({ProgramOp::mask_off_return_mask, nullptr});
break;
case BuilderOp::copy_constant:
case BuilderOp::push_literal: {
float* dst = (inst.fOp == BuilderOp::push_literal) ? tempStackPtr : SlotA();
int* constantPtr;
if (int** lookup = constantLookupMap.find(inst.fImmA)) {
constantPtr = *lookup;
} else {
constantPtr = alloc->make<int>(inst.fImmA);
constantLookupMap[inst.fImmA] = constantPtr;
}
SkASSERT(constantPtr);
this->appendCopyConstants(pipeline, alloc, dst, (float*)constantPtr,/*numSlots=*/1);
break;
}
case BuilderOp::copy_stack_to_slots: {
float* src = tempStackPtr - (inst.fImmB * N);
this->appendCopySlotsMasked(pipeline, alloc, SlotA(), src, inst.fImmA);
break;
}
case BuilderOp::copy_stack_to_slots_unmasked: {
float* src = tempStackPtr - (inst.fImmB * N);
this->appendCopySlotsUnmasked(pipeline, alloc, SlotA(), src, inst.fImmA);
break;
}
case BuilderOp::swizzle_copy_stack_to_slots: {
auto stage = (ProgramOp)((int)ProgramOp::swizzle_copy_slot_masked + inst.fImmA - 1);
auto* ctx = alloc->make<SkRasterPipeline_SwizzleCopyCtx>();
ctx->src = tempStackPtr - (inst.fImmB * N);
ctx->dst = SlotA();
unpack_nybbles_to_offsets(inst.fImmC, SkSpan(ctx->offsets));
pipeline->push_back({stage, ctx});
break;
}
case BuilderOp::push_clone: {
float* src = tempStackPtr - (inst.fImmB * N);
float* dst = tempStackPtr;
this->appendCopySlotsUnmasked(pipeline, alloc, dst, src, inst.fImmA);
break;
}
case BuilderOp::push_clone_from_stack: {
// immA: number of slots
// immB: other stack ID
// immC: offset from stack top
float* sourceStackPtr = tempStackMap[inst.fImmB];
float* src = sourceStackPtr - (inst.fImmC * N);
float* dst = tempStackPtr;
this->appendCopySlotsUnmasked(pipeline, alloc, dst, src, inst.fImmA);
break;
}
case BuilderOp::push_clone_indirect_from_stack: {
// immA: number of slots
// immB: other stack ID
// immC: offset from stack top
// immD: dynamic stack ID
float* sourceStackPtr = tempStackMap[inst.fImmB];
auto* ctx = alloc->make<SkRasterPipeline_CopyIndirectCtx>();
ctx->dst = tempStackPtr;
ctx->src = sourceStackPtr - (inst.fImmC * N);
ctx->indirectOffset =
reinterpret_cast<const uint32_t*>(tempStackMap[inst.fImmD]) - (1 * N);
ctx->indirectLimit = inst.fImmC - inst.fImmA;
ctx->slots = inst.fImmA;
pipeline->push_back({ProgramOp::copy_from_indirect_unmasked, ctx});
break;
}
case BuilderOp::case_op: {
auto* ctx = alloc->make<SkRasterPipeline_CaseOpCtx>();
ctx->ptr = reinterpret_cast<int*>(tempStackPtr - 2 * N);
ctx->expectedValue = inst.fImmA;
pipeline->push_back({ProgramOp::case_op, ctx});
break;
}
case BuilderOp::discard_stack:
break;
case BuilderOp::set_current_stack:
currentStack = inst.fImmA;
break;
case BuilderOp::invoke_shader:
case BuilderOp::invoke_color_filter:
case BuilderOp::invoke_blender:
pipeline->push_back({(ProgramOp)inst.fOp, context_bit_pun(inst.fImmA)});
break;
case BuilderOp::invoke_to_linear_srgb:
case BuilderOp::invoke_from_linear_srgb:
pipeline->push_back({(ProgramOp)inst.fOp, nullptr});
break;
default:
SkDEBUGFAILF("Raster Pipeline: unsupported instruction %d", (int)inst.fOp);
break;
}
tempStackPtr += stack_usage(inst) * N;
SkASSERT(tempStackPtr >= slots.stack.begin());
SkASSERT(tempStackPtr <= slots.stack.end());
// Periodically rewind the stack every 500 instructions. When SK_HAS_MUSTTAIL is set,
// rewinds are not actually used; the appendStackRewind call becomes a no-op. On platforms
// that don't support SK_HAS_MUSTTAIL, rewinding the stack periodically can prevent a
// potential stack overflow when running a long program.
int numPipelineStages = pipeline->size();
if (numPipelineStages - mostRecentRewind > 500) {
this->appendStackRewind(pipeline);
mostRecentRewind = numPipelineStages;
}
}
}
// Finds duplicate names in the program and disambiguates them with subscripts.
SkTArray<std::string> build_unique_slot_name_list(const SkRPDebugTrace* debugTrace) {
SkTArray<std::string> slotName;
if (debugTrace) {
slotName.reserve_back(debugTrace->fSlotInfo.size());
// The map consists of <variable name, <source position, unique name>>.
