| /* |
| * Copyright 2013 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/core/SkBitmap.h" |
| #include "include/core/SkTypes.h" |
| #include "include/private/SkColorData.h" |
| #include "include/private/SkHalf.h" |
| #include "include/private/SkImageInfoPriv.h" |
| #include "include/private/SkNx.h" |
| #include "include/private/SkTo.h" |
| #include "include/private/SkVx.h" |
| #include "src/core/SkMathPriv.h" |
| #include "src/core/SkMipmap.h" |
| #include "src/core/SkMipmapBuilder.h" |
| #include <new> |
| |
| // |
| // ColorTypeFilter is the "Type" we pass to some downsample template functions. |
| // It controls how we expand a pixel into a large type, with space between each component, |
| // so we can then perform our simple filter (either box or triangle) and store the intermediates |
| // in the expanded type. |
| // |
| |
| struct ColorTypeFilter_8888 { |
| typedef uint32_t Type; |
| static Sk4h Expand(uint32_t x) { |
| return SkNx_cast<uint16_t>(Sk4b::Load(&x)); |
| } |
| static uint32_t Compact(const Sk4h& x) { |
| uint32_t r; |
| SkNx_cast<uint8_t>(x).store(&r); |
| return r; |
| } |
| }; |
| |
| struct ColorTypeFilter_565 { |
| typedef uint16_t Type; |
| static uint32_t Expand(uint16_t x) { |
| return (x & ~SK_G16_MASK_IN_PLACE) | ((x & SK_G16_MASK_IN_PLACE) << 16); |
| } |
| static uint16_t Compact(uint32_t x) { |
| return ((x & ~SK_G16_MASK_IN_PLACE) & 0xFFFF) | ((x >> 16) & SK_G16_MASK_IN_PLACE); |
| } |
| }; |
| |
| struct ColorTypeFilter_4444 { |
| typedef uint16_t Type; |
| static uint32_t Expand(uint16_t x) { |
| return (x & 0xF0F) | ((x & ~0xF0F) << 12); |
| } |
| static uint16_t Compact(uint32_t x) { |
| return (x & 0xF0F) | ((x >> 12) & ~0xF0F); |
| } |
| }; |
| |
| struct ColorTypeFilter_8 { |
| typedef uint8_t Type; |
| static unsigned Expand(unsigned x) { |
| return x; |
| } |
| static uint8_t Compact(unsigned x) { |
| return (uint8_t)x; |
| } |
| }; |
| |
| struct ColorTypeFilter_Alpha_F16 { |
| typedef uint16_t Type; |
| static Sk4f Expand(uint16_t x) { |
| return SkHalfToFloat_finite_ftz((uint64_t) x); // expand out to four lanes |
| |
| } |
| static uint16_t Compact(const Sk4f& x) { |
| uint64_t r; |
| SkFloatToHalf_finite_ftz(x).store(&r); |
| return r & 0xFFFF; // but ignore the extra 3 here |
| } |
| }; |
| |
| struct ColorTypeFilter_RGBA_F16 { |
| typedef uint64_t Type; // SkHalf x4 |
| static Sk4f Expand(uint64_t x) { |
| return SkHalfToFloat_finite_ftz(x); |
| } |
| static uint64_t Compact(const Sk4f& x) { |
| uint64_t r; |
| SkFloatToHalf_finite_ftz(x).store(&r); |
| return r; |
| } |
| }; |
| |
| struct ColorTypeFilter_88 { |
| typedef uint16_t Type; |
| static uint32_t Expand(uint16_t x) { |
| return (x & 0xFF) | ((x & ~0xFF) << 8); |
| } |
| static uint16_t Compact(uint32_t x) { |
| return (x & 0xFF) | ((x >> 8) & ~0xFF); |
| } |
| }; |
| |
| struct ColorTypeFilter_1616 { |
| typedef uint32_t Type; |
| static uint64_t Expand(uint32_t x) { |
| return (x & 0xFFFF) | ((x & ~0xFFFF) << 16); |
| } |
| static uint16_t Compact(uint64_t x) { |
| return (x & 0xFFFF) | ((x >> 16) & ~0xFFFF); |
| } |
| }; |
| |
| struct ColorTypeFilter_F16F16 { |
| typedef uint32_t Type; |
| static Sk4f Expand(uint32_t x) { |
| return SkHalfToFloat_finite_ftz((uint64_t) x); // expand out to four lanes |
| } |
| static uint32_t Compact(const Sk4f& x) { |
| uint64_t r; |
| SkFloatToHalf_finite_ftz(x).store(&r); |
| return (uint32_t) (r & 0xFFFFFFFF); // but ignore the extra 2 here |
| } |
| }; |
| |
| struct ColorTypeFilter_16161616 { |
| typedef uint64_t Type; |
| static skvx::Vec<4, uint32_t> Expand(uint64_t x) { |
| return skvx::cast<uint32_t>(skvx::Vec<4, uint16_t>::Load(&x)); |
