| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkGlyph_DEFINED |
| #define SkGlyph_DEFINED |
| |
| #include "include/core/SkPath.h" |
| #include "include/core/SkTypes.h" |
| #include "include/private/SkChecksum.h" |
| #include "include/private/SkFixed.h" |
| #include "include/private/SkTo.h" |
| #include "include/private/SkVx.h" |
| #include "src/core/SkMask.h" |
| #include "src/core/SkMathPriv.h" |
| #include "src/core/SkStrikeForGPU.h" |
| |
| class SkArenaAlloc; |
| class SkDrawable; |
| class SkScalerContext; |
| |
| // A combination of SkGlyphID and sub-pixel position information. |
| struct SkPackedGlyphID { |
| inline static constexpr uint32_t kImpossibleID = ~0u; |
| enum { |
| // Lengths |
| kGlyphIDLen = 16u, |
| kSubPixelPosLen = 2u, |
| |
| // Bit positions |
| kSubPixelX = 0u, |
| kGlyphID = kSubPixelPosLen, |
| kSubPixelY = kGlyphIDLen + kSubPixelPosLen, |
| kEndData = kGlyphIDLen + 2 * kSubPixelPosLen, |
| |
| // Masks |
| kGlyphIDMask = (1u << kGlyphIDLen) - 1, |
| kSubPixelPosMask = (1u << kSubPixelPosLen) - 1, |
| kMaskAll = (1u << kEndData) - 1, |
| |
| // Location of sub pixel info in a fixed pointer number. |
| kFixedPointBinaryPointPos = 16u, |
| kFixedPointSubPixelPosBits = kFixedPointBinaryPointPos - kSubPixelPosLen, |
| }; |
| |
| inline static const constexpr SkScalar kSubpixelRound = |
| 1.f / (1u << (SkPackedGlyphID::kSubPixelPosLen + 1)); |
| |
| inline static const constexpr SkIPoint kXYFieldMask{kSubPixelPosMask << kSubPixelX, |
| kSubPixelPosMask << kSubPixelY}; |
| |
| struct Hash { |
| uint32_t operator() (SkPackedGlyphID packedID) const { |
| return packedID.hash(); |
| } |
| }; |
| |
| constexpr explicit SkPackedGlyphID(SkGlyphID glyphID) |
| : fID{(uint32_t)glyphID << kGlyphID} { } |
| |
| constexpr SkPackedGlyphID(SkGlyphID glyphID, SkFixed x, SkFixed y) |
| : fID {PackIDXY(glyphID, x, y)} { } |
| |
| constexpr SkPackedGlyphID(SkGlyphID glyphID, uint32_t x, uint32_t y) |
| : fID {PackIDSubXSubY(glyphID, x, y)} { } |
| |
| SkPackedGlyphID(SkGlyphID glyphID, SkPoint pt, SkIPoint mask) |
| : fID{PackIDSkPoint(glyphID, pt, mask)} { } |
| |
| constexpr explicit SkPackedGlyphID(uint32_t v) : fID{v & kMaskAll} { } |
| constexpr SkPackedGlyphID() : fID{kImpossibleID} {} |
| |
| bool operator==(const SkPackedGlyphID& that) const { |
| return fID == that.fID; |
| } |
| bool operator!=(const SkPackedGlyphID& that) const { |
| return !(*this == that); |
| } |
| bool operator<(SkPackedGlyphID that) const { |
| return this->fID < that.fID; |
| } |
| |
| SkGlyphID glyphID() const { |
| return (fID >> kGlyphID) & kGlyphIDMask; |
| } |
| |
| uint32_t value() const { |
| return fID; |
| } |
| |
| SkFixed getSubXFixed() const { |
| return this->subToFixed(kSubPixelX); |
| } |
| |
| SkFixed getSubYFixed() const { |
| return this->subToFixed(kSubPixelY); |
| } |
| |
| uint32_t hash() const { |
| return SkChecksum::CheapMix(fID); |
| } |
| |
| SkString dump() const { |
| SkString str; |
| str.appendf("glyphID: %d, x: %d, y:%d", glyphID(), getSubXFixed(), getSubYFixed()); |
| return str; |
| } |
| |
| SkString shortDump() const { |
| SkString str; |
| str.appendf("0x%x|%1d|%1d", this->glyphID(), |
| this->subPixelField(kSubPixelX), |
| this->subPixelField(kSubPixelY)); |
| return str; |
| } |
| |
| private: |
| static constexpr uint32_t PackIDSubXSubY(SkGlyphID glyphID, uint32_t x, uint32_t y) { |
| SkASSERT(x < (1u << kSubPixelPosLen)); |
| SkASSERT(y < (1u << kSubPixelPosLen)); |
| |
| return (x << kSubPixelX) | (y << kSubPixelY) | (glyphID << kGlyphID); |
| } |
| |
| // Assumptions: pt is properly rounded. mask is set for the x or y fields. |
| // |
| // A sub-pixel field is a number on the interval [2^kSubPixel, 2^(kSubPixel + kSubPixelPosLen)). |
| // Where kSubPixel is either kSubPixelX or kSubPixelY. Given a number x on [0, 1) we can |
| // generate a sub-pixel field using: |
| // sub-pixel-field = x * 2^(kSubPixel + kSubPixelPosLen) |
| // |
| // We can generate the integer sub-pixel field by &-ing the integer part of sub-filed with the |
| // sub-pixel field mask. |
| // int-sub-pixel-field = int(sub-pixel-field) & (kSubPixelPosMask << kSubPixel) |
| // |
