| /* |
| * Copyright 2018 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkRasterPipeline_opts_DEFINED |
| #define SkRasterPipeline_opts_DEFINED |
| |
| #include "include/core/SkData.h" |
| #include "include/core/SkTypes.h" |
| #include "include/private/base/SkMalloc.h" |
| #include "modules/skcms/skcms.h" |
| #include "src/base/SkUtils.h" // unaligned_{load,store} |
| #include "src/core/SkRasterPipeline.h" |
| #include <cstdint> |
| |
| // Every function in this file should be marked static and inline using SI. |
| #if defined(__clang__) |
| #define SI __attribute__((always_inline)) static inline |
| #else |
| #define SI static inline |
| #endif |
| |
| template <typename Dst, typename Src> |
| SI Dst widen_cast(const Src& src) { |
| static_assert(sizeof(Dst) > sizeof(Src)); |
| static_assert(std::is_trivially_copyable<Dst>::value); |
| static_assert(std::is_trivially_copyable<Src>::value); |
| Dst dst; |
| memcpy(&dst, &src, sizeof(Src)); |
| return dst; |
| } |
| |
| struct Ctx { |
| SkRasterPipelineStage* fStage; |
| |
| template <typename T> |
| operator T*() { |
| return (T*)fStage->ctx; |
| } |
| }; |
| |
| using NoCtx = const void*; |
| |
| #if !defined(__clang__) |
| #define JUMPER_IS_SCALAR |
| #elif defined(SK_ARM_HAS_NEON) |
| #define JUMPER_IS_NEON |
| #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SKX |
| #define JUMPER_IS_SKX |
| #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2 |
| #define JUMPER_IS_HSW |
| #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX |
| #define JUMPER_IS_AVX |
| #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 |
| #define JUMPER_IS_SSE41 |
| #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 |
| #define JUMPER_IS_SSE2 |
| #else |
| #define JUMPER_IS_SCALAR |
| #endif |
| |
| // Older Clangs seem to crash when generating non-optimized NEON code for ARMv7. |
| #if defined(__clang__) && !defined(__OPTIMIZE__) && defined(SK_CPU_ARM32) |
| // Apple Clang 9 and vanilla Clang 5 are fine, and may even be conservative. |
| #if defined(__apple_build_version__) && __clang_major__ < 9 |
| #define JUMPER_IS_SCALAR |
| #elif __clang_major__ < 5 |
| #define JUMPER_IS_SCALAR |
| #endif |
| |
| #if defined(JUMPER_IS_NEON) && defined(JUMPER_IS_SCALAR) |
| #undef JUMPER_IS_NEON |
| #endif |
| #endif |
| |
| #if defined(JUMPER_IS_SCALAR) |
| #include <math.h> |
| #elif defined(JUMPER_IS_NEON) |
| #include <arm_neon.h> |
| #else |
| #include <immintrin.h> |
| #endif |
| |
| // Notes: |
| // * rcp_fast and rcp_precise both produce a reciprocal, but rcp_fast is an estimate with at least |
| // 12 bits of precision while rcp_precise should be accurate for float size. For ARM rcp_precise |
| // requires 2 Newton-Raphson refinement steps because its estimate has 8 bit precision, and for |
| // Intel this requires one additional step because its estimate has 12 bit precision. |
| |
| namespace SK_OPTS_NS { |
| #if defined(JUMPER_IS_SCALAR) |
| // This path should lead to portable scalar code. |
| using F = float ; |
| using I32 = int32_t; |
| using U64 = uint64_t; |
| using U32 = uint32_t; |
| using U16 = uint16_t; |
| using U8 = uint8_t ; |
| |
| SI F min(F a, F b) { return fminf(a,b); } |
| SI I32 min(I32 a, I32 b) { return a < b ? a : b; } |
| SI U32 min(U32 a, U32 b) { return a < b ? a : b; } |
| SI F max(F a, F b) { return fmaxf(a,b); } |
| SI I32 max(I32 a, I32 b) { return a > b ? a : b; } |
| SI U32 max(U32 a, U32 b) { return a > b ? a : b; } |
| |
| SI F mad(F f, F m, F a) { return f*m+a; } |
| SI F abs_ (F v) { return fabsf(v); } |
| SI I32 abs_ (I32 v) { return v < 0 ? -v : v; } |
| SI F floor_(F v) { return floorf(v); } |
| SI F ceil_(F v) { return ceilf(v); } |
| SI F rcp_fast(F v) { return 1.0f / v; } |
| SI F rsqrt (F v) { return 1.0f / sqrtf(v); } |
| SI F sqrt_ (F v) { return sqrtf(v); } |
| SI F rcp_precise (F v) { return 1.0f / v; } |
| |
| SI U32 round (F v, F scale) { return (uint32_t)(v*scale + 0.5f); } |
| SI U16 pack(U32 v) { return (U16)v; } |
| SI U8 pack(U16 v) { return (U8)v; } |
| |
| SI F if_then_else(I32 c, F t, F e) { return c ? t : e; } |
| SI bool any(I32 c) { return c != 0; } |
| SI bool all(I32 c) { return c != 0; } |
| |
| template <typename T> |
| SI T gather(const T* p, U32 ix) { return p[ix]; } |
| |
| template <typename T> |
| SI void scatter_masked(T src, T* dst, U32 ix, I32 mask) { |
| dst[ix] = mask ? src : dst[ix]; |
| } |
| |
| SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) { |
| *r = ptr[0]; |
| *g = ptr[1]; |
| } |
| SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) { |
| ptr[0] = r; |
| ptr[1] = g; |
| } |
| SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) { |
| *r = ptr[0]; |
| *g = ptr[1]; |
| *b = ptr[2]; |
| } |
| SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) { |
| *r = ptr[0]; |
| *g = ptr[1]; |
| *b = ptr[2]; |
| *a = ptr[3]; |
| } |
| SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) { |
| ptr[0] = r; |
| ptr[1] = g; |
| ptr[2] = b; |
| ptr[3] = a; |
| } |
| |
| SI void load2(const float* ptr, size_t tail, F* r, F* g) { |
| *r = ptr[0]; |
| *g = ptr[1]; |
| } |
| SI void store2(float* ptr, size_t tail, F r, F g) { |
| ptr[0] = r; |
| ptr[1] = g; |
| } |
| SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) { |
| *r = ptr[0]; |
| *g = ptr[1]; |
| *b = ptr[2]; |
| *a = ptr[3]; |
| } |
| SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) { |
| ptr[0] = r; |
| ptr[1] = g; |
| ptr[2] = b; |
| ptr[3] = a; |
| } |
| |
| #elif defined(JUMPER_IS_NEON) |
| // Since we know we're using Clang, we can use its vector extensions. |
| template <typename T> using V = T __attribute__((ext_vector_type(4))); |
| using F = V<float >; |
| using I32 = V< int32_t>; |
| using U64 = V<uint64_t>; |
| using U32 = V<uint32_t>; |
| using U16 = V<uint16_t>; |
| using U8 = V<uint8_t >; |
| |
| // We polyfill a few routines that Clang doesn't build into ext_vector_types. |
| SI F min(F a, F b) { return vminq_f32(a,b); } |
| SI I32 min(I32 a, I32 b) { return vminq_s32(a,b); } |
| SI U32 min(U32 a, U32 b) { return vminq_u32(a,b); } |
| SI F max(F a, F b) { return vmaxq_f32(a,b); } |
| SI I32 max(I32 a, I32 b) { return vmaxq_s32(a,b); } |
| SI U32 max(U32 a, U32 b) { return vmaxq_u32(a,b); } |
| |
| SI F abs_ (F v) { return vabsq_f32(v); } |
| SI I32 abs_ (I32 v) { return vabsq_s32(v); } |
| SI F rcp_fast(F v) { auto e = vrecpeq_f32 (v); return vrecpsq_f32 (v,e ) * e; } |
| SI F rcp_precise (F v) { auto e = rcp_fast(v); return vrecpsq_f32 (v,e ) * e; } |
| SI F rsqrt (F v) { auto e = vrsqrteq_f32(v); return vrsqrtsq_f32(v,e*e) * e; } |
| |
| SI U16 pack(U32 v) { return __builtin_convertvector(v, U16); } |
| SI U8 pack(U16 v) { return __builtin_convertvector(v, U8); } |
| |
| SI F if_then_else(I32 c, F t, F e) { return vbslq_f32((U32)c,t,e); } |
| |
| #if defined(SK_CPU_ARM64) |
| SI bool any(I32 c) { return vmaxvq_u32((U32)c) != 0; } |
| SI bool all(I32 c) { return vminvq_u32((U32)c) != 0; } |
| |
| SI F mad(F f, F m, F a) { return vfmaq_f32(a,f,m); } |
| SI F floor_(F v) { return vrndmq_f32(v); } |
| SI F ceil_(F v) { return vrndpq_f32(v); } |
| SI F sqrt_(F v) { return vsqrtq_f32(v); } |
| SI U32 round(F v, F scale) { return vcvtnq_u32_f32(v*scale); } |
| #else |
| SI bool any(I32 c) { return c[0] | c[1] | c[2] | c[3]; } |
| SI bool all(I32 c) { return c[0] & c[1] & c[2] & c[3]; } |
| |
| SI F mad(F f, F m, F a) { return vmlaq_f32(a,f,m); } |
| SI F floor_(F v) { |
| F roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v)); |
| return roundtrip - if_then_else(roundtrip > v, 1, 0); |
| } |
| |
| SI F ceil_(F v) { |
| F roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v)); |
| return roundtrip + if_then_else(roundtrip < v, 1, 0); |
| } |
| |
| SI F sqrt_(F v) { |
| auto e = vrsqrteq_f32(v); // Estimate and two refinement steps for e = rsqrt(v). |
| e *= vrsqrtsq_f32(v,e*e); |
| e *= vrsqrtsq_f32(v,e*e); |
| return v*e; // sqrt(v) == v*rsqrt(v). |
| } |
| |
| SI U32 round(F v, F scale) { |
| return vcvtq_u32_f32(mad(v,scale,0.5f)); |
| } |
| #endif |
| |
| template <typename T> |
| SI V<T> gather(const T* p, U32 ix) { |
| return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]}; |
| } |
| template <typename V, typename S> |
| SI void scatter_masked(V src, S* dst, U32 ix, I32 mask) { |
| V before = gather(dst, ix); |
| V after = if_then_else(mask, src, before); |
| dst[ix[0]] = after[0]; |
| dst[ix[1]] = after[1]; |
| dst[ix[2]] = after[2]; |
| dst[ix[3]] = after[3]; |
| } |
| SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) { |
| uint16x4x2_t rg; |
| if (__builtin_expect(tail,0)) { |
| if ( true ) { rg = vld2_lane_u16(ptr + 0, rg, 0); } |
| if (tail > 1) { rg = vld2_lane_u16(ptr + 2, rg, 1); } |
| if (tail > 2) { rg = vld2_lane_u16(ptr + 4, rg, 2); } |
| } else { |
| rg = vld2_u16(ptr); |
| } |
| *r = rg.val[0]; |
| *g = rg.val[1]; |
| } |
| SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) { |
| if (__builtin_expect(tail,0)) { |
| if ( true ) { vst2_lane_u16(ptr + 0, (uint16x4x2_t{{r,g}}), 0); } |
| if (tail > 1) { vst2_lane_u16(ptr + 2, (uint16x4x2_t{{r,g}}), 1); } |
| if (tail > 2) { vst2_lane_u16(ptr + 4, (uint16x4x2_t{{r,g}}), 2); } |
| } else { |
| vst2_u16(ptr, (uint16x4x2_t{{r,g}})); |
| } |
| } |
| SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) { |
| uint16x4x3_t rgb; |
| if (__builtin_expect(tail,0)) { |
| if ( true ) { rgb = vld3_lane_u16(ptr + 0, rgb, 0); } |
| if (tail > 1) { rgb = vld3_lane_u16(ptr + 3, rgb, 1); } |
| if (tail > 2) { rgb = vld3_lane_u16(ptr + 6, rgb, 2); } |
| } else { |
| rgb = vld3_u16(ptr); |
| } |
| *r = rgb.val[0]; |
| *g = rgb.val[1]; |
| *b = rgb.val[2]; |
| } |
| SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) { |
| uint16x4x4_t rgba; |
| if (__builtin_expect(tail,0)) { |
| if ( true ) { rgba = vld4_lane_u16(ptr + 0, rgba, 0); } |
| if (tail > 1) { rgba = vld4_lane_u16(ptr + 4, rgba, 1); } |
| if (tail > 2) { rgba = vld4_lane_u16(ptr + 8, rgba, 2); } |
| } else { |
| rgba = vld4_u16(ptr); |
| } |
| *r = rgba.val[0]; |
| *g = rgba.val[1]; |