| } |
| static uint64_t Compact(const skvx::Vec<4, uint32_t>& x) { |
| uint64_t r; |
| skvx::cast<uint16_t>(x).store(&r); |
| return r; |
| } |
| }; |
| |
| struct ColorTypeFilter_16 { |
| typedef uint16_t Type; |
| static uint32_t Expand(uint16_t x) { |
| return x; |
| } |
| static uint16_t Compact(uint32_t x) { |
| return (uint16_t) x; |
| } |
| }; |
| |
| struct ColorTypeFilter_1010102 { |
| typedef uint32_t Type; |
| static uint64_t Expand(uint64_t x) { |
| return (((x ) & 0x3ff) ) | |
| (((x >> 10) & 0x3ff) << 20) | |
| (((x >> 20) & 0x3ff) << 40) | |
| (((x >> 30) & 0x3 ) << 60); |
| } |
| static uint32_t Compact(uint64_t x) { |
| return (((x ) & 0x3ff) ) | |
| (((x >> 20) & 0x3ff) << 10) | |
| (((x >> 40) & 0x3ff) << 20) | |
| (((x >> 60) & 0x3 ) << 30); |
| } |
| }; |
| |
| template <typename T> T add_121(const T& a, const T& b, const T& c) { |
| return a + b + b + c; |
| } |
| |
| template <typename T> T shift_right(const T& x, int bits) { |
| return x >> bits; |
| } |
| |
| Sk4f shift_right(const Sk4f& x, int bits) { |
| return x * (1.0f / (1 << bits)); |
| } |
| |
| template <typename T> T shift_left(const T& x, int bits) { |
| return x << bits; |
| } |
| |
| Sk4f shift_left(const Sk4f& x, int bits) { |
| return x * (1 << bits); |
| } |
| |
| // |
| // To produce each mip level, we need to filter down by 1/2 (e.g. 100x100 -> 50,50) |
| // If the starting dimension is odd, we floor the size of the lower level (e.g. 101 -> 50) |
| // In those (odd) cases, we use a triangle filter, with 1-pixel overlap between samplings, |
| // else for even cases, we just use a 2x box filter. |
| // |
| // This produces 4 possible isotropic filters: 2x2 2x3 3x2 3x3 where WxH indicates the number of |
| // src pixels we need to sample in each dimension to produce 1 dst pixel. |
| // |
| // OpenGL expects a full mipmap stack to contain anisotropic space as well. |
| // This means a 100x1 image would continue down to a 50x1 image, 25x1 image... |
| // Because of this, we need 4 more anisotropic filters: 1x2, 1x3, 2x1, 3x1. |
| |
| template <typename F> void downsample_1_2(void* dst, const void* src, size_t srcRB, int count) { |
| SkASSERT(count > 0); |
| auto p0 = static_cast<const typename F::Type*>(src); |
| auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); |
| auto d = static_cast<typename F::Type*>(dst); |
| |
| for (int i = 0; i < count; ++i) { |
| auto c00 = F::Expand(p0[0]); |
| auto c10 = F::Expand(p1[0]); |
| |
| auto c = c00 + c10; |
| d[i] = F::Compact(shift_right(c, 1)); |
| p0 += 2; |
| p1 += 2; |
| } |
| } |
| |
| template <typename F> void downsample_1_3(void* dst, const void* src, size_t srcRB, int count) { |
| SkASSERT(count > 0); |
| auto p0 = static_cast<const typename F::Type*>(src); |
| auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); |
| auto p2 = (const typename F::Type*)((const char*)p1 + srcRB); |
| auto d = static_cast<typename F::Type*>(dst); |
| |
| for (int i = 0; i < count; ++i) { |
| auto c00 = F::Expand(p0[0]); |
| auto c10 = F::Expand(p1[0]); |
| auto c20 = F::Expand(p2[0]); |
| |
| auto c = add_121(c00, c10, c20); |
| d[i] = F::Compact(shift_right(c, 2)); |
| p0 += 2; |
| p1 += 2; |
| p2 += 2; |
| } |
| } |
| |
| template <typename F> void downsample_2_1(void* dst, const void* src, size_t srcRB, int count) { |
| SkASSERT(count > 0); |
| auto p0 = static_cast<const typename F::Type*>(src); |
| auto d = static_cast<typename F::Type*>(dst); |
| |
| for (int i = 0; i < count; ++i) { |
| auto c00 = F::Expand(p0[0]); |
| auto c01 = F::Expand(p0[1]); |
| |
| auto c = c00 + c01; |
| d[i] = F::Compact(shift_right(c, 1)); |
| p0 += 2; |
