blob: ebba0eb9b8b5de0df56a0200a88784aa0edf6153 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/ganesh/v1/Device_v1.h"
#include "include/gpu/GrDirectContext.h"
#include "include/gpu/GrRecordingContext.h"
#include "include/private/SkTPin.h"
#include "src/core/SkDraw.h"
#include "src/core/SkImagePriv.h"
#include "src/core/SkMaskFilterBase.h"
#include "src/core/SkSamplingPriv.h"
#include "src/core/SkSpecialImage.h"
#include "src/gpu/ganesh/GrBlurUtils.h"
#include "src/gpu/ganesh/GrCaps.h"
#include "src/gpu/ganesh/GrColorSpaceXform.h"
#include "src/gpu/ganesh/GrOpsTypes.h"
#include "src/gpu/ganesh/GrRecordingContextPriv.h"
#include "src/gpu/ganesh/GrStyle.h"
#include "src/gpu/ganesh/SkGr.h"
#include "src/gpu/ganesh/effects/GrBicubicEffect.h"
#include "src/gpu/ganesh/effects/GrBlendFragmentProcessor.h"
#include "src/gpu/ganesh/effects/GrTextureEffect.h"
#include "src/gpu/ganesh/geometry/GrRect.h"
#include "src/gpu/ganesh/geometry/GrStyledShape.h"
#include "src/gpu/ganesh/v1/SurfaceDrawContext_v1.h"
#include "src/image/SkImage_Base.h"
#include "src/image/SkImage_Gpu.h"
namespace {
inline bool use_shader(bool textureIsAlphaOnly, const SkPaint& paint) {
return textureIsAlphaOnly && paint.getShader();
}
//////////////////////////////////////////////////////////////////////////////
// Helper functions for dropping src rect subset with GrSamplerState::Filter::kLinear.
static const SkScalar kColorBleedTolerance = 0.001f;
bool has_aligned_samples(const SkRect& srcRect, const SkRect& transformedRect) {
// detect pixel disalignment
if (SkScalarAbs(SkScalarRoundToScalar(transformedRect.left()) - transformedRect.left()) < kColorBleedTolerance &&
SkScalarAbs(SkScalarRoundToScalar(transformedRect.top()) - transformedRect.top()) < kColorBleedTolerance &&
SkScalarAbs(transformedRect.width() - srcRect.width()) < kColorBleedTolerance &&
SkScalarAbs(transformedRect.height() - srcRect.height()) < kColorBleedTolerance) {
return true;
}
return false;
}
bool may_color_bleed(const SkRect& srcRect,
const SkRect& transformedRect,
const SkMatrix& m,
int numSamples) {
// Only gets called if has_aligned_samples returned false.
// So we can assume that sampling is axis aligned but not texel aligned.
SkASSERT(!has_aligned_samples(srcRect, transformedRect));
SkRect innerSrcRect(srcRect), innerTransformedRect, outerTransformedRect(transformedRect);
if (numSamples > 1) {
innerSrcRect.inset(SK_Scalar1, SK_Scalar1);
} else {
innerSrcRect.inset(SK_ScalarHalf, SK_ScalarHalf);
}
m.mapRect(&innerTransformedRect, innerSrcRect);
// The gap between outerTransformedRect and innerTransformedRect
// represents the projection of the source border area, which is
// problematic for color bleeding. We must check whether any
// destination pixels sample the border area.
outerTransformedRect.inset(kColorBleedTolerance, kColorBleedTolerance);
innerTransformedRect.outset(kColorBleedTolerance, kColorBleedTolerance);
SkIRect outer, inner;
outerTransformedRect.round(&outer);
innerTransformedRect.round(&inner);
// If the inner and outer rects round to the same result, it means the
// border does not overlap any pixel centers. Yay!
return inner != outer;
}
bool can_ignore_linear_filtering_subset(const SkRect& srcSubset,
const SkMatrix& srcRectToDeviceSpace,
int numSamples) {
if (srcRectToDeviceSpace.rectStaysRect()) {
// sampling is axis-aligned
SkRect transformedRect;
srcRectToDeviceSpace.mapRect(&transformedRect, srcSubset);
if (has_aligned_samples(srcSubset, transformedRect) ||
!may_color_bleed(srcSubset, transformedRect, srcRectToDeviceSpace, numSamples)) {
return true;
}
}
return false;
}
//////////////////////////////////////////////////////////////////////////////
// Helper functions for tiling a large SkBitmap
static const int kBmpSmallTileSize = 1 << 10;
inline size_t get_tile_count(const SkIRect& srcRect, int tileSize) {
int tilesX = (srcRect.fRight / tileSize) - (srcRect.fLeft / tileSize) + 1;
int tilesY = (srcRect.fBottom / tileSize) - (srcRect.fTop / tileSize) + 1;
// We calculate expected tile count before we read the bitmap's pixels, so hypothetically we can
// have lazy images with excessive dimensions that would cause (tilesX*tilesY) to overflow int.