| *b = rgba.val[2]; |
| *a = rgba.val[3]; |
| } |
| |
| SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) { |
| if (__builtin_expect(tail,0)) { |
| if ( true ) { vst4_lane_u16(ptr + 0, (uint16x4x4_t{{r,g,b,a}}), 0); } |
| if (tail > 1) { vst4_lane_u16(ptr + 4, (uint16x4x4_t{{r,g,b,a}}), 1); } |
| if (tail > 2) { vst4_lane_u16(ptr + 8, (uint16x4x4_t{{r,g,b,a}}), 2); } |
| } else { |
| vst4_u16(ptr, (uint16x4x4_t{{r,g,b,a}})); |
| } |
| } |
| SI void load2(const float* ptr, size_t tail, F* r, F* g) { |
| float32x4x2_t rg; |
| if (__builtin_expect(tail,0)) { |
| if ( true ) { rg = vld2q_lane_f32(ptr + 0, rg, 0); } |
| if (tail > 1) { rg = vld2q_lane_f32(ptr + 2, rg, 1); } |
| if (tail > 2) { rg = vld2q_lane_f32(ptr + 4, rg, 2); } |
| } else { |
| rg = vld2q_f32(ptr); |
| } |
| *r = rg.val[0]; |
| *g = rg.val[1]; |
| } |
| SI void store2(float* ptr, size_t tail, F r, F g) { |
| if (__builtin_expect(tail,0)) { |
| if ( true ) { vst2q_lane_f32(ptr + 0, (float32x4x2_t{{r,g}}), 0); } |
| if (tail > 1) { vst2q_lane_f32(ptr + 2, (float32x4x2_t{{r,g}}), 1); } |
| if (tail > 2) { vst2q_lane_f32(ptr + 4, (float32x4x2_t{{r,g}}), 2); } |
| } else { |
| vst2q_f32(ptr, (float32x4x2_t{{r,g}})); |
| } |
| } |
| SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) { |
| float32x4x4_t rgba; |
| if (__builtin_expect(tail,0)) { |
| if ( true ) { rgba = vld4q_lane_f32(ptr + 0, rgba, 0); } |
| if (tail > 1) { rgba = vld4q_lane_f32(ptr + 4, rgba, 1); } |
| if (tail > 2) { rgba = vld4q_lane_f32(ptr + 8, rgba, 2); } |
| } else { |
| rgba = vld4q_f32(ptr); |
| } |
| *r = rgba.val[0]; |
| *g = rgba.val[1]; |
| *b = rgba.val[2]; |
| *a = rgba.val[3]; |
| } |
| SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) { |
| if (__builtin_expect(tail,0)) { |
| if ( true ) { vst4q_lane_f32(ptr + 0, (float32x4x4_t{{r,g,b,a}}), 0); } |
| if (tail > 1) { vst4q_lane_f32(ptr + 4, (float32x4x4_t{{r,g,b,a}}), 1); } |
| if (tail > 2) { vst4q_lane_f32(ptr + 8, (float32x4x4_t{{r,g,b,a}}), 2); } |
| } else { |
| vst4q_f32(ptr, (float32x4x4_t{{r,g,b,a}})); |
| } |
| } |
| |
| #elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) |
| // These are __m256 and __m256i, but friendlier and strongly-typed. |
| template <typename T> using V = T __attribute__((ext_vector_type(8))); |
| using F = V<float >; |
| using I32 = V< int32_t>; |
| using U64 = V<uint64_t>; |
| using U32 = V<uint32_t>; |
| using U16 = V<uint16_t>; |
| using U8 = V<uint8_t >; |
| |
| SI F mad(F f, F m, F a) { return _mm256_fmadd_ps(f, m, a); } |
| |
| SI F min(F a, F b) { return _mm256_min_ps(a,b); } |
| SI I32 min(I32 a, I32 b) { return _mm256_min_epi32(a,b); } |
| SI U32 min(U32 a, U32 b) { return _mm256_min_epu32(a,b); } |
| SI F max(F a, F b) { return _mm256_max_ps(a,b); } |
| SI I32 max(I32 a, I32 b) { return _mm256_max_epi32(a,b); } |
| SI U32 max(U32 a, U32 b) { return _mm256_max_epu32(a,b); } |
| |
| SI F abs_ (F v) { return _mm256_and_ps(v, 0-v); } |
| SI I32 abs_ (I32 v) { return _mm256_abs_epi32(v); } |
| SI F floor_(F v) { return _mm256_floor_ps(v); } |
| SI F ceil_(F v) { return _mm256_ceil_ps(v); } |
| SI F rcp_fast(F v) { return _mm256_rcp_ps (v); } |
| SI F rsqrt (F v) { return _mm256_rsqrt_ps(v); } |
| SI F sqrt_ (F v) { return _mm256_sqrt_ps (v); } |
| SI F rcp_precise (F v) { |
| F e = rcp_fast(v); |
| return _mm256_fnmadd_ps(v, e, _mm256_set1_ps(2.0f)) * e; |
| } |
| |
| SI U32 round (F v, F scale) { return _mm256_cvtps_epi32(v*scale); } |
| SI U16 pack(U32 v) { |
| return _mm_packus_epi32(_mm256_extractf128_si256(v, 0), |
| _mm256_extractf128_si256(v, 1)); |
| } |
| SI U8 pack(U16 v) { |
| auto r = _mm_packus_epi16(v,v); |
| return sk_unaligned_load<U8>(&r); |
| } |
| |
| SI F if_then_else(I32 c, F t, F e) { return _mm256_blendv_ps(e,t,c); } |
| // NOTE: This version of 'all' only works with mask values (true == all bits set) |
| SI bool any(I32 c) { return !_mm256_testz_si256(c, _mm256_set1_epi32(-1)); } |
| SI bool all(I32 c) { return _mm256_testc_si256(c, _mm256_set1_epi32(-1)); } |
| |
| template <typename T> |
| SI V<T> gather(const T* p, U32 ix) { |
| return { p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]], |
| p[ix[4]], p[ix[5]], p[ix[6]], p[ix[7]], }; |
| } |
| SI F gather(const float* p, U32 ix) { return _mm256_i32gather_ps (p, ix, 4); } |
| SI U32 gather(const uint32_t* p, U32 ix) { return _mm256_i32gather_epi32(p, ix, 4); } |
| SI U64 gather(const uint64_t* p, U32 ix) { |
| __m256i parts[] = { |
| _mm256_i32gather_epi64(p, _mm256_extracti128_si256(ix,0), 8), |
| _mm256_i32gather_epi64(p, _mm256_extracti128_si256(ix,1), 8), |
| }; |
| return sk_bit_cast<U64>(parts); |
| } |
| template <typename V, typename S> |
| SI void scatter_masked(V src, S* dst, U32 ix, I32 mask) { |
| V before = gather(dst, ix); |
| V after = if_then_else(mask, src, before); |
| dst[ix[0]] = after[0]; |
| dst[ix[1]] = after[1]; |
| dst[ix[2]] = after[2]; |
| dst[ix[3]] = after[3]; |
| dst[ix[4]] = after[4]; |
| dst[ix[5]] = after[5]; |
| dst[ix[6]] = after[6]; |
| dst[ix[7]] = after[7]; |
| } |
| |
| SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) { |
| U16 _0123, _4567; |
| if (__builtin_expect(tail,0)) { |
| _0123 = _4567 = _mm_setzero_si128(); |
| auto* d = &_0123; |
| if (tail > 3) { |
| *d = _mm_loadu_si128(((__m128i*)ptr) + 0); |
| tail -= 4; |
| ptr += 8; |
| d = &_4567; |
| } |
| bool high = false; |
| if (tail > 1) { |
| *d = _mm_loadu_si64(ptr); |
| tail -= 2; |
| ptr += 4; |
| high = true; |
| } |
| if (tail > 0) { |
| (*d)[high ? 4 : 0] = *(ptr + 0); |
| (*d)[high ? 5 : 1] = *(ptr + 1); |
| } |
| } else { |
| _0123 = _mm_loadu_si128(((__m128i*)ptr) + 0); |
| _4567 = _mm_loadu_si128(((__m128i*)ptr) + 1); |
| } |
| *r = _mm_packs_epi32(_mm_srai_epi32(_mm_slli_epi32(_0123, 16), 16), |
| _mm_srai_epi32(_mm_slli_epi32(_4567, 16), 16)); |
| *g = _mm_packs_epi32(_mm_srai_epi32(_0123, 16), |
| _mm_srai_epi32(_4567, 16)); |
| } |
| SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) { |
| auto _0123 = _mm_unpacklo_epi16(r, g), |
| _4567 = _mm_unpackhi_epi16(r, g); |
| if (__builtin_expect(tail,0)) { |
| const auto* s = &_0123; |
| if (tail > 3) { |
| _mm_storeu_si128((__m128i*)ptr, *s); |
| s = &_4567; |
| tail -= 4; |
| ptr += 8; |
| } |
| bool high = false; |
| if (tail > 1) { |
| _mm_storel_epi64((__m128i*)ptr, *s); |
| ptr += 4; |
| tail -= 2; |
| high = true; |
| } |
| if (tail > 0) { |
| if (high) { |
| *(int32_t*)ptr = _mm_extract_epi32(*s, 2); |
| } else { |
| *(int32_t*)ptr = _mm_cvtsi128_si32(*s); |
| } |
| } |
| } else { |
| _mm_storeu_si128((__m128i*)ptr + 0, _0123); |
| _mm_storeu_si128((__m128i*)ptr + 1, _4567); |
| } |
| } |
| |
| SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) { |
| __m128i _0,_1,_2,_3,_4,_5,_6,_7; |
| if (__builtin_expect(tail,0)) { |
| auto load_rgb = [](const uint16_t* src) { |
| auto v = _mm_cvtsi32_si128(*(const uint32_t*)src); |
| return _mm_insert_epi16(v, src[2], 2); |
| }; |
| _1 = _2 = _3 = _4 = _5 = _6 = _7 = _mm_setzero_si128(); |
| if ( true ) { _0 = load_rgb(ptr + 0); } |
| if (tail > 1) { _1 = load_rgb(ptr + 3); } |
| if (tail > 2) { _2 = load_rgb(ptr + 6); } |
| if (tail > 3) { _3 = load_rgb(ptr + 9); } |
| if (tail > 4) { _4 = load_rgb(ptr + 12); } |
| if (tail > 5) { _5 = load_rgb(ptr + 15); } |
| if (tail > 6) { _6 = load_rgb(ptr + 18); } |
| } else { |
| // Load 0+1, 2+3, 4+5 normally, and 6+7 backed up 4 bytes so we don't run over. |
| auto _01 = _mm_loadu_si128((const __m128i*)(ptr + 0)) ; |
| auto _23 = _mm_loadu_si128((const __m128i*)(ptr + 6)) ; |
| auto _45 = _mm_loadu_si128((const __m128i*)(ptr + 12)) ; |
| auto _67 = _mm_srli_si128(_mm_loadu_si128((const __m128i*)(ptr + 16)), 4); |
| _0 = _01; _1 = _mm_srli_si128(_01, 6); |
| _2 = _23; _3 = _mm_srli_si128(_23, 6); |
| _4 = _45; _5 = _mm_srli_si128(_45, 6); |
| _6 = _67; _7 = _mm_srli_si128(_67, 6); |
| } |
| |
| auto _02 = _mm_unpacklo_epi16(_0, _2), // r0 r2 g0 g2 b0 b2 xx xx |
| _13 = _mm_unpacklo_epi16(_1, _3), |
| _46 = _mm_unpacklo_epi16(_4, _6), |
| _57 = _mm_unpacklo_epi16(_5, _7); |
| |
| auto rg0123 = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3 |
| bx0123 = _mm_unpackhi_epi16(_02, _13), // b0 b1 b2 b3 xx xx xx xx |
| rg4567 = _mm_unpacklo_epi16(_46, _57), |
| bx4567 = _mm_unpackhi_epi16(_46, _57); |
| |
| *r = _mm_unpacklo_epi64(rg0123, rg4567); |
| *g = _mm_unpackhi_epi64(rg0123, rg4567); |
| *b = _mm_unpacklo_epi64(bx0123, bx4567); |
| } |
| SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) { |
| __m128i _01, _23, _45, _67; |
| if (__builtin_expect(tail,0)) { |
| auto src = (const double*)ptr; |
| _01 = _23 = _45 = _67 = _mm_setzero_si128(); |
| if (tail > 0) { _01 = _mm_loadl_pd(_01, src+0); } |
| if (tail > 1) { _01 = _mm_loadh_pd(_01, src+1); } |
| if (tail > 2) { _23 = _mm_loadl_pd(_23, src+2); } |
| if (tail > 3) { _23 = _mm_loadh_pd(_23, src+3); } |
| if (tail > 4) { _45 = _mm_loadl_pd(_45, src+4); } |
| if (tail > 5) { _45 = _mm_loadh_pd(_45, src+5); } |
| if (tail > 6) { _67 = _mm_loadl_pd(_67, src+6); } |
| } else { |
| _01 = _mm_loadu_si128(((__m128i*)ptr) + 0); |
| _23 = _mm_loadu_si128(((__m128i*)ptr) + 1); |
| _45 = _mm_loadu_si128(((__m128i*)ptr) + 2); |
| _67 = _mm_loadu_si128(((__m128i*)ptr) + 3); |
| } |
| |
| auto _02 = _mm_unpacklo_epi16(_01, _23), // r0 r2 g0 g2 b0 b2 a0 a2 |
| _13 = _mm_unpackhi_epi16(_01, _23), // r1 r3 g1 g3 b1 b3 a1 a3 |
| _46 = _mm_unpacklo_epi16(_45, _67), |
| _57 = _mm_unpackhi_epi16(_45, _67); |
| |
| auto rg0123 = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3 |
| ba0123 = _mm_unpackhi_epi16(_02, _13), // b0 b1 b2 b3 a0 a1 a2 a3 |
| rg4567 = _mm_unpacklo_epi16(_46, _57), |
| ba4567 = _mm_unpackhi_epi16(_46, _57); |
| |
| *r = _mm_unpacklo_epi64(rg0123, rg4567); |
| *g = _mm_unpackhi_epi64(rg0123, rg4567); |
| *b = _mm_unpacklo_epi64(ba0123, ba4567); |
| *a = _mm_unpackhi_epi64(ba0123, ba4567); |
| } |
| SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) { |
| auto rg0123 = _mm_unpacklo_epi16(r, g), // r0 g0 r1 g1 r2 g2 r3 g3 |
| rg4567 = _mm_unpackhi_epi16(r, g), // r4 g4 r5 g5 r6 g6 r7 g7 |