| } |
| } |
| |
| template <typename F> void downsample_2_2(void* dst, const void* src, size_t srcRB, int count) { |
| SkASSERT(count > 0); |
| auto p0 = static_cast<const typename F::Type*>(src); |
| auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); |
| auto d = static_cast<typename F::Type*>(dst); |
| |
| for (int i = 0; i < count; ++i) { |
| auto c00 = F::Expand(p0[0]); |
| auto c01 = F::Expand(p0[1]); |
| auto c10 = F::Expand(p1[0]); |
| auto c11 = F::Expand(p1[1]); |
| |
| auto c = c00 + c10 + c01 + c11; |
| d[i] = F::Compact(shift_right(c, 2)); |
| p0 += 2; |
| p1 += 2; |
| } |
| } |
| |
| template <typename F> void downsample_2_3(void* dst, const void* src, size_t srcRB, int count) { |
| SkASSERT(count > 0); |
| auto p0 = static_cast<const typename F::Type*>(src); |
| auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); |
| auto p2 = (const typename F::Type*)((const char*)p1 + srcRB); |
| auto d = static_cast<typename F::Type*>(dst); |
| |
| for (int i = 0; i < count; ++i) { |
| auto c00 = F::Expand(p0[0]); |
| auto c01 = F::Expand(p0[1]); |
| auto c10 = F::Expand(p1[0]); |
| auto c11 = F::Expand(p1[1]); |
| auto c20 = F::Expand(p2[0]); |
| auto c21 = F::Expand(p2[1]); |
| |
| auto c = add_121(c00, c10, c20) + add_121(c01, c11, c21); |
| d[i] = F::Compact(shift_right(c, 3)); |
| p0 += 2; |
| p1 += 2; |
| p2 += 2; |
| } |
| } |
| |
| template <typename F> void downsample_3_1(void* dst, const void* src, size_t srcRB, int count) { |
| SkASSERT(count > 0); |
| auto p0 = static_cast<const typename F::Type*>(src); |
| auto d = static_cast<typename F::Type*>(dst); |
| |
| auto c02 = F::Expand(p0[0]); |
| for (int i = 0; i < count; ++i) { |
| auto c00 = c02; |
| auto c01 = F::Expand(p0[1]); |
| c02 = F::Expand(p0[2]); |
| |
| auto c = add_121(c00, c01, c02); |
| d[i] = F::Compact(shift_right(c, 2)); |
| p0 += 2; |
| } |
| } |
| |
| template <typename F> void downsample_3_2(void* dst, const void* src, size_t srcRB, int count) { |
| SkASSERT(count > 0); |
| auto p0 = static_cast<const typename F::Type*>(src); |
| auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); |
| auto d = static_cast<typename F::Type*>(dst); |
| |
| // Given pixels: |
| // a0 b0 c0 d0 e0 ... |
| // a1 b1 c1 d1 e1 ... |
| // We want: |
| // (a0 + 2*b0 + c0 + a1 + 2*b1 + c1) / 8 |
| // (c0 + 2*d0 + e0 + c1 + 2*d1 + e1) / 8 |
| // ... |
| |
| auto c0 = F::Expand(p0[0]); |
| auto c1 = F::Expand(p1[0]); |
| auto c = c0 + c1; |
| for (int i = 0; i < count; ++i) { |
| auto a = c; |
| |
| auto b0 = F::Expand(p0[1]); |
| auto b1 = F::Expand(p1[1]); |
| auto b = b0 + b0 + b1 + b1; |
| |
| c0 = F::Expand(p0[2]); |
| c1 = F::Expand(p1[2]); |
| c = c0 + c1; |
| |
| auto sum = a + b + c; |
| d[i] = F::Compact(shift_right(sum, 3)); |
| p0 += 2; |
| p1 += 2; |
| } |
| } |
| |
| template <typename F> void downsample_3_3(void* dst, const void* src, size_t srcRB, int count) { |
| SkASSERT(count > 0); |
| auto p0 = static_cast<const typename F::Type*>(src); |
| auto p1 = (const typename F::Type*)((const char*)p0 + srcRB); |
| auto p2 = (const typename F::Type*)((const char*)p1 + srcRB); |
| auto d = static_cast<typename F::Type*>(dst); |
| |
| // Given pixels: |
| // a0 b0 c0 d0 e0 ... |
| // a1 b1 c1 d1 e1 ... |
| // a2 b2 c2 d2 e2 ... |
| // We want: |
| // (a0 + 2*b0 + c0 + 2*a1 + 4*b1 + 2*c1 + a2 + 2*b2 + c2) / 16 |
| // (c0 + 2*d0 + e0 + 2*c1 + 4*d1 + 2*e1 + c2 + 2*d2 + e2) / 16 |
| // ... |
| |
| auto c0 = F::Expand(p0[0]); |
| auto c1 = F::Expand(p1[0]); |
| auto c2 = F::Expand(p2[0]); |
| auto c = add_121(c0, c1, c2); |
| for (int i = 0; i < count; ++i) { |
| auto a = c; |
| |
| auto b0 = F::Expand(p0[1]); |
