| /* |
| * Copyright 2020 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/core/SkM44.h" |
| #include "include/core/SkMatrix.h" |
| #include "include/private/SkVx.h" |
| |
| #include "src/core/SkMatrixInvert.h" |
| #include "src/core/SkMatrixPriv.h" |
| #include "src/core/SkPathPriv.h" |
| |
| using sk4f = skvx::Vec<4, float>; |
| using sk2f = skvx::Vec<2, float>; |
| |
| bool SkM44::operator==(const SkM44& other) const { |
| if (this == &other) { |
| return true; |
| } |
| |
| sk4f a0 = sk4f::Load(fMat + 0); |
| sk4f a1 = sk4f::Load(fMat + 4); |
| sk4f a2 = sk4f::Load(fMat + 8); |
| sk4f a3 = sk4f::Load(fMat + 12); |
| |
| sk4f b0 = sk4f::Load(other.fMat + 0); |
| sk4f b1 = sk4f::Load(other.fMat + 4); |
| sk4f b2 = sk4f::Load(other.fMat + 8); |
| sk4f b3 = sk4f::Load(other.fMat + 12); |
| |
| auto eq = (a0 == b0) & (a1 == b1) & (a2 == b2) & (a3 == b3); |
| return (eq[0] & eq[1] & eq[2] & eq[3]) == ~0; |
| } |
| |
| static void transpose_arrays(SkScalar dst[], const SkScalar src[]) { |
| dst[0] = src[0]; dst[1] = src[4]; dst[2] = src[8]; dst[3] = src[12]; |
| dst[4] = src[1]; dst[5] = src[5]; dst[6] = src[9]; dst[7] = src[13]; |
| dst[8] = src[2]; dst[9] = src[6]; dst[10] = src[10]; dst[11] = src[14]; |
| dst[12] = src[3]; dst[13] = src[7]; dst[14] = src[11]; dst[15] = src[15]; |
| } |
| |
| void SkM44::getRowMajor(SkScalar v[]) const { |
| transpose_arrays(v, fMat); |
| } |
| |
| SkM44& SkM44::setConcat(const SkM44& a, const SkM44& b) { |
| sk4f c0 = sk4f::Load(a.fMat + 0); |
| sk4f c1 = sk4f::Load(a.fMat + 4); |
| sk4f c2 = sk4f::Load(a.fMat + 8); |
| sk4f c3 = sk4f::Load(a.fMat + 12); |
| |
| auto compute = [&](sk4f r) { |
| return c0*r[0] + (c1*r[1] + (c2*r[2] + c3*r[3])); |
| }; |
| |
| sk4f m0 = compute(sk4f::Load(b.fMat + 0)); |
| sk4f m1 = compute(sk4f::Load(b.fMat + 4)); |
| sk4f m2 = compute(sk4f::Load(b.fMat + 8)); |
| sk4f m3 = compute(sk4f::Load(b.fMat + 12)); |
| |
| m0.store(fMat + 0); |
| m1.store(fMat + 4); |
| m2.store(fMat + 8); |
| m3.store(fMat + 12); |
| return *this; |
| } |
| |
| SkM44& SkM44::preConcat(const SkMatrix& b) { |
| sk4f c0 = sk4f::Load(fMat + 0); |
| sk4f c1 = sk4f::Load(fMat + 4); |
| sk4f c3 = sk4f::Load(fMat + 12); |
| |
| auto compute = [&](float r0, float r1, float r3) { |
| return (c0*r0 + (c1*r1 + c3*r3)); |
| }; |
| |
| sk4f m0 = compute(b[0], b[3], b[6]); |
| sk4f m1 = compute(b[1], b[4], b[7]); |
| sk4f m3 = compute(b[2], b[5], b[8]); |
| |
| m0.store(fMat + 0); |
| m1.store(fMat + 4); |
| m3.store(fMat + 12); |
| return *this; |
| } |
| |
| SkM44& SkM44::preTranslate(SkScalar x, SkScalar y, SkScalar z) { |
| sk4f c0 = sk4f::Load(fMat + 0); |
| sk4f c1 = sk4f::Load(fMat + 4); |
| sk4f c2 = sk4f::Load(fMat + 8); |
| sk4f c3 = sk4f::Load(fMat + 12); |
| |
| // only need to update the last column |
| (c0*x + (c1*y + (c2*z + c3))).store(fMat + 12); |
| return *this; |
| } |
| |
| SkM44& SkM44::postTranslate(SkScalar x, SkScalar y, SkScalar z) { |