| ba0123 = _mm_unpacklo_epi16(b, a), |
| ba4567 = _mm_unpackhi_epi16(b, a); |
| |
| auto _01 = _mm_unpacklo_epi32(rg0123, ba0123), |
| _23 = _mm_unpackhi_epi32(rg0123, ba0123), |
| _45 = _mm_unpacklo_epi32(rg4567, ba4567), |
| _67 = _mm_unpackhi_epi32(rg4567, ba4567); |
| |
| if (__builtin_expect(tail,0)) { |
| auto dst = (double*)ptr; |
| if (tail > 0) { _mm_storel_pd(dst+0, _01); } |
| if (tail > 1) { _mm_storeh_pd(dst+1, _01); } |
| if (tail > 2) { _mm_storel_pd(dst+2, _23); } |
| if (tail > 3) { _mm_storeh_pd(dst+3, _23); } |
| if (tail > 4) { _mm_storel_pd(dst+4, _45); } |
| if (tail > 5) { _mm_storeh_pd(dst+5, _45); } |
| if (tail > 6) { _mm_storel_pd(dst+6, _67); } |
| } else { |
| _mm_storeu_si128((__m128i*)ptr + 0, _01); |
| _mm_storeu_si128((__m128i*)ptr + 1, _23); |
| _mm_storeu_si128((__m128i*)ptr + 2, _45); |
| _mm_storeu_si128((__m128i*)ptr + 3, _67); |
| } |
| } |
| |
| SI void load2(const float* ptr, size_t tail, F* r, F* g) { |
| F _0123, _4567; |
| if (__builtin_expect(tail, 0)) { |
| _0123 = _4567 = _mm256_setzero_ps(); |
| F* d = &_0123; |
| if (tail > 3) { |
| *d = _mm256_loadu_ps(ptr); |
| ptr += 8; |
| tail -= 4; |
| d = &_4567; |
| } |
| bool high = false; |
| if (tail > 1) { |
| *d = _mm256_castps128_ps256(_mm_loadu_ps(ptr)); |
| ptr += 4; |
| tail -= 2; |
| high = true; |
| } |
| if (tail > 0) { |
| *d = high ? _mm256_insertf128_ps(*d, _mm_loadu_si64(ptr), 1) |
| : _mm256_insertf128_ps(*d, _mm_loadu_si64(ptr), 0); |
| } |
| } else { |
| _0123 = _mm256_loadu_ps(ptr + 0); |
| _4567 = _mm256_loadu_ps(ptr + 8); |
| } |
| |
| F _0145 = _mm256_permute2f128_pd(_0123, _4567, 0x20), |
| _2367 = _mm256_permute2f128_pd(_0123, _4567, 0x31); |
| |
| *r = _mm256_shuffle_ps(_0145, _2367, 0x88); |
| *g = _mm256_shuffle_ps(_0145, _2367, 0xDD); |
| } |
| SI void store2(float* ptr, size_t tail, F r, F g) { |
| F _0145 = _mm256_unpacklo_ps(r, g), |
| _2367 = _mm256_unpackhi_ps(r, g); |
| F _0123 = _mm256_permute2f128_pd(_0145, _2367, 0x20), |
| _4567 = _mm256_permute2f128_pd(_0145, _2367, 0x31); |
| |
| if (__builtin_expect(tail, 0)) { |
| const __m256* s = &_0123; |
| if (tail > 3) { |
| _mm256_storeu_ps(ptr, *s); |
| s = &_4567; |
| tail -= 4; |
| ptr += 8; |
| } |
| bool high = false; |
| if (tail > 1) { |
| _mm_storeu_ps(ptr, _mm256_extractf128_ps(*s, 0)); |
| ptr += 4; |
| tail -= 2; |
| high = true; |
| } |
| if (tail > 0) { |
| *(ptr + 0) = (*s)[ high ? 4 : 0]; |
| *(ptr + 1) = (*s)[ high ? 5 : 1]; |
| } |
| } else { |
| _mm256_storeu_ps(ptr + 0, _0123); |
| _mm256_storeu_ps(ptr + 8, _4567); |
| } |
| } |
| |
| SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) { |
| F _04, _15, _26, _37; |
| _04 = _15 = _26 = _37 = 0; |
| switch (tail) { |
| case 0: _37 = _mm256_insertf128_ps(_37, _mm_loadu_ps(ptr+28), 1); [[fallthrough]]; |
| case 7: _26 = _mm256_insertf128_ps(_26, _mm_loadu_ps(ptr+24), 1); [[fallthrough]]; |
| case 6: _15 = _mm256_insertf128_ps(_15, _mm_loadu_ps(ptr+20), 1); [[fallthrough]]; |
| case 5: _04 = _mm256_insertf128_ps(_04, _mm_loadu_ps(ptr+16), 1); [[fallthrough]]; |
| case 4: _37 = _mm256_insertf128_ps(_37, _mm_loadu_ps(ptr+12), 0); [[fallthrough]]; |
| case 3: _26 = _mm256_insertf128_ps(_26, _mm_loadu_ps(ptr+ 8), 0); [[fallthrough]]; |
| case 2: _15 = _mm256_insertf128_ps(_15, _mm_loadu_ps(ptr+ 4), 0); [[fallthrough]]; |
| case 1: _04 = _mm256_insertf128_ps(_04, _mm_loadu_ps(ptr+ 0), 0); |
| } |
| |
| F rg0145 = _mm256_unpacklo_ps(_04,_15), // r0 r1 g0 g1 | r4 r5 g4 g5 |
| ba0145 = _mm256_unpackhi_ps(_04,_15), |
| rg2367 = _mm256_unpacklo_ps(_26,_37), |
| ba2367 = _mm256_unpackhi_ps(_26,_37); |
| |
| *r = _mm256_unpacklo_pd(rg0145, rg2367); |
| *g = _mm256_unpackhi_pd(rg0145, rg2367); |
| *b = _mm256_unpacklo_pd(ba0145, ba2367); |
| *a = _mm256_unpackhi_pd(ba0145, ba2367); |
| } |
| SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) { |
| F rg0145 = _mm256_unpacklo_ps(r, g), // r0 g0 r1 g1 | r4 g4 r5 g5 |
| rg2367 = _mm256_unpackhi_ps(r, g), // r2 ... | r6 ... |
| ba0145 = _mm256_unpacklo_ps(b, a), // b0 a0 b1 a1 | b4 a4 b5 a5 |
| ba2367 = _mm256_unpackhi_ps(b, a); // b2 ... | b6 ... |
| |
| F _04 = _mm256_unpacklo_pd(rg0145, ba0145), // r0 g0 b0 a0 | r4 g4 b4 a4 |
| _15 = _mm256_unpackhi_pd(rg0145, ba0145), // r1 ... | r5 ... |
| _26 = _mm256_unpacklo_pd(rg2367, ba2367), // r2 ... | r6 ... |
| _37 = _mm256_unpackhi_pd(rg2367, ba2367); // r3 ... | r7 ... |
| |
| if (__builtin_expect(tail, 0)) { |
| if (tail > 0) { _mm_storeu_ps(ptr+ 0, _mm256_extractf128_ps(_04, 0)); } |
| if (tail > 1) { _mm_storeu_ps(ptr+ 4, _mm256_extractf128_ps(_15, 0)); } |
| if (tail > 2) { _mm_storeu_ps(ptr+ 8, _mm256_extractf128_ps(_26, 0)); } |
| if (tail > 3) { _mm_storeu_ps(ptr+12, _mm256_extractf128_ps(_37, 0)); } |
| if (tail > 4) { _mm_storeu_ps(ptr+16, _mm256_extractf128_ps(_04, 1)); } |
| if (tail > 5) { _mm_storeu_ps(ptr+20, _mm256_extractf128_ps(_15, 1)); } |
| if (tail > 6) { _mm_storeu_ps(ptr+24, _mm256_extractf128_ps(_26, 1)); } |
| } else { |
| F _01 = _mm256_permute2f128_ps(_04, _15, 32), // 32 == 0010 0000 == lo, lo |
| _23 = _mm256_permute2f128_ps(_26, _37, 32), |
| _45 = _mm256_permute2f128_ps(_04, _15, 49), // 49 == 0011 0001 == hi, hi |
| _67 = _mm256_permute2f128_ps(_26, _37, 49); |
| _mm256_storeu_ps(ptr+ 0, _01); |
| _mm256_storeu_ps(ptr+ 8, _23); |
| _mm256_storeu_ps(ptr+16, _45); |
| _mm256_storeu_ps(ptr+24, _67); |
| } |
| } |
| |
| #elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) |
| template <typename T> using V = T __attribute__((ext_vector_type(4))); |
| using F = V<float >; |
| using I32 = V< int32_t>; |
| using U64 = V<uint64_t>; |
| using U32 = V<uint32_t>; |
| using U16 = V<uint16_t>; |
| using U8 = V<uint8_t >; |
| |
| SI F if_then_else(I32 c, F t, F e) { |
| return _mm_or_ps(_mm_and_ps(c, t), _mm_andnot_ps(c, e)); |
| } |
| |
| SI F min(F a, F b) { return _mm_min_ps(a,b); } |
| SI F max(F a, F b) { return _mm_max_ps(a,b); } |
| #if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) |
| SI I32 min(I32 a, I32 b) { return _mm_min_epi32(a,b); } |
| SI U32 min(U32 a, U32 b) { return _mm_min_epu32(a,b); } |
| SI I32 max(I32 a, I32 b) { return _mm_max_epi32(a,b); } |
| SI U32 max(U32 a, U32 b) { return _mm_max_epu32(a,b); } |
| #else |
| SI I32 min(I32 a, I32 b) { |
| return sk_bit_cast<I32>(if_then_else(a < b, sk_bit_cast<F>(a), sk_bit_cast<F>(b))); |
| } |
| SI U32 min(U32 a, U32 b) { |
| return sk_bit_cast<U32>(if_then_else(a < b, sk_bit_cast<F>(a), sk_bit_cast<F>(b))); |
| } |
| SI I32 max(I32 a, I32 b) { |
| return sk_bit_cast<I32>(if_then_else(a > b, sk_bit_cast<F>(a), sk_bit_cast<F>(b))); |
| } |
| SI U32 max(U32 a, U32 b) { |
| return sk_bit_cast<U32>(if_then_else(a > b, sk_bit_cast<F>(a), sk_bit_cast<F>(b))); |
| } |
| #endif |
| |
| SI F mad(F f, F m, F a) { return f*m+a; } |
| SI F abs_(F v) { return _mm_and_ps(v, 0-v); } |
| #if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) |
| SI I32 abs_(I32 v) { return _mm_abs_epi32(v); } |
| #else |
| SI I32 abs_(I32 v) { return max(v, -v); } |
| #endif |
| SI F rcp_fast(F v) { return _mm_rcp_ps (v); } |
| SI F rcp_precise (F v) { F e = rcp_fast(v); return e * (2.0f - v * e); } |
| SI F rsqrt (F v) { return _mm_rsqrt_ps(v); } |
| SI F sqrt_(F v) { return _mm_sqrt_ps (v); } |
| |
| SI U32 round(F v, F scale) { return _mm_cvtps_epi32(v*scale); } |
| |
| SI U16 pack(U32 v) { |
| #if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) |
| auto p = _mm_packus_epi32(v,v); |
| #else |
| // Sign extend so that _mm_packs_epi32() does the pack we want. |
| auto p = _mm_srai_epi32(_mm_slli_epi32(v, 16), 16); |
| p = _mm_packs_epi32(p,p); |
| #endif |
| return sk_unaligned_load<U16>(&p); // We have two copies. Return (the lower) one. |
| } |
| SI U8 pack(U16 v) { |
| auto r = widen_cast<__m128i>(v); |
| r = _mm_packus_epi16(r,r); |
| return sk_unaligned_load<U8>(&r); |
| } |
| |
| // NOTE: This only checks the top bit of each lane, and is incorrect with non-mask values. |
| SI bool any(I32 c) { return _mm_movemask_ps(c) != 0b0000; } |
| SI bool all(I32 c) { return _mm_movemask_ps(c) == 0b1111; } |
| |
| SI F floor_(F v) { |
| #if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) |
| return _mm_floor_ps(v); |
| #else |
| F roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(v)); |
| return roundtrip - if_then_else(roundtrip > v, 1, 0); |
| #endif |
| } |
| |
| SI F ceil_(F v) { |
| #if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) |
| return _mm_ceil_ps(v); |
| #else |
| F roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(v)); |
| return roundtrip + if_then_else(roundtrip < v, 1, 0); |
| #endif |
| } |
| |
| template <typename T> |
| SI V<T> gather(const T* p, U32 ix) { |
| return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]}; |
| } |
| template <typename V, typename S> |
| SI void scatter_masked(V src, S* dst, U32 ix, I32 mask) { |
| V before = gather(dst, ix); |
| V after = if_then_else(mask, src, before); |
| dst[ix[0]] = after[0]; |
| dst[ix[1]] = after[1]; |
| dst[ix[2]] = after[2]; |
| dst[ix[3]] = after[3]; |
| } |
| SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) { |
| __m128i _01; |
| if (__builtin_expect(tail,0)) { |
| _01 = _mm_setzero_si128(); |
| if (tail > 1) { |
| _01 = _mm_loadl_pd(_01, (const double*)ptr); // r0 g0 r1 g1 00 00 00 00 |
| if (tail > 2) { |
| _01 = _mm_insert_epi16(_01, *(ptr+4), 4); // r0 g0 r1 g1 r2 00 00 00 |
| _01 = _mm_insert_epi16(_01, *(ptr+5), 5); // r0 g0 r1 g1 r2 g2 00 00 |
| } |
| } else { |
| _01 = _mm_cvtsi32_si128(*(const uint32_t*)ptr); // r0 g0 00 00 00 00 00 00 |
| } |
| } else { |
| _01 = _mm_loadu_si128(((__m128i*)ptr) + 0); // r0 g0 r1 g1 r2 g2 r3 g3 |
| } |
| auto rg01_23 = _mm_shufflelo_epi16(_01, 0xD8); // r0 r1 g0 g1 r2 g2 r3 g3 |
| auto rg = _mm_shufflehi_epi16(rg01_23, 0xD8); // r0 r1 g0 g1 r2 r3 g2 g3 |
| |
| auto R = _mm_shuffle_epi32(rg, 0x88); // r0 r1 r2 r3 r0 r1 r2 r3 |
| auto G = _mm_shuffle_epi32(rg, 0xDD); // g0 g1 g2 g3 g0 g1 g2 g3 |
| *r = sk_unaligned_load<U16>(&R); |
| *g = sk_unaligned_load<U16>(&G); |