SkTHashMap<std::string_view, SkTHashMap<int, std::string>> uniqueNameMap;
for (const SlotDebugInfo& slotInfo : debugTrace->fSlotInfo) {
// Look up this variable by its name and source position.
int pos = slotInfo.pos.valid() ? slotInfo.pos.startOffset() : 0;
SkTHashMap<int, std::string>& positionMap = uniqueNameMap[slotInfo.name];
std::string& uniqueName = positionMap[pos];
// Have we seen this variable name/position combination before?
if (uniqueName.empty()) {
// This is a unique name/position pair.
uniqueName = slotInfo.name;
// But if it's not a unique _name_, it deserves a subscript to disambiguate it.
int subscript = positionMap.count() - 1;
if (subscript > 0) {
for (char digit : std::to_string(subscript)) {
// U+2080 through U+2089 (₀₁₂₃₄₅₆₇₈₉) in UTF8:
uniqueName.push_back((char)0xE2);
uniqueName.push_back((char)0x82);
uniqueName.push_back((char)(0x80 + digit - '0'));
}
}
}
slotName.push_back(uniqueName);
}
}
return slotName;
}
void Program::dump(SkWStream* out) const {
// Allocate memory for the slot and uniform data, even though the program won't ever be
// executed. The program requires pointer ranges for managing its data, and ASAN will report
// errors if those pointers are pointing at unallocated memory.
SkArenaAlloc alloc(/*firstHeapAllocation=*/1000);
const int N = SkOpts::raster_pipeline_highp_stride;
SlotData slots = this->allocateSlotData(&alloc);
float* uniformPtr = alloc.makeArray<float>(fNumUniformSlots);
SkSpan<float> uniforms = SkSpan(uniformPtr, fNumUniformSlots);
// Turn this program into an array of Raster Pipeline stages.
SkTArray<Stage> stages;
this->makeStages(&stages, &alloc, uniforms, slots);
// Find the labels in the program, and keep track of their offsets.
SkTHashMap<int, int> labelToStageMap; // <label ID, stage index>
for (int index = 0; index < stages.size(); ++index) {
if (stages[index].op == ProgramOp::label) {
int labelID = sk_bit_cast<intptr_t>(stages[index].ctx);
SkASSERT(!labelToStageMap.find(labelID));
labelToStageMap[labelID] = index;
}
}
// Assign unique names to each variable slot; our trace might have multiple variables with the
// same name, which can make a dump hard to read.
SkTArray<std::string> slotName = build_unique_slot_name_list(fDebugTrace);
// Emit the program's instruction list.
for (int index = 0; index < stages.size(); ++index) {
const Stage& stage = stages[index];
// Interpret the context value as a branch offset.
auto BranchOffset = [&](const SkRasterPipeline_BranchCtx* ctx) -> std::string {
// The context's offset field contains a label ID
int labelID = ctx->offset;
SkASSERT(labelToStageMap.find(labelID));
int labelIndex = labelToStageMap[labelID];
return SkSL::String::printf("%+d (label %d at #%d)",
labelIndex - index, labelID, labelIndex + 1);
};
// Print a 32-bit immediate value of unknown type (int/float).
auto Imm = [&](float immFloat, bool showAsFloat = true) -> std::string {
// Start with `0x3F800000` as a baseline.
uint32_t immUnsigned;
memcpy(&immUnsigned, &immFloat, sizeof(uint32_t));
auto text = SkSL::String::printf("0x%08X", immUnsigned);
// Extend it to `0x3F800000 (1.0)` for finite floating point values.
if (showAsFloat && std::isfinite(immFloat)) {
text += " (";
text += skstd::to_string(immFloat);
text += ")";
}
return text;
};
// Interpret the context pointer as a 32-bit immediate value of unknown type (int/float).
auto ImmCtx = [&](const void* ctx, bool showAsFloat = true) -> std::string {
float f;
memcpy(&f, &ctx, sizeof(float));
return Imm(f, showAsFloat);
};
// Print `1` for single slots and `1..3` for ranges of slots.
auto AsRange = [](int first, int count) -> std::string {
std::string text = std::to_string(first);
if (count > 1) {
text += ".." + std::to_string(first + count - 1);
}
return text;
};
// Come up with a reasonable name for a range of slots, e.g.:
// `val`: slot range points at one variable, named val
// `val(0..1)`: slot range points at the first and second slot of val (which has 3+ slots)
// `foo, bar`: slot range fully covers two variables, named foo and bar
// `foo(3), bar(0)`: slot range covers the fourth slot of foo and the first slot of bar
auto SlotName = [&](SkSpan<const SlotDebugInfo> debugInfo,
SkSpan<const std::string> names,
SlotRange range) -> std::string {
SkASSERT(range.index >= 0 && (range.index + range.count) <= (int)debugInfo.size());
std::string text;
auto separator = SkSL::String::Separator();
while (range.count > 0) {
const SlotDebugInfo& slotInfo = debugInfo[range.index];
text += separator();
text += names.empty() ? slotInfo.name : names[range.index];
// Figure out how many slots we can chomp in this iteration.
int entireVariable = slotInfo.columns * slotInfo.rows;
int slotsToChomp = std::min(range.count, entireVariable - slotInfo.componentIndex);
// If we aren't consuming an entire variable, from first slot to last...
if (slotsToChomp != entireVariable) {
// ... decorate it with a range suffix.
text += "(" + AsRange(slotInfo.componentIndex, slotsToChomp) + ")";
}
range.index += slotsToChomp;
range.count -= slotsToChomp;
}
return text;
};
// Attempts to interpret the passed-in pointer as a uniform range.