| auto b1 = F::Expand(p1[1]); |
| auto b2 = F::Expand(p2[1]); |
| auto b = shift_left(add_121(b0, b1, b2), 1); |
| |
| c0 = F::Expand(p0[2]); |
| c1 = F::Expand(p1[2]); |
| c2 = F::Expand(p2[2]); |
| c = add_121(c0, c1, c2); |
| |
| auto sum = a + b + c; |
| d[i] = F::Compact(shift_right(sum, 4)); |
| p0 += 2; |
| p1 += 2; |
| p2 += 2; |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| SkMipmap::SkMipmap(void* malloc, size_t size) : SkCachedData(malloc, size) {} |
| SkMipmap::SkMipmap(size_t size, SkDiscardableMemory* dm) : SkCachedData(size, dm) {} |
| |
| SkMipmap::~SkMipmap() = default; |
| |
| size_t SkMipmap::AllocLevelsSize(int levelCount, size_t pixelSize) { |
| if (levelCount < 0) { |
| return 0; |
| } |
| int64_t size = sk_64_mul(levelCount + 1, sizeof(Level)) + pixelSize; |
| if (!SkTFitsIn<int32_t>(size)) { |
| return 0; |
| } |
| return SkTo<int32_t>(size); |
| } |
| |
| SkMipmap* SkMipmap::Build(const SkPixmap& src, SkDiscardableFactoryProc fact, |
| bool computeContents) { |
| typedef void FilterProc(void*, const void* srcPtr, size_t srcRB, int count); |
| |
| FilterProc* proc_1_2 = nullptr; |
| FilterProc* proc_1_3 = nullptr; |
| FilterProc* proc_2_1 = nullptr; |
| FilterProc* proc_2_2 = nullptr; |
| FilterProc* proc_2_3 = nullptr; |
| FilterProc* proc_3_1 = nullptr; |
| FilterProc* proc_3_2 = nullptr; |
| FilterProc* proc_3_3 = nullptr; |
| |
| const SkColorType ct = src.colorType(); |
| const SkAlphaType at = src.alphaType(); |
| |
| switch (ct) { |
| case kRGBA_8888_SkColorType: |
| case kBGRA_8888_SkColorType: |
| proc_1_2 = downsample_1_2<ColorTypeFilter_8888>; |
| proc_1_3 = downsample_1_3<ColorTypeFilter_8888>; |
| proc_2_1 = downsample_2_1<ColorTypeFilter_8888>; |
| proc_2_2 = downsample_2_2<ColorTypeFilter_8888>; |
| proc_2_3 = downsample_2_3<ColorTypeFilter_8888>; |
| proc_3_1 = downsample_3_1<ColorTypeFilter_8888>; |
| proc_3_2 = downsample_3_2<ColorTypeFilter_8888>; |
| proc_3_3 = downsample_3_3<ColorTypeFilter_8888>; |
| break; |
| case kRGB_565_SkColorType: |
| proc_1_2 = downsample_1_2<ColorTypeFilter_565>; |
| proc_1_3 = downsample_1_3<ColorTypeFilter_565>; |
| proc_2_1 = downsample_2_1<ColorTypeFilter_565>; |
| proc_2_2 = downsample_2_2<ColorTypeFilter_565>; |
| proc_2_3 = downsample_2_3<ColorTypeFilter_565>; |
| proc_3_1 = downsample_3_1<ColorTypeFilter_565>; |
| proc_3_2 = downsample_3_2<ColorTypeFilter_565>; |
| proc_3_3 = downsample_3_3<ColorTypeFilter_565>; |
| break; |
| case kARGB_4444_SkColorType: |
| proc_1_2 = downsample_1_2<ColorTypeFilter_4444>; |
| proc_1_3 = downsample_1_3<ColorTypeFilter_4444>; |
| proc_2_1 = downsample_2_1<ColorTypeFilter_4444>; |
| proc_2_2 = downsample_2_2<ColorTypeFilter_4444>; |
| proc_2_3 = downsample_2_3<ColorTypeFilter_4444>; |
| proc_3_1 = downsample_3_1<ColorTypeFilter_4444>; |
| proc_3_2 = downsample_3_2<ColorTypeFilter_4444>; |
| proc_3_3 = downsample_3_3<ColorTypeFilter_4444>; |
| break; |
| case kAlpha_8_SkColorType: |
| case kGray_8_SkColorType: |
| case kR8_unorm_SkColorType: |
| proc_1_2 = downsample_1_2<ColorTypeFilter_8>; |
| proc_1_3 = downsample_1_3<ColorTypeFilter_8>; |
| proc_2_1 = downsample_2_1<ColorTypeFilter_8>; |
| proc_2_2 = downsample_2_2<ColorTypeFilter_8>; |
| proc_2_3 = downsample_2_3<ColorTypeFilter_8>; |
| proc_3_1 = downsample_3_1<ColorTypeFilter_8>; |
| proc_3_2 = downsample_3_2<ColorTypeFilter_8>; |
| proc_3_3 = downsample_3_3<ColorTypeFilter_8>; |
| break; |
| case kRGBA_F16Norm_SkColorType: |
| case kRGBA_F16_SkColorType: |
| proc_1_2 = downsample_1_2<ColorTypeFilter_RGBA_F16>; |
| proc_1_3 = downsample_1_3<ColorTypeFilter_RGBA_F16>; |
| proc_2_1 = downsample_2_1<ColorTypeFilter_RGBA_F16>; |