| sk4f t = { x, y, z, 0 }; |
| (t * fMat[ 3] + sk4f::Load(fMat + 0)).store(fMat + 0); |
| (t * fMat[ 7] + sk4f::Load(fMat + 4)).store(fMat + 4); |
| (t * fMat[11] + sk4f::Load(fMat + 8)).store(fMat + 8); |
| (t * fMat[15] + sk4f::Load(fMat + 12)).store(fMat + 12); |
| return *this; |
| } |
| |
| SkM44& SkM44::preScale(SkScalar x, SkScalar y) { |
| sk4f c0 = sk4f::Load(fMat + 0); |
| sk4f c1 = sk4f::Load(fMat + 4); |
| |
| (c0 * x).store(fMat + 0); |
| (c1 * y).store(fMat + 4); |
| return *this; |
| } |
| |
| SkM44& SkM44::preScale(SkScalar x, SkScalar y, SkScalar z) { |
| sk4f c0 = sk4f::Load(fMat + 0); |
| sk4f c1 = sk4f::Load(fMat + 4); |
| sk4f c2 = sk4f::Load(fMat + 8); |
| |
| (c0 * x).store(fMat + 0); |
| (c1 * y).store(fMat + 4); |
| (c2 * z).store(fMat + 8); |
| return *this; |
| } |
| |
| SkV4 SkM44::map(float x, float y, float z, float w) const { |
| sk4f c0 = sk4f::Load(fMat + 0); |
| sk4f c1 = sk4f::Load(fMat + 4); |
| sk4f c2 = sk4f::Load(fMat + 8); |
| sk4f c3 = sk4f::Load(fMat + 12); |
| |
| SkV4 v; |
| (c0*x + (c1*y + (c2*z + c3*w))).store(&v.x); |
| return v; |
| } |
| |
| static SkRect map_rect_affine(const SkRect& src, const float mat[16]) { |
| // When multiplied against vectors of the form <x,y,x,y>, 'flip' allows a single min(sk4f, sk4f) |
| // to compute both the min and "negated" max between the xy coordinates. Once finished, another |
| // multiplication produces the original max. |
| const sk4f flip{1.f, 1.f, -1.f, -1.f}; |
| |
| // Since z = 0 and it's assumed ther's no perspective, only load the upper 2x2 and (tx,ty) in c3 |
| sk4f c0 = skvx::shuffle<0,1,0,1>(sk2f::Load(mat + 0)) * flip; |
| sk4f c1 = skvx::shuffle<0,1,0,1>(sk2f::Load(mat + 4)) * flip; |
| sk4f c3 = skvx::shuffle<0,1,0,1>(sk2f::Load(mat + 12)); |
| |
| // Compute the min and max of the four transformed corners pre-translation; then translate once |
| // at the end. |
| sk4f minMax = c3 + flip * min(min(c0 * src.fLeft + c1 * src.fTop, |
| c0 * src.fRight + c1 * src.fTop), |
| min(c0 * src.fLeft + c1 * src.fBottom, |
| c0 * src.fRight + c1 * src.fBottom)); |
| |
| // minMax holds (min x, min y, max x, max y) so can be copied into an SkRect expecting l,t,r,b |
| SkRect r; |
| minMax.store(&r); |
| return r; |
| } |
| |
| static SkRect map_rect_perspective(const SkRect& src, const float mat[16]) { |
| // Like map_rect_affine, z = 0 so we can skip the 3rd column, but we do need to compute w's |
| // for each corner of the src rect. |
| sk4f c0 = sk4f::Load(mat + 0); |
| sk4f c1 = sk4f::Load(mat + 4); |
| sk4f c3 = sk4f::Load(mat + 12); |
| |
| // Unlike map_rect_affine, we do not defer the 4th column since we may need to homogeneous |
| // coordinates to clip against the w=0 plane |
| sk4f tl = c0 * src.fLeft + c1 * src.fTop + c3; |
| sk4f tr = c0 * src.fRight + c1 * src.fTop + c3; |
| sk4f bl = c0 * src.fLeft + c1 * src.fBottom + c3; |
| sk4f br = c0 * src.fRight + c1 * src.fBottom + c3; |