| } |
| SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) { |
| U32 rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g)); |
| if (__builtin_expect(tail, 0)) { |
| if (tail > 1) { |
| _mm_storel_epi64((__m128i*)ptr, rg); |
| if (tail > 2) { |
| int32_t rgpair = rg[2]; |
| memcpy(ptr + 4, &rgpair, sizeof(rgpair)); |
| } |
| } else { |
| int32_t rgpair = rg[0]; |
| memcpy(ptr, &rgpair, sizeof(rgpair)); |
| } |
| } else { |
| _mm_storeu_si128((__m128i*)ptr + 0, rg); |
| } |
| } |
| |
| SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) { |
| __m128i _0, _1, _2, _3; |
| if (__builtin_expect(tail,0)) { |
| _1 = _2 = _3 = _mm_setzero_si128(); |
| auto load_rgb = [](const uint16_t* src) { |
| auto v = _mm_cvtsi32_si128(*(const uint32_t*)src); |
| return _mm_insert_epi16(v, src[2], 2); |
| }; |
| if ( true ) { _0 = load_rgb(ptr + 0); } |
| if (tail > 1) { _1 = load_rgb(ptr + 3); } |
| if (tail > 2) { _2 = load_rgb(ptr + 6); } |
| } else { |
| // Load slightly weirdly to make sure we don't load past the end of 4x48 bits. |
| auto _01 = _mm_loadu_si128((const __m128i*)(ptr + 0)) , |
| _23 = _mm_srli_si128(_mm_loadu_si128((const __m128i*)(ptr + 4)), 4); |
| |
| // Each _N holds R,G,B for pixel N in its lower 3 lanes (upper 5 are ignored). |
| _0 = _01; |
| _1 = _mm_srli_si128(_01, 6); |
| _2 = _23; |
| _3 = _mm_srli_si128(_23, 6); |
| } |
| |
| // De-interlace to R,G,B. |
| auto _02 = _mm_unpacklo_epi16(_0, _2), // r0 r2 g0 g2 b0 b2 xx xx |
| _13 = _mm_unpacklo_epi16(_1, _3); // r1 r3 g1 g3 b1 b3 xx xx |
| |
| auto R = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3 |
| G = _mm_srli_si128(R, 8), |
| B = _mm_unpackhi_epi16(_02, _13); // b0 b1 b2 b3 xx xx xx xx |
| |
| *r = sk_unaligned_load<U16>(&R); |
| *g = sk_unaligned_load<U16>(&G); |
| *b = sk_unaligned_load<U16>(&B); |
| } |
| |
| SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) { |
| __m128i _01, _23; |
| if (__builtin_expect(tail,0)) { |
| _01 = _23 = _mm_setzero_si128(); |
| auto src = (const double*)ptr; |
| if ( true ) { _01 = _mm_loadl_pd(_01, src + 0); } // r0 g0 b0 a0 00 00 00 00 |
| if (tail > 1) { _01 = _mm_loadh_pd(_01, src + 1); } // r0 g0 b0 a0 r1 g1 b1 a1 |
| if (tail > 2) { _23 = _mm_loadl_pd(_23, src + 2); } // r2 g2 b2 a2 00 00 00 00 |
| } else { |
| _01 = _mm_loadu_si128(((__m128i*)ptr) + 0); // r0 g0 b0 a0 r1 g1 b1 a1 |
| _23 = _mm_loadu_si128(((__m128i*)ptr) + 1); // r2 g2 b2 a2 r3 g3 b3 a3 |
| } |
| |
| auto _02 = _mm_unpacklo_epi16(_01, _23), // r0 r2 g0 g2 b0 b2 a0 a2 |
| _13 = _mm_unpackhi_epi16(_01, _23); // r1 r3 g1 g3 b1 b3 a1 a3 |
| |
| auto rg = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3 |
| ba = _mm_unpackhi_epi16(_02, _13); // b0 b1 b2 b3 a0 a1 a2 a3 |
| |
| *r = sk_unaligned_load<U16>((uint16_t*)&rg + 0); |
| *g = sk_unaligned_load<U16>((uint16_t*)&rg + 4); |
| *b = sk_unaligned_load<U16>((uint16_t*)&ba + 0); |
| *a = sk_unaligned_load<U16>((uint16_t*)&ba + 4); |
| } |
| |
| SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) { |
| auto rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g)), |
| ba = _mm_unpacklo_epi16(widen_cast<__m128i>(b), widen_cast<__m128i>(a)); |
| |
| if (__builtin_expect(tail, 0)) { |
| auto dst = (double*)ptr; |
| if ( true ) { _mm_storel_pd(dst + 0, _mm_unpacklo_epi32(rg, ba)); } |
| if (tail > 1) { _mm_storeh_pd(dst + 1, _mm_unpacklo_epi32(rg, ba)); } |
| if (tail > 2) { _mm_storel_pd(dst + 2, _mm_unpackhi_epi32(rg, ba)); } |
| } else { |
| _mm_storeu_si128((__m128i*)ptr + 0, _mm_unpacklo_epi32(rg, ba)); |
| _mm_storeu_si128((__m128i*)ptr + 1, _mm_unpackhi_epi32(rg, ba)); |
| } |
| } |
| |
| SI void load2(const float* ptr, size_t tail, F* r, F* g) { |
| F _01, _23; |
| if (__builtin_expect(tail, 0)) { |
| _01 = _23 = _mm_setzero_si128(); |
| if ( true ) { _01 = _mm_loadl_pi(_01, (__m64 const*)(ptr + 0)); } |
| if (tail > 1) { _01 = _mm_loadh_pi(_01, (__m64 const*)(ptr + 2)); } |
| if (tail > 2) { _23 = _mm_loadl_pi(_23, (__m64 const*)(ptr + 4)); } |
| } else { |
| _01 = _mm_loadu_ps(ptr + 0); |
| _23 = _mm_loadu_ps(ptr + 4); |
| } |
| *r = _mm_shuffle_ps(_01, _23, 0x88); |
| *g = _mm_shuffle_ps(_01, _23, 0xDD); |
| } |
| SI void store2(float* ptr, size_t tail, F r, F g) { |
| F _01 = _mm_unpacklo_ps(r, g), |
| _23 = _mm_unpackhi_ps(r, g); |
| if (__builtin_expect(tail, 0)) { |
| if ( true ) { _mm_storel_pi((__m64*)(ptr + 0), _01); } |
| if (tail > 1) { _mm_storeh_pi((__m64*)(ptr + 2), _01); } |
| if (tail > 2) { _mm_storel_pi((__m64*)(ptr + 4), _23); } |
| } else { |
| _mm_storeu_ps(ptr + 0, _01); |
| _mm_storeu_ps(ptr + 4, _23); |
| } |
| } |
| |
| SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) { |
| F _0, _1, _2, _3; |
| if (__builtin_expect(tail, 0)) { |
| _1 = _2 = _3 = _mm_setzero_si128(); |
| if ( true ) { _0 = _mm_loadu_ps(ptr + 0); } |
| if (tail > 1) { _1 = _mm_loadu_ps(ptr + 4); } |
| if (tail > 2) { _2 = _mm_loadu_ps(ptr + 8); } |
| } else { |
| _0 = _mm_loadu_ps(ptr + 0); |
| _1 = _mm_loadu_ps(ptr + 4); |
| _2 = _mm_loadu_ps(ptr + 8); |
| _3 = _mm_loadu_ps(ptr +12); |
| } |
| _MM_TRANSPOSE4_PS(_0,_1,_2,_3); |
| *r = _0; |
| *g = _1; |
| *b = _2; |
| *a = _3; |
| } |
| |
| SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) { |
| _MM_TRANSPOSE4_PS(r,g,b,a); |
| if (__builtin_expect(tail, 0)) { |
| if ( true ) { _mm_storeu_ps(ptr + 0, r); } |
| if (tail > 1) { _mm_storeu_ps(ptr + 4, g); } |
| if (tail > 2) { _mm_storeu_ps(ptr + 8, b); } |
| } else { |
| _mm_storeu_ps(ptr + 0, r); |
| _mm_storeu_ps(ptr + 4, g); |
| _mm_storeu_ps(ptr + 8, b); |
| _mm_storeu_ps(ptr +12, a); |
| } |
| } |
| #endif |
| |
| // We need to be a careful with casts. |
| // (F)x means cast x to float in the portable path, but bit_cast x to float in the others. |
| // These named casts and bit_cast() are always what they seem to be. |
| #if defined(JUMPER_IS_SCALAR) |
| SI F cast (U32 v) { return (F)v; } |
| SI F cast64(U64 v) { return (F)v; } |
| SI U32 trunc_(F v) { return (U32)v; } |
| SI U32 expand(U16 v) { return (U32)v; } |
| SI U32 expand(U8 v) { return (U32)v; } |
| #else |
| SI F cast (U32 v) { return __builtin_convertvector((I32)v, F); } |
| SI F cast64(U64 v) { return __builtin_convertvector( v, F); } |
| SI U32 trunc_(F v) { return (U32)__builtin_convertvector( v, I32); } |
| SI U32 expand(U16 v) { return __builtin_convertvector( v, U32); } |
| SI U32 expand(U8 v) { return __builtin_convertvector( v, U32); } |
| #endif |
| |
| template <typename V> |
| SI V if_then_else(I32 c, V t, V e) { |
| return sk_bit_cast<V>(if_then_else(c, sk_bit_cast<F>(t), sk_bit_cast<F>(e))); |
| } |
| |
| SI U16 bswap(U16 x) { |
| #if defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) |
| // Somewhat inexplicably Clang decides to do (x<<8) | (x>>8) in 32-bit lanes |
| // when generating code for SSE2 and SSE4.1. We'll do it manually... |
| auto v = widen_cast<__m128i>(x); |
| v = _mm_slli_epi16(v,8) | _mm_srli_epi16(v,8); |
| return sk_unaligned_load<U16>(&v); |
| #else |
| return (x<<8) | (x>>8); |
| #endif |
| } |
| |
| SI F fract(F v) { return v - floor_(v); } |
| |
| // See http://www.machinedlearnings.com/2011/06/fast-approximate-logarithm-exponential.html |
| SI F approx_log2(F x) { |
| // e - 127 is a fair approximation of log2(x) in its own right... |
| F e = cast(sk_bit_cast<U32>(x)) * (1.0f / (1<<23)); |
| |
| // ... but using the mantissa to refine its error is _much_ better. |
| F m = sk_bit_cast<F>((sk_bit_cast<U32>(x) & 0x007fffff) | 0x3f000000); |
| return e |
| - 124.225514990f |
| - 1.498030302f * m |
| - 1.725879990f / (0.3520887068f + m); |
| } |
| |
| SI F approx_log(F x) { |
| const float ln2 = 0.69314718f; |
| return ln2 * approx_log2(x); |
| } |
| |
| SI F approx_pow2(F x) { |
| F f = fract(x); |
| return sk_bit_cast<F>(round(1.0f * (1<<23), |
| x + 121.274057500f |
| - 1.490129070f * f |
| + 27.728023300f / (4.84252568f - f))); |
| } |
| |
| SI F approx_exp(F x) { |
| const float log2_e = 1.4426950408889634074f; |
| return approx_pow2(log2_e * x); |
| } |
| |
| SI F approx_powf(F x, F y) { |
| return if_then_else((x == 0)|(x == 1), x |
| , approx_pow2(approx_log2(x) * y)); |
| } |
| |
| SI F from_half(U16 h) { |
| #if defined(JUMPER_IS_NEON) && defined(SK_CPU_ARM64) \ |
| && !defined(SK_BUILD_FOR_GOOGLE3) // Temporary workaround for some Google3 builds. |
| return vcvt_f32_f16(h); |
| |
| #elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) |
| return _mm256_cvtph_ps(h); |
| |
| #else |
| // Remember, a half is 1-5-10 (sign-exponent-mantissa) with 15 exponent bias. |
| U32 sem = expand(h), |
| s = sem & 0x8000, |
| em = sem ^ s; |
| |
| // Convert to 1-8-23 float with 127 bias, flushing denorm halfs (including zero) to zero. |
| auto denorm = (I32)em < 0x0400; // I32 comparison is often quicker, and always safe here. |
| return if_then_else(denorm, F(0) |
| , sk_bit_cast<F>( (s<<16) + (em<<13) + ((127-15)<<23) )); |
| #endif |
| } |
| |
| SI U16 to_half(F f) { |
| #if defined(JUMPER_IS_NEON) && defined(SK_CPU_ARM64) \ |
| && !defined(SK_BUILD_FOR_GOOGLE3) // Temporary workaround for some Google3 builds. |
| return vcvt_f16_f32(f); |
| |
| #elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) |
| return _mm256_cvtps_ph(f, _MM_FROUND_CUR_DIRECTION); |
| |
| #else |
| // Remember, a float is 1-8-23 (sign-exponent-mantissa) with 127 exponent bias. |
| U32 sem = sk_bit_cast<U32>(f), |
| s = sem & 0x80000000, |
| em = sem ^ s; |
| |
| // Convert to 1-5-10 half with 15 bias, flushing denorm halfs (including zero) to zero. |
| auto denorm = (I32)em < 0x38800000; // I32 comparison is often quicker, and always safe here. |
| return pack(if_then_else(denorm, U32(0) |
| , (s>>16) + (em>>13) - ((127-15)<<10))); |
| #endif |
| } |
| |
| // Our fundamental vector depth is our pixel stride. |
| static constexpr size_t N = sizeof(F) / sizeof(float); |
| |
| // We're finally going to get to what a Stage function looks like! |
| // tail == 0 ~~> work on a full N pixels |
| // tail != 0 ~~> work on only the first tail pixels |
| // tail is always < N. |
| |