// In these situations we also later fail to allocate a bitmap to store the lazy image, so there
// isn't really a performance concern around one image turning into millions of tiles.
return SkSafeMath::Mul(tilesX, tilesY);
}
int determine_tile_size(const SkIRect& src, int maxTileSize) {
if (maxTileSize <= kBmpSmallTileSize) {
return maxTileSize;
}
size_t maxTileTotalTileSize = get_tile_count(src, maxTileSize);
size_t smallTotalTileSize = get_tile_count(src, kBmpSmallTileSize);
maxTileTotalTileSize *= maxTileSize * maxTileSize;
smallTotalTileSize *= kBmpSmallTileSize * kBmpSmallTileSize;
if (maxTileTotalTileSize > 2 * smallTotalTileSize) {
return kBmpSmallTileSize;
} else {
return maxTileSize;
}
}
// Given a bitmap, an optional src rect, and a context with a clip and matrix determine what
// pixels from the bitmap are necessary.
SkIRect determine_clipped_src_rect(int width, int height,
const GrClip* clip,
const SkMatrix& viewMatrix,
const SkMatrix& srcToDstRect,
const SkISize& imageDimensions,
const SkRect* srcRectPtr) {
SkIRect clippedSrcIRect = clip ? clip->getConservativeBounds()
: SkIRect::MakeWH(width, height);
SkMatrix inv = SkMatrix::Concat(viewMatrix, srcToDstRect);
if (!inv.invert(&inv)) {
return SkIRect::MakeEmpty();
}
SkRect clippedSrcRect = SkRect::Make(clippedSrcIRect);
inv.mapRect(&clippedSrcRect);
if (srcRectPtr) {
if (!clippedSrcRect.intersect(*srcRectPtr)) {
return SkIRect::MakeEmpty();
}
}
clippedSrcRect.roundOut(&clippedSrcIRect);
SkIRect bmpBounds = SkIRect::MakeSize(imageDimensions);
if (!clippedSrcIRect.intersect(bmpBounds)) {
return SkIRect::MakeEmpty();
}
return clippedSrcIRect;
}
// tileSize and clippedSubset are valid if true is returned
bool should_tile_image_id(GrRecordingContext* context,
SkISize rtSize,
const GrClip* clip,
uint32_t imageID,
const SkISize& imageSize,
const SkMatrix& ctm,
const SkMatrix& srcToDst,
const SkRect* src,
int maxTileSize,
int* tileSize,
SkIRect* clippedSubset) {
// if it's larger than the max tile size, then we have no choice but tiling.
if (imageSize.width() > maxTileSize || imageSize.height() > maxTileSize) {
*clippedSubset = determine_clipped_src_rect(rtSize.width(), rtSize.height(), clip, ctm,
srcToDst, imageSize, src);
*tileSize = determine_tile_size(*clippedSubset, maxTileSize);
return true;
}
// If the image would only produce 4 tiles of the smaller size, don't bother tiling it.
const size_t area = imageSize.width() * imageSize.height();
if (area < 4 * kBmpSmallTileSize * kBmpSmallTileSize) {
return false;
}
// At this point we know we could do the draw by uploading the entire bitmap as a texture.
// However, if the texture would be large compared to the cache size and we don't require most
// of it for this draw then tile to reduce the amount of upload and cache spill.
// NOTE: if the context is not a direct context, it doesn't have access to the resource cache,
// and theoretically, the resource cache's limits could be being changed on another thread, so
// even having access to just the limit wouldn't be a reliable test during recording here.
// Instead, we will just upload the entire image to be on the safe side and not tile.
auto direct = context->asDirectContext();
if (!direct) {
return false;
}
// assumption here is that sw bitmap size is a good proxy for its size as
// a texture
size_t bmpSize = area * sizeof(SkPMColor); // assume 32bit pixels
size_t cacheSize = direct->getResourceCacheLimit();
if (bmpSize < cacheSize / 2) {
return false;
}
// Figure out how much of the src we will need based on the src rect and clipping. Reject if
// tiling memory savings would be < 50%.
*clippedSubset = determine_clipped_src_rect(rtSize.width(), rtSize.height(), clip, ctm,
srcToDst, imageSize, src);
*tileSize = kBmpSmallTileSize; // already know whole bitmap fits in one max sized tile.
size_t usedTileBytes = get_tile_count(*clippedSubset, kBmpSmallTileSize) *
kBmpSmallTileSize * kBmpSmallTileSize *
sizeof(SkPMColor); // assume 32bit pixels;
return usedTileBytes * 2 < bmpSize;
}
// This method outsets 'iRect' by 'outset' all around and then clamps its extents to
// 'clamp'. 'offset' is adjusted to remain positioned over the top-left corner
// of 'iRect' for all possible outsets/clamps.