| |
| // After clipping to w>0 and projecting to 2d, 'project' employs the same negation trick to |
| // compute min and max at the same time. |
| const sk4f flip{1.f, 1.f, -1.f, -1.f}; |
| auto project = [&flip](const sk4f& p0, const sk4f& p1, const sk4f& p2) { |
| float w0 = p0[3]; |
| if (w0 >= SkPathPriv::kW0PlaneDistance) { |
| // Unclipped, just divide by w |
| return flip * skvx::shuffle<0,1,0,1>(p0) / w0; |
| } else { |
| auto clip = [&](const sk4f& p) { |
| float w = p[3]; |
| if (w >= SkPathPriv::kW0PlaneDistance) { |
| float t = (SkPathPriv::kW0PlaneDistance - w0) / (w - w0); |
| sk2f c = (t * skvx::shuffle<0,1>(p) + (1.f - t) * skvx::shuffle<0,1>(p0)) / |
| SkPathPriv::kW0PlaneDistance; |
| |
| return flip * skvx::shuffle<0,1,0,1>(c); |
| } else { |
| return sk4f(SK_ScalarInfinity); |
| } |
| }; |
| // Clip both edges leaving p0, and return the min/max of the two clipped points |
| // (since clip returns infinity when both p0 and 2nd vertex have w<0, it'll |
| // automatically be ignored). |
| return min(clip(p1), clip(p2)); |
| } |
| }; |
| |
| // Project all 4 corners, and pass in their adjacent vertices for clipping if it has w < 0, |
| // then accumulate the min and max xy's. |
| sk4f minMax = flip * min(min(project(tl, tr, bl), project(tr, br, tl)), |
| min(project(br, bl, tr), project(bl, tl, br))); |
| |
| SkRect r; |
| minMax.store(&r); |
| return r; |
| } |
| |
| SkRect SkMatrixPriv::MapRect(const SkM44& m, const SkRect& src) { |
| const bool hasPerspective = |
| m.fMat[3] != 0 || m.fMat[7] != 0 || m.fMat[11] != 0 || m.fMat[15] != 1; |
| if (hasPerspective) { |
| return map_rect_perspective(src, m.fMat); |
| } else { |
| return map_rect_affine(src, m.fMat); |
| } |
| } |
| |
| void SkM44::normalizePerspective() { |
| // If the bottom row of the matrix is [0, 0, 0, not_one], we will treat the matrix as if it |
| // is in perspective, even though it stills behaves like its affine. If we divide everything |
| // by the not_one value, then it will behave the same, but will be treated as affine, |
| // and therefore faster (e.g. clients can forward-difference calculations). |
| if (fMat[15] != 1 && fMat[15] != 0 && fMat[3] == 0 && fMat[7] == 0 && fMat[11] == 0) { |
| double inv = 1.0 / fMat[15]; |
| (sk4f::Load(fMat + 0) * inv).store(fMat + 0); |
| (sk4f::Load(fMat + 4) * inv).store(fMat + 4); |
| (sk4f::Load(fMat + 8) * inv).store(fMat + 8); |
| (sk4f::Load(fMat + 12) * inv).store(fMat + 12); |
| fMat[15] = 1.0f; |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** We always perform the calculation in doubles, to avoid prematurely losing |
| precision along the way. This relies on the compiler automatically |
| promoting our SkScalar values to double (if needed). |
| */ |
| bool SkM44::invert(SkM44* inverse) const { |
| SkScalar tmp[16]; |
| if (SkInvert4x4Matrix(fMat, tmp) == 0.0f) { |
| return false; |
| } |
| memcpy(inverse->fMat, tmp, sizeof(tmp)); |