| proc_2_2 = downsample_2_2<ColorTypeFilter_RGBA_F16>; |
| proc_2_3 = downsample_2_3<ColorTypeFilter_RGBA_F16>; |
| proc_3_1 = downsample_3_1<ColorTypeFilter_RGBA_F16>; |
| proc_3_2 = downsample_3_2<ColorTypeFilter_RGBA_F16>; |
| proc_3_3 = downsample_3_3<ColorTypeFilter_RGBA_F16>; |
| break; |
| case kR8G8_unorm_SkColorType: |
| proc_1_2 = downsample_1_2<ColorTypeFilter_88>; |
| proc_1_3 = downsample_1_3<ColorTypeFilter_88>; |
| proc_2_1 = downsample_2_1<ColorTypeFilter_88>; |
| proc_2_2 = downsample_2_2<ColorTypeFilter_88>; |
| proc_2_3 = downsample_2_3<ColorTypeFilter_88>; |
| proc_3_1 = downsample_3_1<ColorTypeFilter_88>; |
| proc_3_2 = downsample_3_2<ColorTypeFilter_88>; |
| proc_3_3 = downsample_3_3<ColorTypeFilter_88>; |
| break; |
| case kR16G16_unorm_SkColorType: |
| proc_1_2 = downsample_1_2<ColorTypeFilter_1616>; |
| proc_1_3 = downsample_1_3<ColorTypeFilter_1616>; |
| proc_2_1 = downsample_2_1<ColorTypeFilter_1616>; |
| proc_2_2 = downsample_2_2<ColorTypeFilter_1616>; |
| proc_2_3 = downsample_2_3<ColorTypeFilter_1616>; |
| proc_3_1 = downsample_3_1<ColorTypeFilter_1616>; |
| proc_3_2 = downsample_3_2<ColorTypeFilter_1616>; |
| proc_3_3 = downsample_3_3<ColorTypeFilter_1616>; |
| break; |
| case kA16_unorm_SkColorType: |
| proc_1_2 = downsample_1_2<ColorTypeFilter_16>; |
| proc_1_3 = downsample_1_3<ColorTypeFilter_16>; |
| proc_2_1 = downsample_2_1<ColorTypeFilter_16>; |
| proc_2_2 = downsample_2_2<ColorTypeFilter_16>; |
| proc_2_3 = downsample_2_3<ColorTypeFilter_16>; |
| proc_3_1 = downsample_3_1<ColorTypeFilter_16>; |
| proc_3_2 = downsample_3_2<ColorTypeFilter_16>; |
| proc_3_3 = downsample_3_3<ColorTypeFilter_16>; |
| break; |
| case kRGBA_1010102_SkColorType: |
| case kBGRA_1010102_SkColorType: |
| proc_1_2 = downsample_1_2<ColorTypeFilter_1010102>; |
| proc_1_3 = downsample_1_3<ColorTypeFilter_1010102>; |
| proc_2_1 = downsample_2_1<ColorTypeFilter_1010102>; |
| proc_2_2 = downsample_2_2<ColorTypeFilter_1010102>; |
| proc_2_3 = downsample_2_3<ColorTypeFilter_1010102>; |
| proc_3_1 = downsample_3_1<ColorTypeFilter_1010102>; |
| proc_3_2 = downsample_3_2<ColorTypeFilter_1010102>; |
| proc_3_3 = downsample_3_3<ColorTypeFilter_1010102>; |
| break; |
| case kA16_float_SkColorType: |
| proc_1_2 = downsample_1_2<ColorTypeFilter_Alpha_F16>; |
| proc_1_3 = downsample_1_3<ColorTypeFilter_Alpha_F16>; |
| proc_2_1 = downsample_2_1<ColorTypeFilter_Alpha_F16>; |
| proc_2_2 = downsample_2_2<ColorTypeFilter_Alpha_F16>; |
| proc_2_3 = downsample_2_3<ColorTypeFilter_Alpha_F16>; |
| proc_3_1 = downsample_3_1<ColorTypeFilter_Alpha_F16>; |
| proc_3_2 = downsample_3_2<ColorTypeFilter_Alpha_F16>; |
| proc_3_3 = downsample_3_3<ColorTypeFilter_Alpha_F16>; |
| break; |
| case kR16G16_float_SkColorType: |
| proc_1_2 = downsample_1_2<ColorTypeFilter_F16F16>; |
| proc_1_3 = downsample_1_3<ColorTypeFilter_F16F16>; |
| proc_2_1 = downsample_2_1<ColorTypeFilter_F16F16>; |
| proc_2_2 = downsample_2_2<ColorTypeFilter_F16F16>; |
| proc_2_3 = downsample_2_3<ColorTypeFilter_F16F16>; |
| proc_3_1 = downsample_3_1<ColorTypeFilter_F16F16>; |
| proc_3_2 = downsample_3_2<ColorTypeFilter_F16F16>; |
| proc_3_3 = downsample_3_3<ColorTypeFilter_F16F16>; |
| break; |
| case kR16G16B16A16_unorm_SkColorType: |
| proc_1_2 = downsample_1_2<ColorTypeFilter_16161616>; |
| proc_1_3 = downsample_1_3<ColorTypeFilter_16161616>; |
| proc_2_1 = downsample_2_1<ColorTypeFilter_16161616>; |
| proc_2_2 = downsample_2_2<ColorTypeFilter_16161616>; |
| proc_2_3 = downsample_2_3<ColorTypeFilter_16161616>; |
| proc_3_1 = downsample_3_1<ColorTypeFilter_16161616>; |
| proc_3_2 = downsample_3_2<ColorTypeFilter_16161616>; |