| // Any custom ABI to use for all (non-externally-facing) stage functions? |
| // Also decide here whether to use narrow (compromise) or wide (ideal) stages. |
| #if defined(SK_CPU_ARM32) && defined(JUMPER_IS_NEON) |
| // This lets us pass vectors more efficiently on 32-bit ARM. |
| // We can still only pass 16 floats, so best as 4x {r,g,b,a}. |
| #define ABI __attribute__((pcs("aapcs-vfp"))) |
| #define JUMPER_NARROW_STAGES 1 |
| #elif defined(_MSC_VER) |
| // Even if not vectorized, this lets us pass {r,g,b,a} as registers, |
| // instead of {b,a} on the stack. Narrow stages work best for __vectorcall. |
| #define ABI __vectorcall |
| #define JUMPER_NARROW_STAGES 1 |
| #elif defined(__x86_64__) || defined(SK_CPU_ARM64) |
| // These platforms are ideal for wider stages, and their default ABI is ideal. |
| #define ABI |
| #define JUMPER_NARROW_STAGES 0 |
| #else |
| // 32-bit or unknown... shunt them down the narrow path. |
| // Odds are these have few registers and are better off there. |
| #define ABI |
| #define JUMPER_NARROW_STAGES 1 |
| #endif |
| |
| #if JUMPER_NARROW_STAGES |
| struct Params { |
| size_t dx, dy, tail; |
| F dr,dg,db,da; |
| }; |
| using Stage = void(ABI*)(Params*, SkRasterPipelineStage* program, F r, F g, F b, F a); |
| #else |
| using Stage = void(ABI*)(size_t tail, SkRasterPipelineStage* program, size_t dx, size_t dy, |
| F,F,F,F, F,F,F,F); |
| #endif |
| |
| static void start_pipeline(size_t dx, size_t dy, |
| size_t xlimit, size_t ylimit, |
| SkRasterPipelineStage* program) { |
| auto start = (Stage)program->fn; |
| const size_t x0 = dx; |
| for (; dy < ylimit; dy++) { |
| #if JUMPER_NARROW_STAGES |
| Params params = { x0,dy,0, 0,0,0,0 }; |
| while (params.dx + N <= xlimit) { |
| start(¶ms,program, 0,0,0,0); |
| params.dx += N; |
| } |
| if (size_t tail = xlimit - params.dx) { |
| params.tail = tail; |
| start(¶ms,program, 0,0,0,0); |
| } |
| #else |
| dx = x0; |
| while (dx + N <= xlimit) { |
| start(0,program,dx,dy, 0,0,0,0, 0,0,0,0); |
| dx += N; |
| } |
| if (size_t tail = xlimit - dx) { |
| start(tail,program,dx,dy, 0,0,0,0, 0,0,0,0); |
| } |
| #endif |
| } |
| } |
| |
| #if SK_HAS_MUSTTAIL |
| #define JUMPER_MUSTTAIL [[clang::musttail]] |
| #else |
| #define JUMPER_MUSTTAIL |
| #endif |
| |
| #if JUMPER_NARROW_STAGES |
| #define DECLARE_STAGE(name, ARG, STAGE_RET, INC, OFFSET, MUSTTAIL) \ |
| SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, size_t tail, \ |
| F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \ |
| static void ABI name(Params* params, SkRasterPipelineStage* program, \ |
| F r, F g, F b, F a) { \ |
| OFFSET name##_k(Ctx{program},params->dx,params->dy,params->tail, r,g,b,a,\ |
| params->dr, params->dg, params->db, params->da); \ |
| INC; \ |
| auto fn = (Stage)program->fn; \ |
| MUSTTAIL return fn(params, program, r,g,b,a); \ |
| } \ |
| SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, size_t tail, \ |
| F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da) |
| #else |
| #define DECLARE_STAGE(name, ARG, STAGE_RET, INC, OFFSET, MUSTTAIL) \ |
| SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, size_t tail, \ |
| F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \ |
| static void ABI name(size_t tail, SkRasterPipelineStage* program, size_t dx, size_t dy, \ |
| F r, F g, F b, F a, F dr, F dg, F db, F da) { \ |
| OFFSET name##_k(Ctx{program},dx,dy,tail, r,g,b,a, dr,dg,db,da); \ |
| INC; \ |
| auto fn = (Stage)program->fn; \ |
| MUSTTAIL return fn(tail, program, dx,dy, r,g,b,a, dr,dg,db,da); \ |
| } \ |
| SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, size_t tail, \ |
| F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da) |
| #endif |
| |
| // A typical stage returns void, always increments the program counter by 1, and lets the optimizer |
| // decide whether or not tail-calling is appropriate. |
| #define STAGE(name, arg) \ |
| DECLARE_STAGE(name, arg, void, ++program, /*no offset*/, /*no musttail*/) |
| |
| // A tail stage returns void, always increments the program counter by 1, and uses tail-calling. |
| // Tail-calling is necessary in SkSL-generated programs, which can be thousands of ops long, and |
| // could overflow the stack (particularly in debug). |
| #define STAGE_TAIL(name, arg) \ |
| DECLARE_STAGE(name, arg, void, ++program, /*no offset*/, JUMPER_MUSTTAIL) |
| |
| // A branch stage returns an integer, which is added directly to the program counter, and tailcalls. |
| #define STAGE_BRANCH(name, arg) \ |
| DECLARE_STAGE(name, arg, int, /*no increment*/, program +=, JUMPER_MUSTTAIL) |
| |
| // just_return() is a simple no-op stage that only exists to end the chain, |
| // returning back up to start_pipeline(), and from there to the caller. |
| #if JUMPER_NARROW_STAGES |
| static void ABI just_return(Params*, SkRasterPipelineStage*, F,F,F,F) {} |
| #else |
| static void ABI just_return(size_t, SkRasterPipelineStage*, size_t,size_t, F,F,F,F, F,F,F,F) {} |
| #endif |
| |
| // Note that in release builds, most stages consume no stack (thanks to tail call optimization). |
| // However: certain builds (especially with non-clang compilers) may fail to optimize tail |
| // calls, resulting in actual stack frames being generated. |
| // |
| // stack_checkpoint() and stack_rewind() are special stages that can be used to manage stack growth. |
| // If a pipeline contains a stack_checkpoint, followed by any number of stack_rewind (at any point), |
| // the C++ stack will be reset to the state it was at when the stack_checkpoint was initially hit. |
| // |
| // All instances of stack_rewind (as well as the one instance of stack_checkpoint near the start of |
| // a pipeline) share a single context (of type SkRasterPipeline_RewindCtx). That context holds the |
| // full state of the mutable registers that are normally passed to the next stage in the program. |
| // |
| // stack_rewind is the only stage other than just_return that actually returns (rather than jumping |
| // to the next stage in the program). Before it does so, it stashes all of the registers in the |
| // context. This includes the updated `program` pointer. Unlike stages that tail call exactly once, |
| // stack_checkpoint calls the next stage in the program repeatedly, as long as the `program` in the |
| // context is overwritten (i.e., as long as a stack_rewind was the reason the pipeline returned, |
| // rather than a just_return). |
| // |
| // Normally, just_return is the only stage that returns, and no other stage does anything after a |
| // subsequent (called) stage returns, so the stack just unwinds all the way to start_pipeline. |
| // With stack_checkpoint on the stack, any stack_rewind stages will return all the way up to the |
| // stack_checkpoint. That grabs the values that would have been passed to the next stage (from the |
| // context), and continues the linear execution of stages, but has reclaimed all of the stack frames |
| // pushed before the stack_rewind before doing so. |
| #if JUMPER_NARROW_STAGES |
| static void ABI stack_checkpoint(Params* params, SkRasterPipelineStage* program, |
| F r, F g, F b, F a) { |
| SkRasterPipeline_RewindCtx* ctx = Ctx{program}; |
| while (program) { |
| auto next = (Stage)(++program)->fn; |
| |
| ctx->stage = nullptr; |
| next(params, program, r, g, b, a); |
| program = ctx->stage; |
| |
| if (program) { |
| r = sk_unaligned_load<F>(ctx->r ); |
| g = sk_unaligned_load<F>(ctx->g ); |
| b = sk_unaligned_load<F>(ctx->b ); |
| a = sk_unaligned_load<F>(ctx->a ); |
| params->dr = sk_unaligned_load<F>(ctx->dr); |
| params->dg = sk_unaligned_load<F>(ctx->dg); |
| params->db = sk_unaligned_load<F>(ctx->db); |
| params->da = sk_unaligned_load<F>(ctx->da); |
| } |
| } |
| } |
| static void ABI stack_rewind(Params* params, SkRasterPipelineStage* program, |
| F r, F g, F b, F a) { |
| SkRasterPipeline_RewindCtx* ctx = Ctx{program}; |
| sk_unaligned_store(ctx->r , r ); |
| sk_unaligned_store(ctx->g , g ); |
| sk_unaligned_store(ctx->b , b ); |
| sk_unaligned_store(ctx->a , a ); |
| sk_unaligned_store(ctx->dr, params->dr); |
| sk_unaligned_store(ctx->dg, params->dg); |
| sk_unaligned_store(ctx->db, params->db); |
| sk_unaligned_store(ctx->da, params->da); |
| ctx->stage = program; |
| } |
| #else |
| static void ABI stack_checkpoint(size_t tail, SkRasterPipelineStage* program, |
| size_t dx, size_t dy, |
| F r, F g, F b, F a, F dr, F dg, F db, F da) { |
| SkRasterPipeline_RewindCtx* ctx = Ctx{program}; |
| while (program) { |
| auto next = (Stage)(++program)->fn; |
| |
| ctx->stage = nullptr; |
| next(tail, program, dx, dy, r, g, b, a, dr, dg, db, da); |
| program = ctx->stage; |
| |
| if (program) { |
| r = sk_unaligned_load<F>(ctx->r ); |
| g = sk_unaligned_load<F>(ctx->g ); |
| b = sk_unaligned_load<F>(ctx->b ); |
| a = sk_unaligned_load<F>(ctx->a ); |
| dr = sk_unaligned_load<F>(ctx->dr); |
| dg = sk_unaligned_load<F>(ctx->dg); |
| db = sk_unaligned_load<F>(ctx->db); |
| da = sk_unaligned_load<F>(ctx->da); |
| } |
| } |
| } |
| static void ABI stack_rewind(size_t tail, SkRasterPipelineStage* program, |
| size_t dx, size_t dy, |
| F r, F g, F b, F a, F dr, F dg, F db, F da) { |
| SkRasterPipeline_RewindCtx* ctx = Ctx{program}; |
| sk_unaligned_store(ctx->r , r ); |
| sk_unaligned_store(ctx->g , g ); |
| sk_unaligned_store(ctx->b , b ); |
| sk_unaligned_store(ctx->a , a ); |
| sk_unaligned_store(ctx->dr, dr); |
| sk_unaligned_store(ctx->dg, dg); |
| sk_unaligned_store(ctx->db, db); |
| sk_unaligned_store(ctx->da, da); |
| ctx->stage = program; |
| } |
| #endif |
| |
| |
| // We could start defining normal Stages now. But first, some helper functions. |
| |
| // These load() and store() methods are tail-aware, |
| // but focus mainly on keeping the at-stride tail==0 case fast. |
| |
| template <typename V, typename T> |
| SI V load(const T* src, size_t tail) { |
| #if !defined(JUMPER_IS_SCALAR) |
| __builtin_assume(tail < N); |
| if (__builtin_expect(tail, 0)) { |
| V v{}; // Any inactive lanes are zeroed. |
| switch (tail) { |