auto UniformPtrCtx = [&](const float* ptr, int numSlots) -> std::string {
const float* end = ptr + numSlots;
if (ptr >= uniforms.begin() && end <= uniforms.end()) {
int uniformIdx = ptr - uniforms.begin();
if (fDebugTrace) {
// Handle pointers to named uniform slots.
std::string name = SlotName(fDebugTrace->fUniformInfo, /*names=*/{},
{uniformIdx, numSlots});
if (!name.empty()) {
return name;
}
}
// Handle pointers to uniforms (when no debug info exists).
return "u" + AsRange(uniformIdx, numSlots);
}
return {};
};
// Attempts to interpret the passed-in pointer as a value slot range.
auto ValuePtrCtx = [&](const float* ptr, int numSlots) -> std::string {
const float* end = ptr + (N * numSlots);
if (ptr >= slots.values.begin() && end <= slots.values.end()) {
int valueIdx = ptr - slots.values.begin();
SkASSERT((valueIdx % N) == 0);
valueIdx /= N;
if (fDebugTrace) {
// Handle pointers to named value slots.
std::string name = SlotName(fDebugTrace->fSlotInfo, slotName,
{valueIdx, numSlots});
if (!name.empty()) {
return name;
}
}
// Handle pointers to value slots (when no debug info exists).
return "v" + AsRange(valueIdx, numSlots);
}
return {};
};
// Interpret the context value as a pointer to `count` immediate values.
auto MultiImmCtx = [&](const float* ptr, int count) -> std::string {
// If this is a uniform, print it by name.
if (std::string text = UniformPtrCtx(ptr, count); !text.empty()) {
return text;
}
// Emit a single unbracketed immediate.
if (count == 1) {
return Imm(*ptr);
}
// Emit a list like `[0x00000000 (0.0), 0x3F80000 (1.0)]`.
std::string text = "[";
auto separator = SkSL::String::Separator();
while (count--) {
text += separator();
text += Imm(*ptr++);
}
return text + "]";
};
// Interpret the context value as a generic pointer.
auto PtrCtx = [&](const void* ctx, int numSlots) -> std::string {
const float *ctxAsSlot = static_cast<const float*>(ctx);
// Check for uniform and value pointers.
if (std::string uniform = UniformPtrCtx(ctxAsSlot, numSlots); !uniform.empty()) {
return uniform;
}
if (std::string value = ValuePtrCtx(ctxAsSlot, numSlots); !value.empty()) {
return value;
}
// Handle pointers to temporary stack slots.
if (ctxAsSlot >= slots.stack.begin() && ctxAsSlot < slots.stack.end()) {
int stackIdx = ctxAsSlot - slots.stack.begin();
SkASSERT((stackIdx % N) == 0);
return "$" + AsRange(stackIdx / N, numSlots);
}
// This pointer is out of our expected bounds; this generally isn't expected to happen.
return "ExternalPtr(" + AsRange(0, numSlots) + ")";
};
// Interpret the context value as a pointer to two adjacent values.
auto AdjacentPtrCtx = [&](const void* ctx,
int numSlots) -> std::tuple<std::string, std::string> {
const float *ctxAsSlot = static_cast<const float*>(ctx);
return std::make_tuple(PtrCtx(ctxAsSlot, numSlots),
PtrCtx(ctxAsSlot + (N * numSlots), numSlots));
};
// Interpret the context value as a pointer to three adjacent values.
auto Adjacent3PtrCtx = [&](const void* ctx, int numSlots) ->
std::tuple<std::string, std::string, std::string> {
const float *ctxAsSlot = static_cast<const float*>(ctx);
return std::make_tuple(PtrCtx(ctxAsSlot, numSlots),
PtrCtx(ctxAsSlot + (N * numSlots), numSlots),
PtrCtx(ctxAsSlot + (2 * N * numSlots), numSlots));
};
// Interpret the context value as a BinaryOp structure for copy_n_slots (numSlots is
// dictated by the op itself).
auto BinaryOpCtx = [&](const void* v,
int numSlots) -> std::tuple<std::string, std::string> {
const auto *ctx = static_cast<const SkRasterPipeline_BinaryOpCtx*>(v);
return std::make_tuple(PtrCtx(ctx->dst, numSlots),
PtrCtx(ctx->src, numSlots));
};
// Interpret the context value as a BinaryOp structure for copy_n_constants (numSlots is
// dictated by the op itself).
auto CopyConstantCtx = [&](const void* v,
int numSlots) -> std::tuple<std::string, std::string> {
const auto *ctx = static_cast<const SkRasterPipeline_BinaryOpCtx*>(v);
return std::make_tuple(PtrCtx(ctx->dst, numSlots),
MultiImmCtx(ctx->src, numSlots));
};
// Interpret the context value as a BinaryOp structure (numSlots is inferred from the
// distance between pointers).
auto AdjacentBinaryOpCtx = [&](const void* v) -> std::tuple<std::string, std::string> {
const auto *ctx = static_cast<const SkRasterPipeline_BinaryOpCtx*>(v);
int numSlots = (ctx->src - ctx->dst) / N;
return AdjacentPtrCtx(ctx->dst, numSlots);
};
// Interpret the context value as a TernaryOp structure (numSlots is inferred from the
// distance between pointers).
auto AdjacentTernaryOpCtx = [&](const void* v) ->
std::tuple<std::string, std::string, std::string> {
const auto* ctx = static_cast<const SkRasterPipeline_TernaryOpCtx*>(v);
int numSlots = (ctx->src0 - ctx->dst) / N;
return Adjacent3PtrCtx(ctx->dst, numSlots);
};
// Stringize a swizzled pointer. Note that the slot-width of the original expression is not
// preserved in the instruction encoding, so we need to do our best using the data we have.