inline void clamped_outset_with_offset(SkIRect* iRect, int outset, SkPoint* offset,
const SkIRect& clamp) {
iRect->outset(outset, outset);
int leftClampDelta = clamp.fLeft - iRect->fLeft;
if (leftClampDelta > 0) {
offset->fX -= outset - leftClampDelta;
iRect->fLeft = clamp.fLeft;
} else {
offset->fX -= outset;
}
int topClampDelta = clamp.fTop - iRect->fTop;
if (topClampDelta > 0) {
offset->fY -= outset - topClampDelta;
iRect->fTop = clamp.fTop;
} else {
offset->fY -= outset;
}
if (iRect->fRight > clamp.fRight) {
iRect->fRight = clamp.fRight;
}
if (iRect->fBottom > clamp.fBottom) {
iRect->fBottom = clamp.fBottom;
}
}
//////////////////////////////////////////////////////////////////////////////
// Helper functions for drawing an image with v1::SurfaceDrawContext
enum class ImageDrawMode {
// Src and dst have been restricted to the image content. May need to clamp, no need to decal.
kOptimized,
// Src and dst are their original sizes, requires use of a decal instead of plain clamping.
// This is used when a dst clip is provided and extends outside of the optimized dst rect.
kDecal,
// Src or dst are empty, or do not intersect the image content so don't draw anything.
kSkip
};
/**
* Optimize the src rect sampling area within an image (sized 'width' x 'height') such that
* 'outSrcRect' will be completely contained in the image's bounds. The corresponding rect
* to draw will be output to 'outDstRect'. The mapping between src and dst will be cached in
* 'srcToDst'. Outputs are not always updated when kSkip is returned.
*
* If 'origSrcRect' is null, implicitly use the image bounds. If 'origDstRect' is null, use the
* original src rect. 'dstClip' should be null when there is no additional clipping.
*/
ImageDrawMode optimize_sample_area(const SkISize& image, const SkRect* origSrcRect,
const SkRect* origDstRect, const SkPoint dstClip[4],
SkRect* outSrcRect, SkRect* outDstRect,
SkMatrix* srcToDst) {
SkRect srcBounds = SkRect::MakeIWH(image.fWidth, image.fHeight);
SkRect src = origSrcRect ? *origSrcRect : srcBounds;
SkRect dst = origDstRect ? *origDstRect : src;
if (src.isEmpty() || dst.isEmpty()) {
return ImageDrawMode::kSkip;
}
if (outDstRect) {
*srcToDst = SkMatrix::RectToRect(src, dst);
} else {
srcToDst->setIdentity();
}
if (origSrcRect && !srcBounds.contains(src)) {
if (!src.intersect(srcBounds)) {
return ImageDrawMode::kSkip;
}
srcToDst->mapRect(&dst, src);
// Both src and dst have gotten smaller. If dstClip is provided, confirm it is still
// contained in dst, otherwise cannot optimize the sample area and must use a decal instead
if (dstClip) {
for (int i = 0; i < 4; ++i) {
if (!dst.contains(dstClip[i].fX, dstClip[i].fY)) {
// Must resort to using a decal mode restricted to the clipped 'src', and
// use the original dst rect (filling in src bounds as needed)
*outSrcRect = src;
*outDstRect = (origDstRect ? *origDstRect
: (origSrcRect ? *origSrcRect : srcBounds));
return ImageDrawMode::kDecal;
}
}
}
}
// The original src and dst were fully contained in the image, or there was no dst clip to
// worry about, or the clip was still contained in the restricted dst rect.
*outSrcRect = src;
*outDstRect = dst;
return ImageDrawMode::kOptimized;
}
/**
* Checks whether the paint is compatible with using SurfaceDrawContext::drawTexture. It is more
* efficient than the SkImage general case.
*/
bool can_use_draw_texture(const SkPaint& paint, const SkSamplingOptions& sampling) {
return (!paint.getColorFilter() && !paint.getShader() && !paint.getMaskFilter() &&
!paint.getImageFilter() && !paint.getBlender() && !sampling.isAniso() &&
!sampling.useCubic && sampling.mipmap == SkMipmapMode::kNone);
}
SkPMColor4f texture_color(SkColor4f paintColor, float entryAlpha, GrColorType srcColorType,
const GrColorInfo& dstColorInfo) {
paintColor.fA *= entryAlpha;
if (GrColorTypeIsAlphaOnly(srcColorType)) {
return SkColor4fPrepForDst(paintColor, dstColorInfo).premul();
} else {
float paintAlpha = SkTPin(paintColor.fA, 0.f, 1.f);
return { paintAlpha, paintAlpha, paintAlpha, paintAlpha };
}
}
// Assumes srcRect and dstRect have already been optimized to fit the proxy
void draw_texture(skgpu::v1::SurfaceDrawContext* sdc,
const GrClip* clip,
const SkMatrix& ctm,
const SkPaint& paint,
GrSamplerState::Filter filter,
const SkRect& srcRect,
const SkRect& dstRect,
const SkPoint dstClip[4],
GrQuadAAFlags aaFlags,
SkCanvas::SrcRectConstraint constraint,
GrSurfaceProxyView view,
const GrColorInfo& srcColorInfo) {
if (GrColorTypeIsAlphaOnly(srcColorInfo.colorType())) {
view.concatSwizzle(skgpu::Swizzle("aaaa"));
}
const GrColorInfo& dstInfo = sdc->colorInfo();
auto textureXform = GrColorSpaceXform::Make(srcColorInfo, sdc->colorInfo());
GrSurfaceProxy* proxy = view.proxy();
// Must specify the strict constraint when the proxy is not functionally exact and the src
// rect would access pixels outside the proxy's content area without the constraint.