| return true; |
| } |
| |
| SkM44 SkM44::transpose() const { |
| SkM44 trans(SkM44::kUninitialized_Constructor); |
| transpose_arrays(trans.fMat, fMat); |
| return trans; |
| } |
| |
| SkM44& SkM44::setRotateUnitSinCos(SkV3 axis, SkScalar sinAngle, SkScalar cosAngle) { |
| // Taken from "Essential Mathematics for Games and Interactive Applications" |
| // James M. Van Verth and Lars M. Bishop -- third edition |
| SkScalar x = axis.x; |
| SkScalar y = axis.y; |
| SkScalar z = axis.z; |
| SkScalar c = cosAngle; |
| SkScalar s = sinAngle; |
| SkScalar t = 1 - c; |
| |
| *this = { t*x*x + c, t*x*y - s*z, t*x*z + s*y, 0, |
| t*x*y + s*z, t*y*y + c, t*y*z - s*x, 0, |
| t*x*z - s*y, t*y*z + s*x, t*z*z + c, 0, |
| 0, 0, 0, 1 }; |
| return *this; |
| } |
| |
| SkM44& SkM44::setRotate(SkV3 axis, SkScalar radians) { |
| SkScalar len = axis.length(); |
| if (len > 0 && SkScalarIsFinite(len)) { |
| this->setRotateUnit(axis * (SK_Scalar1 / len), radians); |
| } else { |
| this->setIdentity(); |
| } |
| return *this; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkM44::dump() const { |
| SkDebugf("|%g %g %g %g|\n" |
| "|%g %g %g %g|\n" |
| "|%g %g %g %g|\n" |
| "|%g %g %g %g|\n", |
| fMat[0], fMat[4], fMat[8], fMat[12], |
| fMat[1], fMat[5], fMat[9], fMat[13], |
| fMat[2], fMat[6], fMat[10], fMat[14], |
| fMat[3], fMat[7], fMat[11], fMat[15]); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| SkM44 SkM44::RectToRect(const SkRect& src, const SkRect& dst) { |
| if (src.isEmpty()) { |
| return SkM44(); |
| } else if (dst.isEmpty()) { |
| return SkM44::Scale(0.f, 0.f, 0.f); |
| } |
| |
| float sx = dst.width() / src.width(); |
| float sy = dst.height() / src.height(); |
| |
| float tx = dst.fLeft - sx * src.fLeft; |
| float ty = dst.fTop - sy * src.fTop; |
| |
| return SkM44{sx, 0.f, 0.f, tx, |
| 0.f, sy, 0.f, ty, |
| 0.f, 0.f, 1.f, 0.f, |
| 0.f, 0.f, 0.f, 1.f}; |
| } |
| |
| static SkV3 normalize(SkV3 v) { |
| const auto vlen = v.length(); |
| |
| return SkScalarNearlyZero(vlen) ? v : v * (1.0f / vlen); |
| } |
| |
| static SkV4 v4(SkV3 v, SkScalar w) { return {v.x, v.y, v.z, w}; } |
| |
| SkM44 SkM44::LookAt(const SkV3& eye, const SkV3& center, const SkV3& up) { |
| SkV3 f = normalize(center - eye); |
| SkV3 u = normalize(up); |
| SkV3 s = normalize(f.cross(u)); |
| |
| SkM44 m(SkM44::kUninitialized_Constructor); |
| if (!SkM44::Cols(v4(s, 0), v4(s.cross(f), 0), v4(-f, 0), v4(eye, 1)).invert(&m)) { |
| m.setIdentity(); |
| } |
| return m; |
| } |
| |
| SkM44 SkM44::Perspective(float near, float far, float angle) { |
| SkASSERT(far > near); |
| |
| float denomInv = sk_ieee_float_divide(1, far - near); |
| float halfAngle = angle * 0.5f; |
| float cot = sk_float_cos(halfAngle) / sk_float_sin(halfAngle); |
| |
| SkM44 m; |
| m.setRC(0, 0, cot); |
| m.setRC(1, 1, cot); |
| m.setRC(2, 2, (far + near) * denomInv); |
| m.setRC(2, 3, 2 * far * near * denomInv); |
| m.setRC(3, 2, -1); |
| return m; |
| } |