// (e.g., myFloat4.y would be indistinguishable from myFloat2.y.)
auto SwizzlePtr = [&](const float* ptr, SkSpan<const uint16_t> offsets) {
size_t highestComponent = *std::max_element(offsets.begin(), offsets.end()) /
(N * sizeof(float));
std::string src = "(" + PtrCtx(ptr, std::max(offsets.size(), highestComponent + 1)) +
").";
for (uint16_t offset : offsets) {
if (offset == (0 * N * sizeof(float))) {
src.push_back('x');
} else if (offset == (1 * N * sizeof(float))) {
src.push_back('y');
} else if (offset == (2 * N * sizeof(float))) {
src.push_back('z');
} else if (offset == (3 * N * sizeof(float))) {
src.push_back('w');
} else {
src.push_back('?');
}
}
return src;
};
// Interpret the context value as a Swizzle structure.
auto SwizzleCtx = [&](ProgramOp op, const void* v) -> std::tuple<std::string, std::string> {
const auto* ctx = static_cast<const SkRasterPipeline_SwizzleCtx*>(v);
int destSlots = (int)op - (int)BuilderOp::swizzle_1 + 1;
return std::make_tuple(PtrCtx(ctx->ptr, destSlots),
SwizzlePtr(ctx->ptr, SkSpan(ctx->offsets, destSlots)));
};
// Interpret the context value as a SwizzleCopy structure.
auto SwizzleCopyCtx = [&](ProgramOp op,
const void* v) -> std::tuple<std::string, std::string> {
const auto* ctx = static_cast<const SkRasterPipeline_SwizzleCopyCtx*>(v);
int destSlots = (int)op - (int)BuilderOp::swizzle_copy_slot_masked + 1;
return std::make_tuple(SwizzlePtr(ctx->dst, SkSpan(ctx->offsets, destSlots)),
PtrCtx(ctx->src, destSlots));
};
// Interpret the context value as a Shuffle structure.
auto ShuffleCtx = [&](const void* v) -> std::tuple<std::string, std::string> {
const auto* ctx = static_cast<const SkRasterPipeline_ShuffleCtx*>(v);
std::string dst = PtrCtx(ctx->ptr, ctx->count);
std::string src = "(" + dst + ")[";
for (int index = 0; index < ctx->count; ++index) {
if (ctx->offsets[index] % (N * sizeof(float))) {
src.push_back('?');
} else {
src += std::to_string(ctx->offsets[index] / (N * sizeof(float)));
}
src.push_back(' ');
}
src.back() = ']';
return std::make_tuple(dst, src);
};
std::string opArg1, opArg2, opArg3;
using POp = ProgramOp;
switch (stage.op) {
case POp::label:
case POp::invoke_shader:
case POp::invoke_color_filter:
case POp::invoke_blender:
opArg1 = ImmCtx(stage.ctx, /*showAsFloat=*/false);
break;
case POp::case_op: {
const auto* ctx = static_cast<SkRasterPipeline_CaseOpCtx*>(stage.ctx);
opArg1 = PtrCtx(ctx->ptr, 1);
opArg2 = PtrCtx(ctx->ptr + N, 1);
opArg3 = Imm(sk_bit_cast<float>(ctx->expectedValue), /*showAsFloat=*/false);
break;
}
case POp::swizzle_1:
case POp::swizzle_2:
case POp::swizzle_3:
case POp::swizzle_4:
std::tie(opArg1, opArg2) = SwizzleCtx(stage.op, stage.ctx);
break;
case POp::swizzle_copy_slot_masked:
case POp::swizzle_copy_2_slots_masked:
case POp::swizzle_copy_3_slots_masked:
case POp::swizzle_copy_4_slots_masked:
std::tie(opArg1, opArg2) = SwizzleCopyCtx(stage.op, stage.ctx);
break;
case POp::dot_2_floats:
opArg1 = PtrCtx(stage.ctx, 1);
std::tie(opArg2, opArg3) = AdjacentPtrCtx(stage.ctx, 2);
break;
case POp::dot_3_floats:
opArg1 = PtrCtx(stage.ctx, 1);
std::tie(opArg2, opArg3) = AdjacentPtrCtx(stage.ctx, 3);
break;
case POp::dot_4_floats:
opArg1 = PtrCtx(stage.ctx, 1);
std::tie(opArg2, opArg3) = AdjacentPtrCtx(stage.ctx, 4);
break;
case POp::shuffle:
std::tie(opArg1, opArg2) = ShuffleCtx(stage.ctx);
break;
case POp::load_condition_mask:
case POp::store_condition_mask:
case POp::load_loop_mask:
case POp::store_loop_mask:
case POp::merge_loop_mask:
case POp::reenable_loop_mask:
case POp::load_return_mask:
case POp::store_return_mask:
case POp::zero_slot_unmasked:
case POp::bitwise_not_int:
case POp::cast_to_float_from_int: case POp::cast_to_float_from_uint:
case POp::cast_to_int_from_float: case POp::cast_to_uint_from_float:
case POp::abs_float: case POp::abs_int:
case POp::acos_float:
case POp::asin_float:
case POp::atan_float:
case POp::ceil_float:
case POp::cos_float:
case POp::exp_float:
case POp::log_float:
case POp::log2_float:
case POp::floor_float:
case POp::sin_float:
case POp::sqrt_float:
case POp::tan_float:
opArg1 = PtrCtx(stage.ctx, 1);
break;
case POp::zero_2_slots_unmasked:
case POp::bitwise_not_2_ints:
case POp::load_src_rg: case POp::store_src_rg:
case POp::cast_to_float_from_2_ints: case POp::cast_to_float_from_2_uints:
case POp::cast_to_int_from_2_floats: case POp::cast_to_uint_from_2_floats:
case POp::abs_2_floats: case POp::abs_2_ints:
case POp::ceil_2_floats:
case POp::floor_2_floats:
opArg1 = PtrCtx(stage.ctx, 2);
break;
case POp::zero_3_slots_unmasked:
case POp::bitwise_not_3_ints:
case POp::cast_to_float_from_3_ints: case POp::cast_to_float_from_3_uints:
case POp::cast_to_int_from_3_floats: case POp::cast_to_uint_from_3_floats:
case POp::abs_3_floats: case POp::abs_3_ints:
case POp::ceil_3_floats:
case POp::floor_3_floats:
opArg1 = PtrCtx(stage.ctx, 3);
break;
case POp::load_src:
case POp::load_dst:
case POp::store_src:
case POp::store_dst:
case POp::store_device_xy01:
case POp::zero_4_slots_unmasked:
case POp::bitwise_not_4_ints:
case POp::cast_to_float_from_4_ints: case POp::cast_to_float_from_4_uints:
case POp::cast_to_int_from_4_floats: case POp::cast_to_uint_from_4_floats:
case POp::abs_4_floats: case POp::abs_4_ints:
case POp::ceil_4_floats:
case POp::floor_4_floats:
opArg1 = PtrCtx(stage.ctx, 4);
break;
case POp::copy_constant:
std::tie(opArg1, opArg2) = CopyConstantCtx(stage.ctx, 1);
break;
case POp::copy_2_constants:
std::tie(opArg1, opArg2) = CopyConstantCtx(stage.ctx, 2);
break;
case POp::copy_3_constants:
std::tie(opArg1, opArg2) = CopyConstantCtx(stage.ctx, 3);
break;
case POp::copy_4_constants:
std::tie(opArg1, opArg2) = CopyConstantCtx(stage.ctx, 4);
break;
case POp::copy_slot_masked:
case POp::copy_slot_unmasked:
std::tie(opArg1, opArg2) = BinaryOpCtx(stage.ctx, 1);
break;
case POp::copy_2_slots_masked:
case POp::copy_2_slots_unmasked:
std::tie(opArg1, opArg2) = BinaryOpCtx(stage.ctx, 2);
break;
case POp::copy_3_slots_masked:
case POp::copy_3_slots_unmasked:
std::tie(opArg1, opArg2) = BinaryOpCtx(stage.ctx, 3);
break;
case POp::copy_4_slots_masked:
case POp::copy_4_slots_unmasked:
std::tie(opArg1, opArg2) = BinaryOpCtx(stage.ctx, 4);
break;
case POp::copy_from_indirect_unmasked:
case POp::copy_to_indirect_masked: {
const auto* ctx = static_cast<SkRasterPipeline_CopyIndirectCtx*>(stage.ctx);
// We don't incorporate the indirect-limit in the output
opArg1 = PtrCtx(ctx->dst, ctx->slots);
opArg2 = PtrCtx(ctx->src, ctx->slots);
opArg3 = PtrCtx(ctx->indirectOffset, 1);
break;
}
case POp::copy_from_indirect_uniform_unmasked: {
const auto* ctx = static_cast<SkRasterPipeline_CopyIndirectCtx*>(stage.ctx);
opArg1 = PtrCtx(ctx->dst, ctx->slots);
opArg2 = UniformPtrCtx(ctx->src, ctx->slots);
opArg3 = PtrCtx(ctx->indirectOffset, 1);
break;
}
case POp::merge_condition_mask:
case POp::add_float: case POp::add_int:
case POp::sub_float: case POp::sub_int:
case POp::mul_float: case POp::mul_int:
case POp::div_float: case POp::div_int: case POp::div_uint:
case POp::bitwise_and_int:
case POp::bitwise_or_int:
case POp::bitwise_xor_int:
case POp::min_float: case POp::min_int: case POp::min_uint:
case POp::max_float: case POp::max_int: case POp::max_uint:
case POp::cmplt_float: case POp::cmplt_int: case POp::cmplt_uint:
case POp::cmple_float: case POp::cmple_int: case POp::cmple_uint:
case POp::cmpeq_float: case POp::cmpeq_int:
case POp::cmpne_float: case POp::cmpne_int:
std::tie(opArg1, opArg2) = AdjacentPtrCtx(stage.ctx, 1);
break;
case POp::mix_float: case POp::mix_int:
std::tie(opArg1, opArg2, opArg3) = Adjacent3PtrCtx(stage.ctx, 1);
break;
case POp::add_2_floats: case POp::add_2_ints:
case POp::sub_2_floats: case POp::sub_2_ints:
case POp::mul_2_floats: case POp::mul_2_ints:
case POp::div_2_floats: case POp::div_2_ints: case POp::div_2_uints:
case POp::bitwise_and_2_ints:
case POp::bitwise_or_2_ints:
case POp::bitwise_xor_2_ints:
case POp::min_2_floats: case POp::min_2_ints: case POp::min_2_uints:
case POp::max_2_floats: case POp::max_2_ints: case POp::max_2_uints:
case POp::cmplt_2_floats: case POp::cmplt_2_ints: case POp::cmplt_2_uints:
case POp::cmple_2_floats: case POp::cmple_2_ints: case POp::cmple_2_uints:
case POp::cmpeq_2_floats: case POp::cmpeq_2_ints:
case POp::cmpne_2_floats: case POp::cmpne_2_ints:
std::tie(opArg1, opArg2) = AdjacentPtrCtx(stage.ctx, 2);
break;
case POp::mix_2_floats: case POp::mix_2_ints:
std::tie(opArg1, opArg2, opArg3) = Adjacent3PtrCtx(stage.ctx, 2);
break;
case POp::add_3_floats: case POp::add_3_ints:
case POp::sub_3_floats: case POp::sub_3_ints:
case POp::mul_3_floats: case POp::mul_3_ints:
case POp::div_3_floats: case POp::div_3_ints: case POp::div_3_uints:
case POp::bitwise_and_3_ints:
case POp::bitwise_or_3_ints:
case POp::bitwise_xor_3_ints:
case POp::min_3_floats: case POp::min_3_ints: case POp::min_3_uints:
case POp::max_3_floats: case POp::max_3_ints: case POp::max_3_uints:
case POp::cmplt_3_floats: case POp::cmplt_3_ints: case POp::cmplt_3_uints:
case POp::cmple_3_floats: case POp::cmple_3_ints: case POp::cmple_3_uints:
case POp::cmpeq_3_floats: case POp::cmpeq_3_ints:
case POp::cmpne_3_floats: case POp::cmpne_3_ints:
std::tie(opArg1, opArg2) = AdjacentPtrCtx(stage.ctx, 3);
break;
case POp::mix_3_floats: case POp::mix_3_ints:
std::tie(opArg1, opArg2, opArg3) = Adjacent3PtrCtx(stage.ctx, 3);
break;
case POp::add_4_floats: case POp::add_4_ints:
case POp::sub_4_floats: case POp::sub_4_ints:
case POp::mul_4_floats: case POp::mul_4_ints:
case POp::div_4_floats: case POp::div_4_ints: case POp::div_4_uints:
case POp::bitwise_and_4_ints:
case POp::bitwise_or_4_ints:
case POp::bitwise_xor_4_ints:
case POp::min_4_floats: case POp::min_4_ints: case POp::min_4_uints:
case POp::max_4_floats: case POp::max_4_ints: case POp::max_4_uints:
case POp::cmplt_4_floats: case POp::cmplt_4_ints: case POp::cmplt_4_uints:
case POp::cmple_4_floats: case POp::cmple_4_ints: case POp::cmple_4_uints:
case POp::cmpeq_4_floats: case POp::cmpeq_4_ints:
case POp::cmpne_4_floats: case POp::cmpne_4_ints:
std::tie(opArg1, opArg2) = AdjacentPtrCtx(stage.ctx, 4);
break;
case POp::mix_4_floats: case POp::mix_4_ints:
std::tie(opArg1, opArg2, opArg3) = Adjacent3PtrCtx(stage.ctx, 4);
break;
case POp::add_n_floats: case POp::add_n_ints:
case POp::sub_n_floats: case POp::sub_n_ints:
case POp::mul_n_floats: case POp::mul_n_ints:
case POp::div_n_floats: case POp::div_n_ints: case POp::div_n_uints:
case POp::bitwise_and_n_ints:
case POp::bitwise_or_n_ints:
case POp::bitwise_xor_n_ints:
case POp::min_n_floats: case POp::min_n_ints: case POp::min_n_uints:
case POp::max_n_floats: case POp::max_n_ints: case POp::max_n_uints:
case POp::cmplt_n_floats: case POp::cmplt_n_ints: case POp::cmplt_n_uints:
case POp::cmple_n_floats: case POp::cmple_n_ints: case POp::cmple_n_uints:
case POp::cmpeq_n_floats: case POp::cmpeq_n_ints:
case POp::cmpne_n_floats: case POp::cmpne_n_ints:
case POp::atan2_n_floats:
case POp::pow_n_floats:
std::tie(opArg1, opArg2) = AdjacentBinaryOpCtx(stage.ctx);
break;
case POp::mix_n_floats: case POp::mix_n_ints:
std::tie(opArg1, opArg2, opArg3) = AdjacentTernaryOpCtx(stage.ctx);
break;
case POp::jump:
case POp::branch_if_all_lanes_active:
case POp::branch_if_any_lanes_active:
case POp::branch_if_no_lanes_active:
opArg1 = BranchOffset(static_cast<SkRasterPipeline_BranchCtx*>(stage.ctx));
break;
case POp::branch_if_no_active_lanes_eq: {
const auto* ctx = static_cast<SkRasterPipeline_BranchIfEqualCtx*>(stage.ctx);
opArg1 = BranchOffset(ctx);
opArg2 = PtrCtx(ctx->ptr, 1);
opArg3 = Imm(sk_bit_cast<float>(ctx->value));
break;
}
default:
break;
}
std::string_view opName;
switch (stage.op) {
#define M(x) case POp::x: opName = #x; break;
SK_RASTER_PIPELINE_OPS_ALL(M)
#undef M
case POp::label: opName = "label"; break;
case POp::invoke_shader: opName = "invoke_shader"; break;