if (constraint != SkCanvas::kStrict_SrcRectConstraint && !proxy->isFunctionallyExact()) {
// Conservative estimate of how much a coord could be outset from src rect:
// 1/2 pixel for AA and 1/2 pixel for linear filtering
float buffer = 0.5f * (aaFlags != GrQuadAAFlags::kNone) +
0.5f * (filter == GrSamplerState::Filter::kLinear);
SkRect safeBounds = proxy->getBoundsRect();
safeBounds.inset(buffer, buffer);
if (!safeBounds.contains(srcRect)) {
constraint = SkCanvas::kStrict_SrcRectConstraint;
}
}
SkPMColor4f color = texture_color(paint.getColor4f(), 1.f, srcColorInfo.colorType(), dstInfo);
if (dstClip) {
// Get source coords corresponding to dstClip
SkPoint srcQuad[4];
GrMapRectPoints(dstRect, srcRect, dstClip, srcQuad, 4);
sdc->drawTextureQuad(clip,
std::move(view),
srcColorInfo.colorType(),
srcColorInfo.alphaType(),
filter,
GrSamplerState::MipmapMode::kNone,
paint.getBlendMode_or(SkBlendMode::kSrcOver),
color,
srcQuad,
dstClip,
aaFlags,
constraint == SkCanvas::kStrict_SrcRectConstraint ? &srcRect : nullptr,
ctm,
std::move(textureXform));
} else {
sdc->drawTexture(clip,
std::move(view),
srcColorInfo.alphaType(),
filter,
GrSamplerState::MipmapMode::kNone,
paint.getBlendMode_or(SkBlendMode::kSrcOver),
color,
srcRect,
dstRect,
aaFlags,
constraint,
ctm,
std::move(textureXform));
}
}
// Assumes srcRect and dstRect have already been optimized to fit the proxy.
void draw_image(GrRecordingContext* rContext,
skgpu::v1::SurfaceDrawContext* sdc,
const GrClip* clip,
const SkMatrixProvider& matrixProvider,
const SkPaint& paint,
const SkImage_Base& image,
const SkRect& src,
const SkRect& dst,
const SkPoint dstClip[4],
const SkMatrix& srcToDst,
GrQuadAAFlags aaFlags,
SkCanvas::SrcRectConstraint constraint,
SkSamplingOptions sampling,
SkTileMode tm = SkTileMode::kClamp) {
const SkMatrix& ctm(matrixProvider.localToDevice());
if (tm == SkTileMode::kClamp && !image.isYUVA() && can_use_draw_texture(paint, sampling)) {
// We've done enough checks above to allow us to pass ClampNearest() and not check for
// scaling adjustments.
auto [view, ct] = image.asView(rContext, GrMipmapped::kNo);
if (!view) {
return;
}
GrColorInfo info(image.imageInfo().colorInfo());
info = info.makeColorType(ct);
draw_texture(sdc,
clip,
ctm,
paint,
sampling.filter,
src,
dst,
dstClip,
aaFlags,
constraint,
std::move(view),
info);
return;
}
const SkMaskFilter* mf = paint.getMaskFilter();
// The shader expects proper local coords, so we can't replace local coords with texture coords
// if the shader will be used. If we have a mask filter we will change the underlying geometry
// that is rendered.
bool canUseTextureCoordsAsLocalCoords = !use_shader(image.isAlphaOnly(), paint) && !mf;
// Specifying the texture coords as local coordinates is an attempt to enable more GrDrawOp
// combining by not baking anything about the srcRect, dstRect, or ctm, into the texture
// FP. In the future this should be an opaque optimization enabled by the combination of
// GrDrawOp/GP and FP.
if (mf && as_MFB(mf)->hasFragmentProcessor()) {
mf = nullptr;
}
bool restrictToSubset = SkCanvas::kStrict_SrcRectConstraint == constraint;
// If we have to outset for AA then we will generate texture coords outside the src rect. The
// same happens for any mask filter that extends the bounds rendered in the dst.
// This is conservative as a mask filter does not have to expand the bounds rendered.
bool coordsAllInsideSrcRect = aaFlags == GrQuadAAFlags::kNone && !mf;
// Check for optimization to drop the src rect constraint when using linear filtering.