| proc_3_3 = downsample_3_3<ColorTypeFilter_16161616>; |
| break; |
| |
| case kUnknown_SkColorType: |
| case kRGB_888x_SkColorType: // TODO: use 8888? |
| case kRGB_101010x_SkColorType: // TODO: use 1010102? |
| case kBGR_101010x_SkColorType: // TODO: use 1010102? |
| case kRGBA_F32_SkColorType: |
| return nullptr; |
| |
| case kSRGBA_8888_SkColorType: // TODO: needs careful handling |
| return nullptr; |
| } |
| |
| if (src.width() <= 1 && src.height() <= 1) { |
| return nullptr; |
| } |
| // whip through our loop to compute the exact size needed |
| size_t size = 0; |
| int countLevels = ComputeLevelCount(src.width(), src.height()); |
| for (int currentMipLevel = countLevels; currentMipLevel >= 0; currentMipLevel--) { |
| SkISize mipSize = ComputeLevelSize(src.width(), src.height(), currentMipLevel); |
| size += SkColorTypeMinRowBytes(ct, mipSize.fWidth) * mipSize.fHeight; |
| } |
| |
| size_t storageSize = SkMipmap::AllocLevelsSize(countLevels, size); |
| if (0 == storageSize) { |
| return nullptr; |
| } |
| |
| SkMipmap* mipmap; |
| if (fact) { |
| SkDiscardableMemory* dm = fact(storageSize); |
| if (nullptr == dm) { |
| return nullptr; |
| } |
| mipmap = new SkMipmap(storageSize, dm); |
| } else { |
| mipmap = new SkMipmap(sk_malloc_throw(storageSize), storageSize); |
| } |
| |
| // init |
| mipmap->fCS = sk_ref_sp(src.info().colorSpace()); |
| mipmap->fCount = countLevels; |
| mipmap->fLevels = (Level*)mipmap->writable_data(); |
| SkASSERT(mipmap->fLevels); |
| |
| Level* levels = mipmap->fLevels; |
| uint8_t* baseAddr = (uint8_t*)&levels[countLevels]; |
| uint8_t* addr = baseAddr; |
| int width = src.width(); |
| int height = src.height(); |
| uint32_t rowBytes; |
| SkPixmap srcPM(src); |
| |
| // Depending on architecture and other factors, the pixel data alignment may need to be as |
| // large as 8 (for F16 pixels). See the comment on SkMipmap::Level. |
| SkASSERT(SkIsAlign8((uintptr_t)addr)); |
| |
| for (int i = 0; i < countLevels; ++i) { |
| FilterProc* proc; |
| if (height & 1) { |
| if (height == 1) { // src-height is 1 |
| if (width & 1) { // src-width is 3 |
| proc = proc_3_1; |
| } else { // src-width is 2 |
| proc = proc_2_1; |
| } |
| } else { // src-height is 3 |
| if (width & 1) { |
| if (width == 1) { // src-width is 1 |
| proc = proc_1_3; |
| } else { // src-width is 3 |
| proc = proc_3_3; |
| } |
| } else { // src-width is 2 |
| proc = proc_2_3; |
| } |
| } |
| } else { // src-height is 2 |
| if (width & 1) { |
| if (width == 1) { // src-width is 1 |
| proc = proc_1_2; |
| } else { // src-width is 3 |
| proc = proc_3_2; |
| } |
| } else { // src-width is 2 |
| proc = proc_2_2; |
| } |
| } |
| width = std::max(1, width >> 1); |
| height = std::max(1, height >> 1); |
| rowBytes = SkToU32(SkColorTypeMinRowBytes(ct, width)); |
| |
| // We make the Info w/o any colorspace, since that storage is not under our control, and |
| // will not be deleted in a controlled fashion. When the caller is given the pixmap for |
| // a given level, we augment this pixmap with fCS (which we do manage). |
| new (&levels[i].fPixmap) SkPixmap(SkImageInfo::Make(width, height, ct, at), addr, rowBytes); |
| levels[i].fScale = SkSize::Make(SkIntToScalar(width) / src.width(), |
| SkIntToScalar(height) / src.height()); |
| |
| const SkPixmap& dstPM = levels[i].fPixmap; |
| if (computeContents) { |
| const void* srcBasePtr = srcPM.addr(); |
| void* dstBasePtr = dstPM.writable_addr(); |
| |
| const size_t srcRB = srcPM.rowBytes(); |
| for (int y = 0; y < height; y++) { |
| proc(dstBasePtr, srcBasePtr, srcRB, width); |
| srcBasePtr = (char*)srcBasePtr + srcRB * 2; // jump two rows |