| case 7: v[6] = src[6]; [[fallthrough]]; |
| case 6: v[5] = src[5]; [[fallthrough]]; |
| case 5: v[4] = src[4]; [[fallthrough]]; |
| case 4: memcpy(&v, src, 4*sizeof(T)); break; |
| case 3: v[2] = src[2]; [[fallthrough]]; |
| case 2: memcpy(&v, src, 2*sizeof(T)); break; |
| case 1: memcpy(&v, src, 1*sizeof(T)); break; |
| } |
| return v; |
| } |
| #endif |
| return sk_unaligned_load<V>(src); |
| } |
| |
| template <typename V, typename T> |
| SI void store(T* dst, V v, size_t tail) { |
| #if !defined(JUMPER_IS_SCALAR) |
| __builtin_assume(tail < N); |
| if (__builtin_expect(tail, 0)) { |
| switch (tail) { |
| case 7: dst[6] = v[6]; [[fallthrough]]; |
| case 6: dst[5] = v[5]; [[fallthrough]]; |
| case 5: dst[4] = v[4]; [[fallthrough]]; |
| case 4: memcpy(dst, &v, 4*sizeof(T)); break; |
| case 3: dst[2] = v[2]; [[fallthrough]]; |
| case 2: memcpy(dst, &v, 2*sizeof(T)); break; |
| case 1: memcpy(dst, &v, 1*sizeof(T)); break; |
| } |
| return; |
| } |
| #endif |
| sk_unaligned_store(dst, v); |
| } |
| |
| SI F from_byte(U8 b) { |
| return cast(expand(b)) * (1/255.0f); |
| } |
| SI F from_short(U16 s) { |
| return cast(expand(s)) * (1/65535.0f); |
| } |
| SI void from_565(U16 _565, F* r, F* g, F* b) { |
| U32 wide = expand(_565); |
| *r = cast(wide & (31<<11)) * (1.0f / (31<<11)); |
| *g = cast(wide & (63<< 5)) * (1.0f / (63<< 5)); |
| *b = cast(wide & (31<< 0)) * (1.0f / (31<< 0)); |
| } |
| SI void from_4444(U16 _4444, F* r, F* g, F* b, F* a) { |
| U32 wide = expand(_4444); |
| *r = cast(wide & (15<<12)) * (1.0f / (15<<12)); |
| *g = cast(wide & (15<< 8)) * (1.0f / (15<< 8)); |
| *b = cast(wide & (15<< 4)) * (1.0f / (15<< 4)); |
| *a = cast(wide & (15<< 0)) * (1.0f / (15<< 0)); |
| } |
| SI void from_8888(U32 _8888, F* r, F* g, F* b, F* a) { |
| *r = cast((_8888 ) & 0xff) * (1/255.0f); |
| *g = cast((_8888 >> 8) & 0xff) * (1/255.0f); |
| *b = cast((_8888 >> 16) & 0xff) * (1/255.0f); |
| *a = cast((_8888 >> 24) ) * (1/255.0f); |
| } |
| SI void from_88(U16 _88, F* r, F* g) { |
| U32 wide = expand(_88); |
| *r = cast((wide ) & 0xff) * (1/255.0f); |
| *g = cast((wide >> 8) & 0xff) * (1/255.0f); |
| } |
| SI void from_1010102(U32 rgba, F* r, F* g, F* b, F* a) { |
| *r = cast((rgba ) & 0x3ff) * (1/1023.0f); |
| *g = cast((rgba >> 10) & 0x3ff) * (1/1023.0f); |
| *b = cast((rgba >> 20) & 0x3ff) * (1/1023.0f); |
| *a = cast((rgba >> 30) ) * (1/ 3.0f); |
| } |
| SI void from_1010102_xr(U32 rgba, F* r, F* g, F* b, F* a) { |
| static constexpr float min = -0.752941f; |
| static constexpr float max = 1.25098f; |
| static constexpr float range = max - min; |
| *r = cast((rgba ) & 0x3ff) * (1/1023.0f) * range + min; |
| *g = cast((rgba >> 10) & 0x3ff) * (1/1023.0f) * range + min; |
| *b = cast((rgba >> 20) & 0x3ff) * (1/1023.0f) * range + min; |
| *a = cast((rgba >> 30) ) * (1/ 3.0f); |
| } |
| SI void from_1616(U32 _1616, F* r, F* g) { |
| *r = cast((_1616 ) & 0xffff) * (1/65535.0f); |
| *g = cast((_1616 >> 16) & 0xffff) * (1/65535.0f); |
| } |
| SI void from_16161616(U64 _16161616, F* r, F* g, F* b, F* a) { |
| *r = cast64((_16161616 ) & 0xffff) * (1/65535.0f); |
| *g = cast64((_16161616 >> 16) & 0xffff) * (1/65535.0f); |
| *b = cast64((_16161616 >> 32) & 0xffff) * (1/65535.0f); |
| *a = cast64((_16161616 >> 48) & 0xffff) * (1/65535.0f); |
| } |
| |
| // Used by load_ and store_ stages to get to the right (dx,dy) starting point of contiguous memory. |
| template <typename T> |
| SI T* ptr_at_xy(const SkRasterPipeline_MemoryCtx* ctx, size_t dx, size_t dy) { |
| return (T*)ctx->pixels + dy*ctx->stride + dx; |
| } |
| |
| // clamp v to [0,limit). |
| SI F clamp(F v, F limit) { |
| F inclusive = sk_bit_cast<F>( sk_bit_cast<U32>(limit) - 1 ); // Exclusive -> inclusive. |
| return min(max(0.0f, v), inclusive); |
| } |
| |
| // clamp to (0,limit). |
| SI F clamp_ex(F v, F limit) { |
| const F inclusiveZ = std::numeric_limits<float>::min(), |
| inclusiveL = sk_bit_cast<F>( sk_bit_cast<U32>(limit) - 1 ); |
| return min(max(inclusiveZ, v), inclusiveL); |
| } |
| |
| // Bhaskara I's sine approximation |
| // 16x(pi - x) / (5*pi^2 - 4x(pi - x) |
| // ... divide by 4 |
| // 4x(pi - x) / 5*pi^2/4 - x(pi - x) |
| // |
| // This is a good approximation only for 0 <= x <= pi, so we use symmetries to get |
| // radians into that range first. |
| SI F sin_(F v) { |
| constexpr float Pi = SK_ScalarPI; |
| F x = fract(v * (0.5f/Pi)) * (2*Pi); |
| I32 neg = x > Pi; |
| x = if_then_else(neg, x - Pi, x); |
| |
| F pair = x * (Pi - x); |
| x = 4.0f * pair / ((5*Pi*Pi/4) - pair); |
| x = if_then_else(neg, -x, x); |
| return x; |
| } |
| |
| SI F cos_(F v) { |
| return sin_(v + (SK_ScalarPI/2)); |
| } |
| |
| /* "GENERATING ACCURATE VALUES FOR THE TANGENT FUNCTION" |
| https://mae.ufl.edu/~uhk/ACCURATE-TANGENT.pdf |
| |
| approx = x + (1/3)x^3 + (2/15)x^5 + (17/315)x^7 + (62/2835)x^9 |
| |
| Some simplifications: |
| 1. tan(x) is periodic, -PI/2 < x < PI/2 |
| 2. tan(x) is odd, so tan(-x) = -tan(x) |
| 3. Our polynomial approximation is best near zero, so we use the following identity |
| tan(x) + tan(y) |
| tan(x + y) = ----------------- |
| 1 - tan(x)*tan(y) |
| tan(PI/4) = 1 |
| |
| So for x > PI/8, we do the following refactor: |
| x' = x - PI/4 |
| |
| 1 + tan(x') |
| tan(x) = ------------ |
| 1 - tan(x') |
| */ |
| SI F tan_(F x) { |
| constexpr float Pi = SK_ScalarPI; |
| // periodic between -pi/2 ... pi/2 |
| // shift to 0...Pi, scale 1/Pi to get into 0...1, then fract, scale-up, shift-back |
| x = fract((1/Pi)*x + 0.5f) * Pi - (Pi/2); |
| |
| I32 neg = (x < 0.0f); |
| x = if_then_else(neg, -x, x); |
| |
| // minimize total error by shifting if x > pi/8 |
| I32 use_quotient = (x > (Pi/8)); |
| x = if_then_else(use_quotient, x - (Pi/4), x); |
| |
| // 9th order poly = 4th order(x^2) * x |
| F x2 = x * x; |
| x *= 1 + x2 * (1/3.0f + |
| x2 * (2/15.0f + |
| x2 * (17/315.0f + |
| x2 * (62/2835.0f)))); |
| x = if_then_else(use_quotient, (1+x)/(1-x), x); |
| x = if_then_else(neg, -x, x); |
| return x; |
| } |
| |
| /* Use 4th order polynomial approximation from https://arachnoid.com/polysolve/ |
| with 129 values of x,atan(x) for x:[0...1] |
| This only works for 0 <= x <= 1 |
| */ |
| SI F approx_atan_unit(F x) { |
| // y = 0.14130025741326729 x⁴ |
| // - 0.34312835980675116 x³ |
| // - 0.016172900528248768 x² |
| // + 1.00376969762003850 x |
| // - 0.00014758242182738969 |
| return x * (x * (x * (x * 0.14130025741326729f - 0.34312835980675116f) |
| - 0.016172900528248768f) |
| + 1.0037696976200385f) |
| - 0.00014758242182738969f; |
| } |
| |
| // Use identity atan(x) = pi/2 - atan(1/x) for x > 1 |
| SI F atan_(F x) { |
| I32 neg = (x < 0.0f); |
| x = if_then_else(neg, -x, x); |
| I32 flip = (x > 1.0f); |
| x = if_then_else(flip, 1/x, x); |
| x = approx_atan_unit(x); |
| x = if_then_else(flip, SK_ScalarPI/2 - x, x); |
| x = if_then_else(neg, -x, x); |
| return x; |
| } |
| |
| |
| // Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun: |
| // https://books.google.com/books/content?id=ZboM5tOFWtsC&pg=PA81&img=1&zoom=3&hl=en&bul=1&sig=ACfU3U2M75tG_iGVOS92eQspr14LTq02Nw&ci=0%2C15%2C999%2C1279&edge=0 |
| // http://screen/8YGJxUGFQ49bVX6 |
| SI F asin_(F x) { |
| I32 neg = (x < 0.0f); |
| x = if_then_else(neg, -x, x); |
| F poly = x * (x * (x * -0.0187293f + 0.0742610f) - 0.2121144f) + 1.5707288f; |
| x = SK_ScalarPI/2 - sqrt_(1 - x) * poly; |
| x = if_then_else(neg, -x, x); |
| return x; |
| } |
| |
| SI F acos_(F x) { |
| return SK_ScalarPI/2 - asin_(x); |
| } |
| |
| /* Use identity atan(x) = pi/2 - atan(1/x) for x > 1 |
| By swapping y,x to ensure the ratio is <= 1, we can safely call atan_unit() |
| which avoids a 2nd divide instruction if we had instead called atan(). |
| */ |
| SI F atan2_(F y0, F x0) { |
| I32 flip = (abs_(y0) > abs_(x0)); |
| F y = if_then_else(flip, x0, y0); |
| F x = if_then_else(flip, y0, x0); |
| F arg = y/x; |
| |
| I32 neg = (arg < 0.0f); |
| arg = if_then_else(neg, -arg, arg); |
| |
| F r = approx_atan_unit(arg); |
| r = if_then_else(flip, SK_ScalarPI/2 - r, r); |
| r = if_then_else(neg, -r, r); |
| |
| // handle quadrant distinctions |
| r = if_then_else((y0 >= 0) & (x0 < 0), r + SK_ScalarPI, r); |
| r = if_then_else((y0 < 0) & (x0 <= 0), r - SK_ScalarPI, r); |
| // Note: we don't try to handle 0,0 or infinities |
| return r; |
| } |
| |
| // Used by gather_ stages to calculate the base pointer and a vector of indices to load. |
| template <typename T> |
| SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, F x, F y) { |
| // We use exclusive clamp so that our min value is > 0 because ULP subtraction using U32 would |
| // produce a NaN if applied to +0.f. |
| x = clamp_ex(x, ctx->width ); |
| y = clamp_ex(y, ctx->height); |
| x = sk_bit_cast<F>(sk_bit_cast<U32>(x) - (uint32_t)ctx->roundDownAtInteger); |
| y = sk_bit_cast<F>(sk_bit_cast<U32>(y) - (uint32_t)ctx->roundDownAtInteger); |
| *ptr = (const T*)ctx->pixels; |
| return trunc_(y)*ctx->stride + trunc_(x); |
| } |
| |
| // We often have a nominally [0,1] float value we need to scale and convert to an integer, |
| // whether for a table lookup or to pack back down into bytes for storage. |
| // |
| // In practice, especially when dealing with interesting color spaces, that notionally |
| // [0,1] float may be out of [0,1] range. Unorms cannot represent that, so we must clamp. |
| // |
| // You can adjust the expected input to [0,bias] by tweaking that parameter. |
| SI U32 to_unorm(F v, F scale, F bias = 1.0f) { |
| // Any time we use round() we probably want to use to_unorm(). |
| return round(min(max(0.0f, v), bias), scale); |
| } |
| |
| SI I32 cond_to_mask(I32 cond) { |
| #if defined(JUMPER_IS_SCALAR) |
| // In scalar mode, conditions are bools (0 or 1), but we want to store and operate on masks |
| // (eg, using bitwise operations to select values). |
| return if_then_else(cond, I32(~0), I32(0)); |
| #else |
| // In SIMD mode, our various instruction sets already represent conditions as masks. |
| return cond; |
| #endif |
| } |
| |
| // Now finally, normal Stages! |
| |