// TODO: Just rely on image to handle this.
if (sampling.isAniso() &&
!sampling.useCubic &&
sampling.filter == SkFilterMode::kLinear &&
restrictToSubset &&
sampling.mipmap == SkMipmapMode::kNone &&
coordsAllInsideSrcRect &&
!image.isYUVA()) {
SkMatrix combinedMatrix;
combinedMatrix.setConcat(ctm, srcToDst);
if (can_ignore_linear_filtering_subset(src, combinedMatrix, sdc->numSamples())) {
restrictToSubset = false;
}
}
SkMatrix textureMatrix;
if (canUseTextureCoordsAsLocalCoords) {
textureMatrix = SkMatrix::I();
} else {
if (!srcToDst.invert(&textureMatrix)) {
return;
}
}
const SkRect* subset = restrictToSubset ? &src : nullptr;
const SkRect* domain = coordsAllInsideSrcRect ? &src : nullptr;
SkTileMode tileModes[] = {tm, tm};
std::unique_ptr<GrFragmentProcessor> fp = image.asFragmentProcessor(rContext,
sampling,
tileModes,
textureMatrix,
subset,
domain);
fp = GrColorSpaceXformEffect::Make(std::move(fp),
image.imageInfo().colorInfo(),
sdc->colorInfo());
if (image.isAlphaOnly()) {
if (const auto* shader = as_SB(paint.getShader())) {
auto shaderFP = shader->asFragmentProcessor(
GrFPArgs(rContext, matrixProvider, &sdc->colorInfo()));
if (!shaderFP) {
return;
}
fp = GrBlendFragmentProcessor::Make<SkBlendMode::kDstIn>(std::move(fp),
std::move(shaderFP));
} else {
// Multiply the input (paint) color by the texture (alpha)
fp = GrFragmentProcessor::MulInputByChildAlpha(std::move(fp));
}
}
GrPaint grPaint;
if (!SkPaintToGrPaintReplaceShader(
rContext, sdc->colorInfo(), paint, matrixProvider, std::move(fp), &grPaint)) {
return;
}
if (!mf) {
// Can draw the image directly (any mask filter on the paint was converted to an FP already)
if (dstClip) {
SkPoint srcClipPoints[4];
SkPoint* srcClip = nullptr;
if (canUseTextureCoordsAsLocalCoords) {
// Calculate texture coordinates that match the dst clip
GrMapRectPoints(dst, src, dstClip, srcClipPoints, 4);
srcClip = srcClipPoints;
}
sdc->fillQuadWithEdgeAA(clip, std::move(grPaint), aaFlags, ctm, dstClip, srcClip);
} else {
// Provide explicit texture coords when possible, otherwise rely on texture matrix
sdc->fillRectWithEdgeAA(clip, std::move(grPaint), aaFlags, ctm, dst,
canUseTextureCoordsAsLocalCoords ? &src : nullptr);
}
} else {
// Must draw the mask filter as a GrStyledShape. For now, this loses the per-edge AA
// information since it always draws with AA, but that should not be noticeable since the
// mask filter is probably a blur.
GrStyledShape shape;
if (dstClip) {
// Represent it as an SkPath formed from the dstClip
SkPath path;
path.addPoly(dstClip, 4, true);
shape = GrStyledShape(path);
} else {
shape = GrStyledShape(dst);
}
GrBlurUtils::drawShapeWithMaskFilter(
rContext, sdc, clip, shape, std::move(grPaint), ctm, mf);
}
}
void draw_tiled_bitmap(GrRecordingContext* rContext,
skgpu::v1::SurfaceDrawContext* sdc,
const GrClip* clip,
const SkBitmap& bitmap,
int tileSize,
const SkMatrixProvider& matrixProvider,
const SkMatrix& srcToDst,
const SkRect& srcRect,
const SkIRect& clippedSrcIRect,
const SkPaint& paint,
GrQuadAAFlags origAAFlags,
SkCanvas::SrcRectConstraint constraint,
SkSamplingOptions sampling,
SkTileMode tileMode) {
if (sampling.isAniso()) {
sampling = SkSamplingPriv::AnisoFallback(/*imageIsMipped=*/false);
}
SkRect clippedSrcRect = SkRect::Make(clippedSrcIRect);
int nx = bitmap.width() / tileSize;
int ny = bitmap.height() / tileSize;
for (int x = 0; x <= nx; x++) {
for (int y = 0; y <= ny; y++) {
SkRect tileR;
tileR.setLTRB(SkIntToScalar(x * tileSize), SkIntToScalar(y * tileSize),
SkIntToScalar((x + 1) * tileSize), SkIntToScalar((y + 1) * tileSize));
if (!SkRect::Intersects(tileR, clippedSrcRect)) {
continue;
}
if (!tileR.intersect(srcRect)) {
continue;
}
SkIRect iTileR;
tileR.roundOut(&iTileR);
SkVector offset = SkPoint::Make(SkIntToScalar(iTileR.fLeft),
SkIntToScalar(iTileR.fTop));
SkRect rectToDraw = tileR;
srcToDst.mapRect(&rectToDraw);
if (sampling.filter != SkFilterMode::kNearest || sampling.useCubic) {
SkIRect iClampRect;
if (SkCanvas::kFast_SrcRectConstraint == constraint) {
// In bleed mode we want to always expand the tile on all edges
// but stay within the bitmap bounds
iClampRect = SkIRect::MakeWH(bitmap.width(), bitmap.height());
} else {
// In texture-domain/clamp mode we only want to expand the
// tile on edges interior to "srcRect" (i.e., we want to
// not bleed across the original clamped edges)
srcRect.roundOut(&iClampRect);
}
int outset = sampling.useCubic ? GrBicubicEffect::kFilterTexelPad : 1;
clamped_outset_with_offset(&iTileR, outset, &offset, iClampRect);
}
// We must subset as a bitmap and then turn into an SkImage if we want caching to work.