| dstBasePtr = (char*)dstBasePtr + dstPM.rowBytes(); |
| } |
| } |
| srcPM = dstPM; |
| addr += height * rowBytes; |
| } |
| SkASSERT(addr == baseAddr + size); |
| |
| SkASSERT(mipmap->fLevels); |
| return mipmap; |
| } |
| |
| int SkMipmap::ComputeLevelCount(int baseWidth, int baseHeight) { |
| if (baseWidth < 1 || baseHeight < 1) { |
| return 0; |
| } |
| |
| // OpenGL's spec requires that each mipmap level have height/width equal to |
| // max(1, floor(original_height / 2^i) |
| // (or original_width) where i is the mipmap level. |
| // Continue scaling down until both axes are size 1. |
| |
| const int largestAxis = std::max(baseWidth, baseHeight); |
| if (largestAxis < 2) { |
| // SkMipmap::Build requires a minimum size of 2. |
| return 0; |
| } |
| const int leadingZeros = SkCLZ(static_cast<uint32_t>(largestAxis)); |
| // If the value 00011010 has 3 leading 0s then it has 5 significant bits |
| // (the bits which are not leading zeros) |
| const int significantBits = (sizeof(uint32_t) * 8) - leadingZeros; |
| // This is making the assumption that the size of a byte is 8 bits |
| // and that sizeof(uint32_t)'s implementation-defined behavior is 4. |
| int mipLevelCount = significantBits; |
| |
| // SkMipmap does not include the base mip level. |
| // For example, it contains levels 1-x instead of 0-x. |
| // This is because the image used to create SkMipmap is the base level. |
| // So subtract 1 from the mip level count. |
| if (mipLevelCount > 0) { |
| --mipLevelCount; |
| } |
| |
| return mipLevelCount; |
| } |
| |
| SkISize SkMipmap::ComputeLevelSize(int baseWidth, int baseHeight, int level) { |
| if (baseWidth < 1 || baseHeight < 1) { |
| return SkISize::Make(0, 0); |
| } |
| |
| int maxLevelCount = ComputeLevelCount(baseWidth, baseHeight); |
| if (level >= maxLevelCount || level < 0) { |
| return SkISize::Make(0, 0); |
| } |
| // OpenGL's spec requires that each mipmap level have height/width equal to |
| // max(1, floor(original_height / 2^i) |
| // (or original_width) where i is the mipmap level. |
| |
| // SkMipmap does not include the base mip level. |
| // For example, it contains levels 1-x instead of 0-x. |
| // This is because the image used to create SkMipmap is the base level. |
| // So subtract 1 from the mip level to get the index stored by SkMipmap. |
| int width = std::max(1, baseWidth >> (level + 1)); |
| int height = std::max(1, baseHeight >> (level + 1)); |
| |
| return SkISize::Make(width, height); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // Returns fractional level value. floor(level) is the index of the larger level. |
| // < 0 means failure. |
| float SkMipmap::ComputeLevel(SkSize scaleSize) { |
| SkASSERT(scaleSize.width() >= 0 && scaleSize.height() >= 0); |
| |
| #ifndef SK_SUPPORT_LEGACY_ANISOTROPIC_MIPMAP_SCALE |
| // Use the smallest scale to match the GPU impl. |
| const float scale = std::min(scaleSize.width(), scaleSize.height()); |
| #else |
| // Ideally we'd pick the smaller scale, to match Ganesh. But ignoring one of the |
| // scales can produce some atrocious results, so for now we use the geometric mean. |
| // (https://bugs.chromium.org/p/skia/issues/detail?id=4863) |
| const float scale = sk_float_sqrt(scaleSize.width() * scaleSize.height()); |
| #endif |
| |
| if (scale >= SK_Scalar1 || scale <= 0 || !SkScalarIsFinite(scale)) { |
| return -1; |
| } |
| |
| // The -0.5 bias here is to emulate GPU's sharpen mipmap option. |
| float L = std::max(-SkScalarLog2(scale) - 0.5f, 0.f); |
| if (!SkScalarIsFinite(L)) { |
| return -1; |
| } |
| return L; |
| } |
| |
| bool SkMipmap::extractLevel(SkSize scaleSize, Level* levelPtr) const { |