| STAGE(seed_shader, NoCtx) { |
| static constexpr float iota[] = { |
| 0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f, |
| 8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f, |
| }; |
| // It's important for speed to explicitly cast(dx) and cast(dy), |
| // which has the effect of splatting them to vectors before converting to floats. |
| // On Intel this breaks a data dependency on previous loop iterations' registers. |
| r = cast(dx) + sk_unaligned_load<F>(iota); |
| g = cast(dy) + 0.5f; |
| b = 1.0f; // This is w=1 for matrix multiplies by the device coords. |
| a = 0; |
| } |
| |
| STAGE(store_device_xy01, F* dst) { |
| // This is very similar to `seed_shader + store_src`, but b/a are backwards. |
| // (sk_FragCoord actually puts w=1 in the w slot.) |
| static constexpr float iota[] = { |
| 0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f, |
| 8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f, |
| }; |
| dst[0] = cast(dx) + sk_unaligned_load<F>(iota); |
| dst[1] = cast(dy) + 0.5f; |
| dst[2] = 0.0f; |
| dst[3] = 1.0f; |
| } |
| |
| STAGE(dither, const float* rate) { |
| // Get [(dx,dy), (dx+1,dy), (dx+2,dy), ...] loaded up in integer vectors. |
| uint32_t iota[] = {0,1,2,3,4,5,6,7}; |
| U32 X = dx + sk_unaligned_load<U32>(iota), |
| Y = dy; |
| |
| // We're doing 8x8 ordered dithering, see https://en.wikipedia.org/wiki/Ordered_dithering. |
| // In this case n=8 and we're using the matrix that looks like 1/64 x [ 0 48 12 60 ... ]. |
| |
| // We only need X and X^Y from here on, so it's easier to just think of that as "Y". |
| Y ^= X; |
| |
| // We'll mix the bottom 3 bits of each of X and Y to make 6 bits, |
| // for 2^6 == 64 == 8x8 matrix values. If X=abc and Y=def, we make fcebda. |
| U32 M = (Y & 1) << 5 | (X & 1) << 4 |
| | (Y & 2) << 2 | (X & 2) << 1 |
| | (Y & 4) >> 1 | (X & 4) >> 2; |
| |
| // Scale that dither to [0,1), then (-0.5,+0.5), here using 63/128 = 0.4921875 as 0.5-epsilon. |
| // We want to make sure our dither is less than 0.5 in either direction to keep exact values |
| // like 0 and 1 unchanged after rounding. |
| F dither = cast(M) * (2/128.0f) - (63/128.0f); |
| |
| r += *rate*dither; |
| g += *rate*dither; |
| b += *rate*dither; |
| |
| r = max(0.0f, min(r, a)); |
| g = max(0.0f, min(g, a)); |
| b = max(0.0f, min(b, a)); |
| } |
| |
| // load 4 floats from memory, and splat them into r,g,b,a |
| STAGE(uniform_color, const SkRasterPipeline_UniformColorCtx* c) { |
| r = c->r; |
| g = c->g; |
| b = c->b; |
| a = c->a; |
| } |
| STAGE(unbounded_uniform_color, const SkRasterPipeline_UniformColorCtx* c) { |
| r = c->r; |
| g = c->g; |
| b = c->b; |
| a = c->a; |
| } |
| // load 4 floats from memory, and splat them into dr,dg,db,da |
| STAGE(uniform_color_dst, const SkRasterPipeline_UniformColorCtx* c) { |
| dr = c->r; |
| dg = c->g; |
| db = c->b; |
| da = c->a; |
| } |
| |
| // splats opaque-black into r,g,b,a |
| STAGE(black_color, NoCtx) { |
| r = g = b = 0.0f; |
| a = 1.0f; |
| } |
| |
| STAGE(white_color, NoCtx) { |
| r = g = b = a = 1.0f; |
| } |
| |
| // load registers r,g,b,a from context (mirrors store_src) |
| STAGE(load_src, const float* ptr) { |
| r = sk_unaligned_load<F>(ptr + 0*N); |
| g = sk_unaligned_load<F>(ptr + 1*N); |
| b = sk_unaligned_load<F>(ptr + 2*N); |
| a = sk_unaligned_load<F>(ptr + 3*N); |
| } |
| |
| // store registers r,g,b,a into context (mirrors load_src) |
| STAGE(store_src, float* ptr) { |
| sk_unaligned_store(ptr + 0*N, r); |
| sk_unaligned_store(ptr + 1*N, g); |
| sk_unaligned_store(ptr + 2*N, b); |
| sk_unaligned_store(ptr + 3*N, a); |
| } |
| // store registers r,g into context |
| STAGE(store_src_rg, float* ptr) { |
| sk_unaligned_store(ptr + 0*N, r); |
| sk_unaligned_store(ptr + 1*N, g); |
| } |
| // load registers r,g from context |
| STAGE(load_src_rg, float* ptr) { |
| r = sk_unaligned_load<F>(ptr + 0*N); |
| g = sk_unaligned_load<F>(ptr + 1*N); |
| } |
| // store register a into context |
| STAGE(store_src_a, float* ptr) { |
| sk_unaligned_store(ptr, a); |
| } |
| |
| // load registers dr,dg,db,da from context (mirrors store_dst) |
| STAGE(load_dst, const float* ptr) { |
| dr = sk_unaligned_load<F>(ptr + 0*N); |
| dg = sk_unaligned_load<F>(ptr + 1*N); |
| db = sk_unaligned_load<F>(ptr + 2*N); |
| da = sk_unaligned_load<F>(ptr + 3*N); |
| } |
| |
| // store registers dr,dg,db,da into context (mirrors load_dst) |
| STAGE(store_dst, float* ptr) { |
| sk_unaligned_store(ptr + 0*N, dr); |
| sk_unaligned_store(ptr + 1*N, dg); |
| sk_unaligned_store(ptr + 2*N, db); |
| sk_unaligned_store(ptr + 3*N, da); |
| } |
| |
| // Most blend modes apply the same logic to each channel. |
| #define BLEND_MODE(name) \ |
| SI F name##_channel(F s, F d, F sa, F da); \ |
| STAGE(name, NoCtx) { \ |
| r = name##_channel(r,dr,a,da); \ |
| g = name##_channel(g,dg,a,da); \ |
| b = name##_channel(b,db,a,da); \ |
| a = name##_channel(a,da,a,da); \ |
| } \ |
| SI F name##_channel(F s, F d, F sa, F da) |
| |
| SI F inv(F x) { return 1.0f - x; } |
| SI F two(F x) { return x + x; } |
| |
| |
| BLEND_MODE(clear) { return 0; } |
| BLEND_MODE(srcatop) { return s*da + d*inv(sa); } |
| BLEND_MODE(dstatop) { return d*sa + s*inv(da); } |
| BLEND_MODE(srcin) { return s * da; } |
| BLEND_MODE(dstin) { return d * sa; } |
| BLEND_MODE(srcout) { return s * inv(da); } |
| BLEND_MODE(dstout) { return d * inv(sa); } |
| BLEND_MODE(srcover) { return mad(d, inv(sa), s); } |
| BLEND_MODE(dstover) { return mad(s, inv(da), d); } |
| |
| BLEND_MODE(modulate) { return s*d; } |
| BLEND_MODE(multiply) { return s*inv(da) + d*inv(sa) + s*d; } |
| BLEND_MODE(plus_) { return min(s + d, 1.0f); } // We can clamp to either 1 or sa. |
| BLEND_MODE(screen) { return s + d - s*d; } |
| BLEND_MODE(xor_) { return s*inv(da) + d*inv(sa); } |
| #undef BLEND_MODE |
| |
| // Most other blend modes apply the same logic to colors, and srcover to alpha. |
| #define BLEND_MODE(name) \ |
| SI F name##_channel(F s, F d, F sa, F da); \ |
| STAGE(name, NoCtx) { \ |
| r = name##_channel(r,dr,a,da); \ |
| g = name##_channel(g,dg,a,da); \ |
| b = name##_channel(b,db,a,da); \ |
| a = mad(da, inv(a), a); \ |
| } \ |
| SI F name##_channel(F s, F d, F sa, F da) |
| |
| BLEND_MODE(darken) { return s + d - max(s*da, d*sa) ; } |
| BLEND_MODE(lighten) { return s + d - min(s*da, d*sa) ; } |
| BLEND_MODE(difference) { return s + d - two(min(s*da, d*sa)); } |
| BLEND_MODE(exclusion) { return s + d - two(s*d); } |
| |
| BLEND_MODE(colorburn) { |
| return if_then_else(d == da, d + s*inv(da), |
| if_then_else(s == 0, /* s + */ d*inv(sa), |
| sa*(da - min(da, (da-d)*sa*rcp_fast(s))) + s*inv(da) + d*inv(sa))); |
| } |
| BLEND_MODE(colordodge) { |
| return if_then_else(d == 0, /* d + */ s*inv(da), |
| if_then_else(s == sa, s + d*inv(sa), |
| sa*min(da, (d*sa)*rcp_fast(sa - s)) + s*inv(da) + d*inv(sa))); |
| } |
| BLEND_MODE(hardlight) { |
| return s*inv(da) + d*inv(sa) |
| + if_then_else(two(s) <= sa, two(s*d), sa*da - two((da-d)*(sa-s))); |
| } |
| BLEND_MODE(overlay) { |
| return s*inv(da) + d*inv(sa) |
| + if_then_else(two(d) <= da, two(s*d), sa*da - two((da-d)*(sa-s))); |
| } |
| |
| BLEND_MODE(softlight) { |
| F m = if_then_else(da > 0, d / da, 0), |
| s2 = two(s), |
| m4 = two(two(m)); |
| |
| // The logic forks three ways: |
| // 1. dark src? |
| // 2. light src, dark dst? |
| // 3. light src, light dst? |
| F darkSrc = d*(sa + (s2 - sa)*(1.0f - m)), // Used in case 1. |
| darkDst = (m4*m4 + m4)*(m - 1.0f) + 7.0f*m, // Used in case 2. |
| liteDst = sqrt_(m) - m, |
| liteSrc = d*sa + da*(s2 - sa) * if_then_else(two(two(d)) <= da, darkDst, liteDst); // 2 or 3? |
| return s*inv(da) + d*inv(sa) + if_then_else(s2 <= sa, darkSrc, liteSrc); // 1 or (2 or 3)? |
| } |
| #undef BLEND_MODE |
| |
| // We're basing our implemenation of non-separable blend modes on |
| // https://www.w3.org/TR/compositing-1/#blendingnonseparable. |
| // and |
| // https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf |
| // They're equivalent, but ES' math has been better simplified. |
| // |
| // Anything extra we add beyond that is to make the math work with premul inputs. |
| |
| SI F sat(F r, F g, F b) { return max(r, max(g,b)) - min(r, min(g,b)); } |
| SI F lum(F r, F g, F b) { return r*0.30f + g*0.59f + b*0.11f; } |
| |
| SI void set_sat(F* r, F* g, F* b, F s) { |
| F mn = min(*r, min(*g,*b)), |
| mx = max(*r, max(*g,*b)), |
| sat = mx - mn; |
| |
| // Map min channel to 0, max channel to s, and scale the middle proportionally. |
| auto scale = [=](F c) { |
| return if_then_else(sat == 0, 0, (c - mn) * s / sat); |
| }; |
| *r = scale(*r); |
| *g = scale(*g); |
| *b = scale(*b); |
| } |
| SI void set_lum(F* r, F* g, F* b, F l) { |
| F diff = l - lum(*r, *g, *b); |
| *r += diff; |
| *g += diff; |
| *b += diff; |
| } |
| SI void clip_color(F* r, F* g, F* b, F a) { |
| F mn = min(*r, min(*g, *b)), |
| mx = max(*r, max(*g, *b)), |
| l = lum(*r, *g, *b); |
| |
| auto clip = [=](F c) { |
| c = if_then_else(mn < 0 && l != mn, l + (c - l) * ( l) / (l - mn), c); |
| c = if_then_else(mx > a && l != mx, l + (c - l) * (a - l) / (mx - l), c); |
| c = max(c, 0.0f); // Sometimes without this we may dip just a little negative. |
| return c; |
| }; |
| *r = clip(*r); |
| *g = clip(*g); |
| *b = clip(*b); |
| } |
| |
| STAGE(hue, NoCtx) { |
| F R = r*a, |
| G = g*a, |
| B = b*a; |
| |
| set_sat(&R, &G, &B, sat(dr,dg,db)*a); |
| set_lum(&R, &G, &B, lum(dr,dg,db)*a); |
| clip_color(&R,&G,&B, a*da); |
| |
| r = r*inv(da) + dr*inv(a) + R; |
| g = g*inv(da) + dg*inv(a) + G; |
| b = b*inv(da) + db*inv(a) + B; |
| a = a + da - a*da; |
| } |
| STAGE(saturation, NoCtx) { |
| F R = dr*a, |
| G = dg*a, |
| B = db*a; |
| |
| set_sat(&R, &G, &B, sat( r, g, b)*da); |
| set_lum(&R, &G, &B, lum(dr,dg,db)* a); // (This is not redundant.) |
| clip_color(&R,&G,&B, a*da); |
| |
| r = r*inv(da) + dr*inv(a) + R; |
| g = g*inv(da) + dg*inv(a) + G; |
| b = b*inv(da) + db*inv(a) + B; |
| a = a + da - a*da; |
| } |
| STAGE(color, NoCtx) { |
| F R = r*da, |
| G = g*da, |
| B = b*da; |
| |