// Image subsets always make a copy of the pixels and lose the association with the
// original's SkPixelRef.
if (SkBitmap subsetBmp; bitmap.extractSubset(&subsetBmp, iTileR)) {
auto image = SkMakeImageFromRasterBitmap(subsetBmp, kNever_SkCopyPixelsMode);
// We should have already handled bitmaps larger than the max texture size.
SkASSERT(image->width() <= rContext->priv().caps()->maxTextureSize() &&
image->height() <= rContext->priv().caps()->maxTextureSize());
GrQuadAAFlags aaFlags = GrQuadAAFlags::kNone;
// Preserve the original edge AA flags for the exterior tile edges.
if (tileR.fLeft <= srcRect.fLeft && (origAAFlags & GrQuadAAFlags::kLeft)) {
aaFlags |= GrQuadAAFlags::kLeft;
}
if (tileR.fRight >= srcRect.fRight && (origAAFlags & GrQuadAAFlags::kRight)) {
aaFlags |= GrQuadAAFlags::kRight;
}
if (tileR.fTop <= srcRect.fTop && (origAAFlags & GrQuadAAFlags::kTop)) {
aaFlags |= GrQuadAAFlags::kTop;
}
if (tileR.fBottom >= srcRect.fBottom && (origAAFlags & GrQuadAAFlags::kBottom)) {
aaFlags |= GrQuadAAFlags::kBottom;
}
// now offset it to make it "local" to our tmp bitmap
tileR.offset(-offset.fX, -offset.fY);
SkMatrix offsetSrcToDst = srcToDst;
offsetSrcToDst.preTranslate(offset.fX, offset.fY);
draw_image(rContext,
sdc,
clip,
matrixProvider,
paint,
*as_IB(image.get()),
tileR,
rectToDraw,
nullptr,
offsetSrcToDst,
aaFlags,
constraint,
sampling,
tileMode);
}
}
}
}
SkFilterMode downgrade_to_filter(const SkSamplingOptions& sampling) {
SkFilterMode filter = sampling.filter;
if (sampling.isAniso() || sampling.useCubic || sampling.mipmap != SkMipmapMode::kNone) {
// if we were "fancier" than just bilerp, only do bilerp
filter = SkFilterMode::kLinear;
}
return filter;
}
bool can_disable_mipmap(const SkMatrix& viewM, const SkMatrix& localM) {
SkMatrix matrix;
matrix.setConcat(viewM, localM);
// We bias mipmap lookups by -0.5. That means our final LOD is >= 0 until
// the computed LOD is >= 0.5. At what scale factor does a texture get an LOD of
// 0.5?
//
// Want: 0 = log2(1/s) - 0.5
// 0.5 = log2(1/s)
// 2^0.5 = 1/s
// 1/2^0.5 = s
// 2^0.5/2 = s
return matrix.getMinScale() >= SK_ScalarRoot2Over2;
}
} // anonymous namespace
//////////////////////////////////////////////////////////////////////////////
namespace skgpu::v1 {
void Device::drawSpecial(SkSpecialImage* special,
const SkMatrix& localToDevice,
const SkSamplingOptions& origSampling,
const SkPaint& paint) {
SkASSERT(!paint.getMaskFilter() && !paint.getImageFilter());
SkASSERT(special->isTextureBacked());
SkRect src = SkRect::Make(special->subset());
SkRect dst = SkRect::MakeWH(special->width(), special->height());
SkMatrix srcToDst = SkMatrix::RectToRect(src, dst);
SkSamplingOptions sampling = SkSamplingOptions(downgrade_to_filter(origSampling));
GrAA aa = fSurfaceDrawContext->chooseAA(paint);
GrQuadAAFlags aaFlags = (aa == GrAA::kYes) ? GrQuadAAFlags::kAll : GrQuadAAFlags::kNone;
SkColorInfo colorInfo(special->colorType(),
special->alphaType(),
sk_ref_sp(special->getColorSpace()));
GrSurfaceProxyView view = special->view(this->recordingContext());
SkImage_Gpu image(sk_ref_sp(special->getContext()),
special->uniqueID(),
std::move(view),
std::move(colorInfo));
// In most cases this ought to hit draw_texture since there won't be a color filter,
// alpha-only texture+shader, or a high filter quality.