| if (nullptr == fLevels) { |
| return false; |
| } |
| |
| float L = ComputeLevel(scaleSize); |
| int level = sk_float_round2int(L); |
| if (level <= 0) { |
| return false; |
| } |
| |
| if (level > fCount) { |
| level = fCount; |
| } |
| if (levelPtr) { |
| *levelPtr = fLevels[level - 1]; |
| // need to augment with our colorspace |
| levelPtr->fPixmap.setColorSpace(fCS); |
| } |
| return true; |
| } |
| |
| bool SkMipmap::validForRootLevel(const SkImageInfo& root) const { |
| if (nullptr == fLevels) { |
| return false; |
| } |
| |
| const SkISize dimension = root.dimensions(); |
| if (dimension.width() <= 1 && dimension.height() <= 1) { |
| return false; |
| } |
| |
| if (fLevels[0].fPixmap. width() != std::max(1, dimension. width() >> 1) || |
| fLevels[0].fPixmap.height() != std::max(1, dimension.height() >> 1)) { |
| return false; |
| } |
| |
| for (int i = 0; i < this->countLevels(); ++i) { |
| if (fLevels[i].fPixmap.colorType() != root.colorType() || |
| fLevels[i].fPixmap.alphaType() != root.alphaType()) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // Helper which extracts a pixmap from the src bitmap |
| // |
| SkMipmap* SkMipmap::Build(const SkBitmap& src, SkDiscardableFactoryProc fact) { |
| SkPixmap srcPixmap; |
| if (!src.peekPixels(&srcPixmap)) { |
| return nullptr; |
| } |
| return Build(srcPixmap, fact); |
| } |
| |
| int SkMipmap::countLevels() const { |
| return fCount; |
| } |
| |
| bool SkMipmap::getLevel(int index, Level* levelPtr) const { |
| if (nullptr == fLevels) { |
| return false; |
| } |
| if (index < 0) { |
| return false; |
| } |
| if (index > fCount - 1) { |
| return false; |
| } |
| if (levelPtr) { |
| *levelPtr = fLevels[index]; |
| // need to augment with our colorspace |
| levelPtr->fPixmap.setColorSpace(fCS); |
| } |
| return true; |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| #include "include/core/SkImageGenerator.h" |
| #include "include/core/SkStream.h" |
| #include "include/encode/SkPngEncoder.h" |
| #include "src/core/SkReadBuffer.h" |
| #include "src/core/SkWriteBuffer.h" |
| |
| static sk_sp<SkData> encode_to_data(const SkPixmap& pm) { |
| SkDynamicMemoryWStream stream; |
| if (SkPngEncoder::Encode(&stream, pm, SkPngEncoder::Options())) { |
| return stream.detachAsData(); |
| } |
| return nullptr; |
| } |
| |
| /* Format |
| count_levels:32 |
| for each level, starting with the biggest (index 0 in our iterator) |
| encoded_size:32 |
| encoded_data (padded) |
| */ |
| sk_sp<SkData> SkMipmap::serialize() const { |
| const int count = this->countLevels(); |
| |
| SkBinaryWriteBuffer buffer; |
| buffer.write32(count); |
| for (int i = 0; i < count; ++i) { |
| Level level; |
| if (this->getLevel(i, &level)) { |
| buffer.writeDataAsByteArray(encode_to_data(level.fPixmap).get()); |
| } else { |
| return nullptr; |
| } |
| } |
| return buffer.snapshotAsData(); |
| } |
| |
| bool SkMipmap::Deserialize(SkMipmapBuilder* builder, const void* data, size_t length) { |
| SkReadBuffer buffer(data, length); |
| |
| int count = buffer.read32(); |
| if (builder->countLevels() != count) { |
| return false; |
| } |
| for (int i = 0; i < count; ++i) { |
| size_t size = buffer.read32(); |
| const void* ptr = buffer.skip(size); |
| if (!ptr) { |
| return false; |
| } |
| auto gen = SkImageGenerator::MakeFromEncoded( |
| SkData::MakeWithProc(ptr, size, nullptr, nullptr)); |
| if (!gen) { |
| return false; |
| } |
| |
| SkPixmap pm = builder->level(i); |
| if (gen->getInfo().dimensions() != pm.dimensions()) { |
| return false; |
| } |
| if (!gen->getPixels(pm)) { |
| return false; |
| } |
| } |
| return buffer.isValid(); |
| } |