case POp::invoke_color_filter: opName = "invoke_color_filter"; break;
case POp::invoke_blender: opName = "invoke_blender"; break;
case POp::invoke_to_linear_srgb: opName = "invoke_to_linear_srgb"; break;
case POp::invoke_from_linear_srgb: opName = "invoke_from_linear_srgb"; break;
}
std::string opText;
switch (stage.op) {
case POp::init_lane_masks:
opText = "CondMask = LoopMask = RetMask = true";
break;
case POp::load_condition_mask:
opText = "CondMask = " + opArg1;
break;
case POp::store_condition_mask:
opText = opArg1 + " = CondMask";
break;
case POp::merge_condition_mask:
opText = "CondMask = " + opArg1 + " & " + opArg2;
break;
case POp::load_loop_mask:
opText = "LoopMask = " + opArg1;
break;
case POp::store_loop_mask:
opText = opArg1 + " = LoopMask";
break;
case POp::mask_off_loop_mask:
opText = "LoopMask &= ~(CondMask & LoopMask & RetMask)";
break;
case POp::reenable_loop_mask:
opText = "LoopMask |= " + opArg1;
break;
case POp::merge_loop_mask:
opText = "LoopMask &= " + opArg1;
break;
case POp::load_return_mask:
opText = "RetMask = " + opArg1;
break;
case POp::store_return_mask:
opText = opArg1 + " = RetMask";
break;
case POp::mask_off_return_mask:
opText = "RetMask &= ~(CondMask & LoopMask & RetMask)";
break;
case POp::store_src_rg:
opText = opArg1 + " = src.rg";
break;
case POp::store_src:
opText = opArg1 + " = src.rgba";
break;
case POp::store_dst:
opText = opArg1 + " = dst.rgba";
break;
case POp::store_device_xy01:
opText = opArg1 + " = DeviceCoords.xy01";
break;
case POp::load_src_rg:
opText = "src.rg = " + opArg1;
break;
case POp::load_src:
opText = "src.rgba = " + opArg1;
break;
case POp::load_dst:
opText = "dst.rgba = " + opArg1;
break;
case POp::bitwise_and_int:
case POp::bitwise_and_2_ints:
case POp::bitwise_and_3_ints:
case POp::bitwise_and_4_ints:
case POp::bitwise_and_n_ints:
opText = opArg1 + " &= " + opArg2;
break;
case POp::bitwise_or_int:
case POp::bitwise_or_2_ints:
case POp::bitwise_or_3_ints:
case POp::bitwise_or_4_ints:
case POp::bitwise_or_n_ints:
opText = opArg1 + " |= " + opArg2;
break;
case POp::bitwise_xor_int:
case POp::bitwise_xor_2_ints:
case POp::bitwise_xor_3_ints:
case POp::bitwise_xor_4_ints:
case POp::bitwise_xor_n_ints:
opText = opArg1 + " ^= " + opArg2;
break;
case POp::bitwise_not_int:
case POp::bitwise_not_2_ints:
case POp::bitwise_not_3_ints:
case POp::bitwise_not_4_ints:
opText = opArg1 + " = ~" + opArg1;
break;
case POp::cast_to_float_from_int:
case POp::cast_to_float_from_2_ints:
case POp::cast_to_float_from_3_ints:
case POp::cast_to_float_from_4_ints:
opText = opArg1 + " = IntToFloat(" + opArg1 + ")";
break;
case POp::cast_to_float_from_uint:
case POp::cast_to_float_from_2_uints:
case POp::cast_to_float_from_3_uints:
case POp::cast_to_float_from_4_uints:
opText = opArg1 + " = UintToFloat(" + opArg1 + ")";
break;
case POp::cast_to_int_from_float:
case POp::cast_to_int_from_2_floats:
case POp::cast_to_int_from_3_floats:
case POp::cast_to_int_from_4_floats:
opText = opArg1 + " = FloatToInt(" + opArg1 + ")";
break;
case POp::cast_to_uint_from_float:
case POp::cast_to_uint_from_2_floats:
case POp::cast_to_uint_from_3_floats:
case POp::cast_to_uint_from_4_floats:
opText = opArg1 + " = FloatToUint(" + opArg1 + ")";
break;
case POp::copy_slot_masked: case POp::copy_2_slots_masked:
case POp::copy_3_slots_masked: case POp::copy_4_slots_masked:
case POp::swizzle_copy_slot_masked: case POp::swizzle_copy_2_slots_masked:
case POp::swizzle_copy_3_slots_masked: case POp::swizzle_copy_4_slots_masked:
opText = opArg1 + " = Mask(" + opArg2 + ")";
break;
case POp::copy_constant: case POp::copy_2_constants:
case POp::copy_3_constants: case POp::copy_4_constants:
case POp::copy_slot_unmasked: case POp::copy_2_slots_unmasked:
case POp::copy_3_slots_unmasked: case POp::copy_4_slots_unmasked:
case POp::swizzle_1: case POp::swizzle_2:
case POp::swizzle_3: case POp::swizzle_4:
case POp::shuffle:
opText = opArg1 + " = " + opArg2;
break;
case POp::copy_from_indirect_unmasked:
case POp::copy_from_indirect_uniform_unmasked:
opText = opArg1 + " = Indirect(" + opArg2 + " + " + opArg3 + ")";
break;
case POp::copy_to_indirect_masked:
opText = "Indirect(" + opArg1 + " + " + opArg3 + ") = Mask(" + opArg2 + ")";
break;
case POp::zero_slot_unmasked: case POp::zero_2_slots_unmasked:
case POp::zero_3_slots_unmasked: case POp::zero_4_slots_unmasked:
opText = opArg1 + " = 0";
break;
case POp::abs_float: case POp::abs_int:
case POp::abs_2_floats: case POp::abs_2_ints:
case POp::abs_3_floats: case POp::abs_3_ints:
case POp::abs_4_floats: case POp::abs_4_ints:
opText = opArg1 + " = abs(" + opArg1 + ")";
break;
case POp::acos_float:
opText = opArg1 + " = acos(" + opArg1 + ")";
break;
case POp::asin_float:
opText = opArg1 + " = asin(" + opArg1 + ")";
break;
case POp::atan_float:
opText = opArg1 + " = atan(" + opArg1 + ")";
break;
case POp::atan2_n_floats:
opText = opArg1 + " = atan2(" + opArg1 + ", " + opArg2 + ")";
break;
case POp::ceil_float:
case POp::ceil_2_floats:
case POp::ceil_3_floats:
case POp::ceil_4_floats:
opText = opArg1 + " = ceil(" + opArg1 + ")";
break;
case POp::cos_float:
opText = opArg1 + " = cos(" + opArg1 + ")";
break;
case POp::dot_2_floats:
case POp::dot_3_floats:
case POp::dot_4_floats:
opText = opArg1 + " = dot(" + opArg2 + ", " + opArg3 + ")";
break;
case POp::exp_float:
opText = opArg1 + " = exp(" + opArg1 + ")";
break;
case POp::log_float:
opText = opArg1 + " = log(" + opArg1 + ")";
break;
case POp::log2_float:
opText = opArg1 + " = log2(" + opArg1 + ")";
break;
case POp::pow_n_floats:
opText = opArg1 + " = pow(" + opArg1 + ", " + opArg2 + ")";
break;
case POp::sin_float:
opText = opArg1 + " = sin(" + opArg1 + ")";
break;
case POp::sqrt_float:
opText = opArg1 + " = sqrt(" + opArg1 + ")";
break;
case POp::tan_float:
opText = opArg1 + " = tan(" + opArg1 + ")";
break;
case POp::floor_float:
case POp::floor_2_floats:
case POp::floor_3_floats:
case POp::floor_4_floats:
opText = opArg1 + " = floor(" + opArg1 + ")";
break;
case POp::add_float: case POp::add_int:
case POp::add_2_floats: case POp::add_2_ints:
case POp::add_3_floats: case POp::add_3_ints:
case POp::add_4_floats: case POp::add_4_ints:
case POp::add_n_floats: case POp::add_n_ints:
opText = opArg1 + " += " + opArg2;
break;
case POp::sub_float: case POp::sub_int:
case POp::sub_2_floats: case POp::sub_2_ints:
case POp::sub_3_floats: case POp::sub_3_ints:
case POp::sub_4_floats: case POp::sub_4_ints:
case POp::sub_n_floats: case POp::sub_n_ints:
opText = opArg1 + " -= " + opArg2;
break;
case POp::mul_float: case POp::mul_int:
case POp::mul_2_floats: case POp::mul_2_ints:
case POp::mul_3_floats: case POp::mul_3_ints:
case POp::mul_4_floats: case POp::mul_4_ints:
case POp::mul_n_floats: case POp::mul_n_ints:
opText = opArg1 + " *= " + opArg2;
break;
case POp::div_float: case POp::div_int: case POp::div_uint:
case POp::div_2_floats: case POp::div_2_ints: case POp::div_2_uints:
case POp::div_3_floats: case POp::div_3_ints: case POp::div_3_uints:
case POp::div_4_floats: case POp::div_4_ints: case POp::div_4_uints:
case POp::div_n_floats: case POp::div_n_ints: case POp::div_n_uints:
opText = opArg1 + " /= " + opArg2;
break;
case POp::min_float: case POp::min_int: case POp::min_uint:
case POp::min_2_floats: case POp::min_2_ints: case POp::min_2_uints:
case POp::min_3_floats: case POp::min_3_ints: case POp::min_3_uints:
case POp::min_4_floats: case POp::min_4_ints: case POp::min_4_uints:
case POp::min_n_floats: case POp::min_n_ints: case POp::min_n_uints:
opText = opArg1 + " = min(" + opArg1 + ", " + opArg2 + ")";
break;
case POp::max_float: case POp::max_int: case POp::max_uint:
case POp::max_2_floats: case POp::max_2_ints: case POp::max_2_uints:
case POp::max_3_floats: case POp::max_3_ints: case POp::max_3_uints:
case POp::max_4_floats: case POp::max_4_ints: case POp::max_4_uints:
case POp::max_n_floats: case POp::max_n_ints: case POp::max_n_uints:
opText = opArg1 + " = max(" + opArg1 +