SkOverrideDeviceMatrixProvider matrixProvider(localToDevice);
draw_image(fContext.get(),
fSurfaceDrawContext.get(),
this->clip(),
matrixProvider,
paint,
image,
src,
dst,
nullptr,
srcToDst,
aaFlags,
SkCanvas::kStrict_SrcRectConstraint,
sampling);
}
void Device::drawImageQuad(const SkImage* image,
const SkRect* srcRect,
const SkRect* dstRect,
const SkPoint dstClip[4],
GrQuadAAFlags aaFlags,
const SkMatrix* preViewMatrix,
const SkSamplingOptions& origSampling,
const SkPaint& paint,
SkCanvas::SrcRectConstraint constraint) {
SkRect src;
SkRect dst;
SkMatrix srcToDst;
ImageDrawMode mode = optimize_sample_area(SkISize::Make(image->width(), image->height()),
srcRect, dstRect, dstClip, &src, &dst, &srcToDst);
if (mode == ImageDrawMode::kSkip) {
return;
}
if (src.contains(image->bounds())) {
constraint = SkCanvas::kFast_SrcRectConstraint;
}
// Depending on the nature of image, it can flow through more or less optimal pipelines
SkTileMode tileMode = mode == ImageDrawMode::kDecal ? SkTileMode::kDecal : SkTileMode::kClamp;
// Get final CTM matrix
SkPreConcatMatrixProvider matrixProvider(this->asMatrixProvider(),
preViewMatrix ? *preViewMatrix : SkMatrix::I());
const SkMatrix& ctm(matrixProvider.localToDevice());
SkSamplingOptions sampling = origSampling;
if (sampling.mipmap != SkMipmapMode::kNone && can_disable_mipmap(ctm, srcToDst)) {
sampling = SkSamplingOptions(sampling.filter);
}
auto clip = this->clip();
if (!image->isTextureBacked() && !as_IB(image)->isPinnedOnContext(fContext.get())) {
int tileFilterPad;
if (sampling.useCubic) {
tileFilterPad = GrBicubicEffect::kFilterTexelPad;
} else if (sampling.filter == SkFilterMode::kLinear || sampling.isAniso()) {
// Aniso will fallback to linear filtering in the tiling case.
tileFilterPad = 1;
} else {
tileFilterPad = 0;
}
int maxTileSize = fContext->priv().caps()->maxTextureSize() - 2*tileFilterPad;
int tileSize;
SkIRect clippedSubset;
if (should_tile_image_id(fContext.get(),
fSurfaceDrawContext->dimensions(),
clip,
image->unique(),
image->dimensions(),
ctm,
srcToDst,
&src,
maxTileSize,
&tileSize,
&clippedSubset)) {
// Extract pixels on the CPU, since we have to split into separate textures before
// sending to the GPU if tiling.
if (SkBitmap bm; as_IB(image)->getROPixels(nullptr, &bm)) {
// This is the funnel for all paths that draw tiled bitmaps/images.
draw_tiled_bitmap(fContext.get(),
fSurfaceDrawContext.get(),
clip,
bm,
tileSize,
matrixProvider,
srcToDst,
src,
clippedSubset,
paint,
aaFlags,
constraint,
sampling,
tileMode);
return;
}
}
}
draw_image(fContext.get(),
fSurfaceDrawContext.get(),
clip,
matrixProvider,
paint,
*as_IB(image),
src,
dst,
dstClip,
srcToDst,
aaFlags,
constraint,
sampling);
return;
}
void Device::drawEdgeAAImageSet(const SkCanvas::ImageSetEntry set[], int count,
const SkPoint dstClips[], const SkMatrix preViewMatrices[],
const SkSamplingOptions& sampling, const SkPaint& paint,
SkCanvas::SrcRectConstraint constraint) {
SkASSERT(count > 0);
if (!can_use_draw_texture(paint, sampling)) {
// Send every entry through drawImageQuad() to handle the more complicated paint
int dstClipIndex = 0;
for (int i = 0; i < count; ++i) {
// Only no clip or quad clip are supported
SkASSERT(!set[i].fHasClip || dstClips);
SkASSERT(set[i].fMatrixIndex < 0 || preViewMatrices);
SkTCopyOnFirstWrite<SkPaint> entryPaint(paint);
if (set[i].fAlpha != 1.f) {
auto paintAlpha = paint.getAlphaf();
entryPaint.writable()->setAlphaf(paintAlpha * set[i].fAlpha);
}
this->drawImageQuad(
set[i].fImage.get(), &set[i].fSrcRect, &set[i].fDstRect,
set[i].fHasClip ? dstClips + dstClipIndex : nullptr,
SkToGrQuadAAFlags(set[i].fAAFlags),
set[i].fMatrixIndex < 0 ? nullptr : preViewMatrices + set[i].fMatrixIndex,
sampling, *entryPaint, constraint);
dstClipIndex += 4 * set[i].fHasClip;
}
return;
}
GrSamplerState::Filter filter = sampling.filter == SkFilterMode::kNearest
? GrSamplerState::Filter::kNearest
: GrSamplerState::Filter::kLinear;
SkBlendMode mode = paint.getBlendMode_or(SkBlendMode::kSrcOver);
SkAutoTArray<GrTextureSetEntry> textures(count);
// We accumulate compatible proxies until we find an an incompatible one or reach the end and
// issue the accumulated 'n' draws starting at 'base'. 'p' represents the number of proxy
// switches that occur within the 'n' entries.