| set_lum(&R, &G, &B, lum(dr,dg,db)*a); |
| clip_color(&R,&G,&B, a*da); |
| |
| r = r*inv(da) + dr*inv(a) + R; |
| g = g*inv(da) + dg*inv(a) + G; |
| b = b*inv(da) + db*inv(a) + B; |
| a = a + da - a*da; |
| } |
| STAGE(luminosity, NoCtx) { |
| F R = dr*a, |
| G = dg*a, |
| B = db*a; |
| |
| set_lum(&R, &G, &B, lum(r,g,b)*da); |
| clip_color(&R,&G,&B, a*da); |
| |
| r = r*inv(da) + dr*inv(a) + R; |
| g = g*inv(da) + dg*inv(a) + G; |
| b = b*inv(da) + db*inv(a) + B; |
| a = a + da - a*da; |
| } |
| |
| STAGE(srcover_rgba_8888, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy); |
| |
| U32 dst = load<U32>(ptr, tail); |
| dr = cast((dst ) & 0xff); |
| dg = cast((dst >> 8) & 0xff); |
| db = cast((dst >> 16) & 0xff); |
| da = cast((dst >> 24) ); |
| // {dr,dg,db,da} are in [0,255] |
| // { r, g, b, a} are in [0, 1] (but may be out of gamut) |
| |
| r = mad(dr, inv(a), r*255.0f); |
| g = mad(dg, inv(a), g*255.0f); |
| b = mad(db, inv(a), b*255.0f); |
| a = mad(da, inv(a), a*255.0f); |
| // { r, g, b, a} are now in [0,255] (but may be out of gamut) |
| |
| // to_unorm() clamps back to gamut. Scaling by 1 since we're already 255-biased. |
| dst = to_unorm(r, 1, 255) |
| | to_unorm(g, 1, 255) << 8 |
| | to_unorm(b, 1, 255) << 16 |
| | to_unorm(a, 1, 255) << 24; |
| store(ptr, dst, tail); |
| } |
| |
| SI F clamp_01_(F v) { return min(max(0.0f, v), 1.0f); } |
| |
| STAGE(clamp_01, NoCtx) { |
| r = clamp_01_(r); |
| g = clamp_01_(g); |
| b = clamp_01_(b); |
| a = clamp_01_(a); |
| } |
| |
| STAGE(clamp_gamut, NoCtx) { |
| a = min(max(a, 0.0f), 1.0f); |
| r = min(max(r, 0.0f), a); |
| g = min(max(g, 0.0f), a); |
| b = min(max(b, 0.0f), a); |
| } |
| |
| STAGE(set_rgb, const float* rgb) { |
| r = rgb[0]; |
| g = rgb[1]; |
| b = rgb[2]; |
| } |
| |
| STAGE(unbounded_set_rgb, const float* rgb) { |
| r = rgb[0]; |
| g = rgb[1]; |
| b = rgb[2]; |
| } |
| |
| STAGE(swap_rb, NoCtx) { |
| auto tmp = r; |
| r = b; |
| b = tmp; |
| } |
| STAGE(swap_rb_dst, NoCtx) { |
| auto tmp = dr; |
| dr = db; |
| db = tmp; |
| } |
| |
| STAGE(move_src_dst, NoCtx) { |
| dr = r; |
| dg = g; |
| db = b; |
| da = a; |
| } |
| STAGE(move_dst_src, NoCtx) { |
| r = dr; |
| g = dg; |
| b = db; |
| a = da; |
| } |
| STAGE(swap_src_dst, NoCtx) { |
| std::swap(r, dr); |
| std::swap(g, dg); |
| std::swap(b, db); |
| std::swap(a, da); |
| } |
| |
| STAGE(premul, NoCtx) { |
| r = r * a; |
| g = g * a; |
| b = b * a; |
| } |
| STAGE(premul_dst, NoCtx) { |
| dr = dr * da; |
| dg = dg * da; |
| db = db * da; |
| } |
| STAGE(unpremul, NoCtx) { |
| float inf = sk_bit_cast<float>(0x7f800000); |
| auto scale = if_then_else(1.0f/a < inf, 1.0f/a, 0); |
| r *= scale; |
| g *= scale; |
| b *= scale; |
| } |
| STAGE(unpremul_polar, NoCtx) { |
| float inf = sk_bit_cast<float>(0x7f800000); |
| auto scale = if_then_else(1.0f/a < inf, 1.0f/a, 0); |
| g *= scale; |
| b *= scale; |
| } |
| |
| STAGE(force_opaque , NoCtx) { a = 1; } |
| STAGE(force_opaque_dst, NoCtx) { da = 1; } |
| |
| STAGE(rgb_to_hsl, NoCtx) { |
| F mx = max(r, max(g,b)), |
| mn = min(r, min(g,b)), |
| d = mx - mn, |
| d_rcp = 1.0f / d; |
| |
| F h = (1/6.0f) * |
| if_then_else(mx == mn, 0, |
| if_then_else(mx == r, (g-b)*d_rcp + if_then_else(g < b, 6.0f, 0), |
| if_then_else(mx == g, (b-r)*d_rcp + 2.0f, |
| (r-g)*d_rcp + 4.0f))); |
| |
| F l = (mx + mn) * 0.5f; |
| F s = if_then_else(mx == mn, 0, |
| d / if_then_else(l > 0.5f, 2.0f-mx-mn, mx+mn)); |
| |
| r = h; |
| g = s; |
| b = l; |
| } |
| STAGE(hsl_to_rgb, NoCtx) { |
| // See GrRGBToHSLFilterEffect.fp |
| |
| F h = r, |
| s = g, |
| l = b, |
| c = (1.0f - abs_(2.0f * l - 1)) * s; |
| |
| auto hue_to_rgb = [&](F hue) { |
| F q = clamp_01_(abs_(fract(hue) * 6.0f - 3.0f) - 1.0f); |
| return (q - 0.5f) * c + l; |
| }; |
| |
| r = hue_to_rgb(h + 0.0f/3.0f); |
| g = hue_to_rgb(h + 2.0f/3.0f); |
| b = hue_to_rgb(h + 1.0f/3.0f); |
| } |
| |
| // Color conversion functions used in gradient interpolation, based on |
| // https://www.w3.org/TR/css-color-4/#color-conversion-code |
| STAGE(css_lab_to_xyz, NoCtx) { |
| constexpr float k = 24389 / 27.0f; |
| constexpr float e = 216 / 24389.0f; |
| |
| F f[3]; |
| f[1] = (r + 16) * (1 / 116.0f); |
| f[0] = (g * (1 / 500.0f)) + f[1]; |
| f[2] = f[1] - (b * (1 / 200.0f)); |
| |
| F f_cubed[3] = { f[0]*f[0]*f[0], f[1]*f[1]*f[1], f[2]*f[2]*f[2] }; |
| |
| F xyz[3] = { |
| if_then_else(f_cubed[0] > e, f_cubed[0], (116 * f[0] - 16) * (1 / k)), |
| if_then_else(r > k * e, f_cubed[1], r * (1 / k)), |
| if_then_else(f_cubed[2] > e, f_cubed[2], (116 * f[2] - 16) * (1 / k)) |
| }; |
| |
| constexpr float D50[3] = { 0.3457f / 0.3585f, 1.0f, (1.0f - 0.3457f - 0.3585f) / 0.3585f }; |
| r = xyz[0]*D50[0]; |
| g = xyz[1]*D50[1]; |
| b = xyz[2]*D50[2]; |
| } |
| |
| STAGE(css_oklab_to_linear_srgb, NoCtx) { |
| F l_ = r + 0.3963377774f * g + 0.2158037573f * b, |
| m_ = r - 0.1055613458f * g - 0.0638541728f * b, |
| s_ = r - 0.0894841775f * g - 1.2914855480f * b; |
| |
| F l = l_*l_*l_, |
| m = m_*m_*m_, |
| s = s_*s_*s_; |
| |
| r = +4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s; |
| g = -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s; |
| b = -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s; |
| } |
| |
| // Skia stores all polar colors with hue in the first component, so this "LCH -> Lab" transform |
| // actually takes "HCL". This is also used to do the same polar transform for OkHCL to OkLAB. |
| // See similar comments & logic in SkGradientShaderBase.cpp. |
| STAGE(css_hcl_to_lab, NoCtx) { |
| F H = r, |
| C = g, |
| L = b; |
| |
| F hueRadians = H * (SK_FloatPI / 180); |
| |
| r = L; |
| g = C * cos_(hueRadians); |
| b = C * sin_(hueRadians); |
| } |
| |
| SI F mod_(F x, float y) { |
| return x - y * floor_(x * (1 / y)); |
| } |
| |
| struct RGB { F r, g, b; }; |
| |
| SI RGB css_hsl_to_srgb_(F h, F s, F l) { |
| h = mod_(h, 360); |
| |
| s *= 0.01f; |
| l *= 0.01f; |
| |
| F k[3] = { |
| mod_(0 + h * (1 / 30.0f), 12), |
| mod_(8 + h * (1 / 30.0f), 12), |
| mod_(4 + h * (1 / 30.0f), 12) |
| }; |
| F a = s * min(l, 1 - l); |
| return { |
| l - a * max(-1.0f, min(min(k[0] - 3.0f, 9.0f - k[0]), 1.0f)), |
| l - a * max(-1.0f, min(min(k[1] - 3.0f, 9.0f - k[1]), 1.0f)), |
| l - a * max(-1.0f, min(min(k[2] - 3.0f, 9.0f - k[2]), 1.0f)) |
| }; |
| } |
| |
| STAGE(css_hsl_to_srgb, NoCtx) { |
| RGB rgb = css_hsl_to_srgb_(r, g, b); |
| r = rgb.r; |
| g = rgb.g; |
| b = rgb.b; |
| } |
| |
| STAGE(css_hwb_to_srgb, NoCtx) { |
| g *= 0.01f; |
| b *= 0.01f; |
| |
| F gray = g / (g + b); |
| |
| RGB rgb = css_hsl_to_srgb_(r, 100.0f, 50.0f); |
| rgb.r = rgb.r * (1 - g - b) + g; |
| rgb.g = rgb.g * (1 - g - b) + g; |
| rgb.b = rgb.b * (1 - g - b) + g; |
| |
| auto isGray = (g + b) >= 1; |
| |
| r = if_then_else(isGray, gray, rgb.r); |
| g = if_then_else(isGray, gray, rgb.g); |
| b = if_then_else(isGray, gray, rgb.b); |
| } |
| |
| // Derive alpha's coverage from rgb coverage and the values of src and dst alpha. |
| SI F alpha_coverage_from_rgb_coverage(F a, F da, F cr, F cg, F cb) { |
| return if_then_else(a < da, min(cr, min(cg,cb)) |
| , max(cr, max(cg,cb))); |
| } |
| |
| STAGE(scale_1_float, const float* c) { |
| r = r * *c; |
| g = g * *c; |
| b = b * *c; |
| a = a * *c; |
| } |
| STAGE(scale_u8, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy); |
| |
| auto scales = load<U8>(ptr, tail); |
| auto c = from_byte(scales); |
| |
| r = r * c; |
| g = g * c; |
| b = b * c; |
| a = a * c; |
| } |
| STAGE(scale_565, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy); |
| |
| F cr,cg,cb; |
| from_565(load<U16>(ptr, tail), &cr, &cg, &cb); |
| |
| F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb); |
| |
| r = r * cr; |
| g = g * cg; |
| b = b * cb; |
| a = a * ca; |
| } |
| |
| SI F lerp(F from, F to, F t) { |
| return mad(to-from, t, from); |
| } |
| |
| STAGE(lerp_1_float, const float* c) { |
| r = lerp(dr, r, *c); |
| g = lerp(dg, g, *c); |
| b = lerp(db, b, *c); |
| a = lerp(da, a, *c); |
| } |
| STAGE(scale_native, const float scales[]) { |
| auto c = sk_unaligned_load<F>(scales); |
| r = r * c; |
| g = g * c; |
| b = b * c; |
| a = a * c; |
| } |
| STAGE(lerp_native, const float scales[]) { |
| auto c = sk_unaligned_load<F>(scales); |
| r = lerp(dr, r, c); |
| g = lerp(dg, g, c); |
| b = lerp(db, b, c); |
| a = lerp(da, a, c); |
| } |
| STAGE(lerp_u8, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy); |
| |
| auto scales = load<U8>(ptr, tail); |
| auto c = from_byte(scales); |
| |
| r = lerp(dr, r, c); |
| g = lerp(dg, g, c); |
| b = lerp(db, b, c); |
| a = lerp(da, a, c); |
| } |
| STAGE(lerp_565, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy); |
| |
| F cr,cg,cb; |
| from_565(load<U16>(ptr, tail), &cr, &cg, &cb); |
| |
| F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb); |
| |
| r = lerp(dr, r, cr); |
| g = lerp(dg, g, cg); |
| b = lerp(db, b, cb); |
| a = lerp(da, a, ca); |
| } |
| |
| STAGE(emboss, const SkRasterPipeline_EmbossCtx* ctx) { |
| auto mptr = ptr_at_xy<const uint8_t>(&ctx->mul, dx,dy), |
| aptr = ptr_at_xy<const uint8_t>(&ctx->add, dx,dy); |
| |
| F mul = from_byte(load<U8>(mptr, tail)), |
| add = from_byte(load<U8>(aptr, tail)); |
| |
| r = mad(r, mul, add); |
| g = mad(g, mul, add); |
| b = mad(b, mul, add); |
| } |
| |
| STAGE(byte_tables, const SkRasterPipeline_TablesCtx* tables) { |
| r = from_byte(gather(tables->r, to_unorm(r, 255))); |
| g = from_byte(gather(tables->g, to_unorm(g, 255))); |
| b = from_byte(gather(tables->b, to_unorm(b, 255))); |
| a = from_byte(gather(tables->a, to_unorm(a, 255))); |
| } |
| |
| SI F strip_sign(F x, U32* sign) { |
| U32 bits = sk_bit_cast<U32>(x); |
| *sign = bits & 0x80000000; |
| return sk_bit_cast<F>(bits ^ *sign); |
| } |
| |
| SI F apply_sign(F x, U32 sign) { |
| return sk_bit_cast<F>(sign | sk_bit_cast<U32>(x)); |
| } |
| |
| STAGE(parametric, const skcms_TransferFunction* ctx) { |
| auto fn = [&](F v) { |
| U32 sign; |
| v = strip_sign(v, &sign); |
| |
| F r = if_then_else(v <= ctx->d, mad(ctx->c, v, ctx->f) |
| , approx_powf(mad(ctx->a |