int base = 0, n = 0, p = 0;
auto draw = [&](int nextBase) {
if (n > 0) {
auto textureXform = GrColorSpaceXform::Make(set[base].fImage->imageInfo().colorInfo(),
fSurfaceDrawContext->colorInfo());
fSurfaceDrawContext->drawTextureSet(this->clip(),
textures.get() + base,
n,
p,
filter,
GrSamplerState::MipmapMode::kNone,
mode,
constraint,
this->localToDevice(),
std::move(textureXform));
}
base = nextBase;
n = 0;
p = 0;
};
int dstClipIndex = 0;
for (int i = 0; i < count; ++i) {
SkASSERT(!set[i].fHasClip || dstClips);
SkASSERT(set[i].fMatrixIndex < 0 || preViewMatrices);
// Manage the dst clip pointer tracking before any continues are used so we don't lose
// our place in the dstClips array.
const SkPoint* clip = set[i].fHasClip ? dstClips + dstClipIndex : nullptr;
dstClipIndex += 4 * set[i].fHasClip;
// The default SkBaseDevice implementation is based on drawImageRect which does not allow
// non-sorted src rects. TODO: Decide this is OK or make sure we handle it.
if (!set[i].fSrcRect.isSorted()) {
draw(i + 1);
continue;
}
GrSurfaceProxyView view;
const SkImage_Base* image = as_IB(set[i].fImage.get());
// Extract view from image, but skip YUV images so they get processed through
// drawImageQuad and the proper effect to dynamically sample their planes.
if (!image->isYUVA()) {
std::tie(view, std::ignore) = image->asView(this->recordingContext(), GrMipmapped::kNo);
if (image->isAlphaOnly()) {
skgpu::Swizzle swizzle = skgpu::Swizzle::Concat(view.swizzle(),
skgpu::Swizzle("aaaa"));
view = {view.detachProxy(), view.origin(), swizzle};
}
}
if (!view) {
// This image can't go through the texture op, send through general image pipeline
// after flushing current batch.
draw(i + 1);
SkTCopyOnFirstWrite<SkPaint> entryPaint(paint);
if (set[i].fAlpha != 1.f) {
auto paintAlpha = paint.getAlphaf();
entryPaint.writable()->setAlphaf(paintAlpha * set[i].fAlpha);
}
this->drawImageQuad(
image, &set[i].fSrcRect, &set[i].fDstRect, clip,
SkToGrQuadAAFlags(set[i].fAAFlags),
set[i].fMatrixIndex < 0 ? nullptr : preViewMatrices + set[i].fMatrixIndex,
sampling, *entryPaint, constraint);
continue;
}
textures[i].fProxyView = std::move(view);
textures[i].fSrcAlphaType = image->alphaType();
textures[i].fSrcRect = set[i].fSrcRect;
textures[i].fDstRect = set[i].fDstRect;
textures[i].fDstClipQuad = clip;
textures[i].fPreViewMatrix =
set[i].fMatrixIndex < 0 ? nullptr : preViewMatrices + set[i].fMatrixIndex;
textures[i].fColor = texture_color(paint.getColor4f(), set[i].fAlpha,
SkColorTypeToGrColorType(image->colorType()),
fSurfaceDrawContext->colorInfo());
textures[i].fAAFlags = SkToGrQuadAAFlags(set[i].fAAFlags);
if (n > 0 &&
(!GrTextureProxy::ProxiesAreCompatibleAsDynamicState(
textures[i].fProxyView.proxy(),
textures[base].fProxyView.proxy()) ||
textures[i].fProxyView.swizzle() != textures[base].fProxyView.swizzle() ||
set[i].fImage->alphaType() != set[base].fImage->alphaType() ||
!SkColorSpace::Equals(set[i].fImage->colorSpace(), set[base].fImage->colorSpace()))) {
draw(i);
}
// Whether or not we submitted a draw in the above if(), this ith entry is in the current
// set being accumulated so increment n, and increment p if proxies are different.
++n;
if (n == 1 || textures[i - 1].fProxyView.proxy() != textures[i].fProxyView.proxy()) {
// First proxy or a different proxy (that is compatible, otherwise we'd have drawn up
// to i - 1).
++p;
}
}
draw(count);
}
} // namespace skgpu::v1