| // The last trick is to extend the range from [0, 1) to [0, 2). The extend range is |
| // necessary because the modulo 1 calculation (pt - floor(pt)) generates numbers on [-1, 1). |
| // This does not round (floor) properly when converting to integer. Adding one to the range |
| // causes truncation and floor to be the same. Coincidentally, masking to produce the field also |
| // removes the +1. |
| static uint32_t PackIDSkPoint(SkGlyphID glyphID, SkPoint pt, SkIPoint mask) { |
| #if 0 |
| // TODO: why does this code not work on GCC 8.3 x86 Debug builds? |
| using namespace skvx; |
| using XY = Vec<2, float>; |
| using SubXY = Vec<2, int>; |
| |
| const XY magic = {1.f * (1u << (kSubPixelPosLen + kSubPixelX)), |
| 1.f * (1u << (kSubPixelPosLen + kSubPixelY))}; |
| XY pos{pt.x(), pt.y()}; |
| XY subPos = (pos - floor(pos)) + 1.0f; |
| SubXY sub = cast<int>(subPos * magic) & SubXY{mask.x(), mask.y()}; |
| #else |
| const float magicX = 1.f * (1u << (kSubPixelPosLen + kSubPixelX)), |
| magicY = 1.f * (1u << (kSubPixelPosLen + kSubPixelY)); |
| |
| float x = pt.x(), |
| y = pt.y(); |
| x = (x - floorf(x)) + 1.0f; |
| y = (y - floorf(y)) + 1.0f; |
| int sub[] = { |
| (int)(x * magicX) & mask.x(), |
| (int)(y * magicY) & mask.y(), |
| }; |
| #endif |
| |
| SkASSERT(sub[0] / (1u << kSubPixelX) < (1u << kSubPixelPosLen)); |
| SkASSERT(sub[1] / (1u << kSubPixelY) < (1u << kSubPixelPosLen)); |
| return (glyphID << kGlyphID) | sub[0] | sub[1]; |
| } |
| |
| static constexpr uint32_t PackIDXY(SkGlyphID glyphID, SkFixed x, SkFixed y) { |
| return PackIDSubXSubY(glyphID, FixedToSub(x), FixedToSub(y)); |
| } |
| |
| static constexpr uint32_t FixedToSub(SkFixed n) { |
| return ((uint32_t)n >> kFixedPointSubPixelPosBits) & kSubPixelPosMask; |
| } |
| |
| constexpr uint32_t subPixelField(uint32_t subPixelPosBit) const { |
| return (fID >> subPixelPosBit) & kSubPixelPosMask; |
| } |
| |
| constexpr SkFixed subToFixed(uint32_t subPixelPosBit) const { |
| uint32_t subPixelPosition = this->subPixelField(subPixelPosBit); |
| return subPixelPosition << kFixedPointSubPixelPosBits; |
| } |
| |
| uint32_t fID; |
| }; |
| |
| class SkGlyphRect; |
| namespace skglyph { |
| SkGlyphRect rect_union(SkGlyphRect, SkGlyphRect); |
| SkGlyphRect rect_intersection(SkGlyphRect, SkGlyphRect); |
| } // namespace skglyph |
| |
| // SkGlyphRect encodes rectangles with coordinates on [-32767, 32767]. It is specialized for |
| // rectangle union and intersection operations. |
| class SkGlyphRect { |
| public: |
| SkGlyphRect() = default; |
| SkGlyphRect(int16_t left, int16_t top, int16_t right, int16_t bottom) |
| : fRect{(int16_t)-left, (int16_t)-top, right, bottom} { |
| SkDEBUGCODE(const int32_t min = std::numeric_limits<int16_t>::min()); |
| SkASSERT(left != min && top != min && right != min && bottom != min); |
| } |
| bool empty() const { |
| return -fRect[0] >= fRect[2] || -fRect[1] >= fRect[3]; |
| } |
| SkRect rect() const { |
| return SkRect::MakeLTRB(-fRect[0], -fRect[1], fRect[2], fRect[3]); |
| } |
| SkIRect iRect() const { |
| return SkIRect::MakeLTRB(-fRect[0], -fRect[1], fRect[2], fRect[3]); |
| } |
| SkGlyphRect offset(int16_t x, int16_t y) const { |
| return SkGlyphRect{fRect + Storage{SkTo<int16_t>(-x), SkTo<int16_t>(-y), x, y}}; |
| } |
| skvx::Vec<2, int16_t> leftTop() const { return -this->negLeftTop(); } |
| skvx::Vec<2, int16_t> rightBottom() const { return {fRect[2], fRect[3]}; } |
| skvx::Vec<2, int16_t> widthHeight() const { return this->rightBottom() + negLeftTop(); } |
| friend SkGlyphRect skglyph::rect_union(SkGlyphRect, SkGlyphRect); |
| friend SkGlyphRect skglyph::rect_intersection(SkGlyphRect, SkGlyphRect); |
| |
| private: |
| skvx::Vec<2, int16_t> negLeftTop() const { return {fRect[0], fRect[1]}; } |
| using Storage = skvx::Vec<4, int16_t>; |
| SkGlyphRect(Storage rect) : fRect{rect} { } |
| Storage fRect; |
| }; |
| |
| namespace skglyph { |
| inline SkGlyphRect empty_rect() { |
| constexpr int16_t max = std::numeric_limits<int16_t>::max(); |
| return {max, max, -max, -max}; |
| } |
| inline SkGlyphRect full_rect() { |
| constexpr int16_t max = std::numeric_limits<int16_t>::max(); |
| return {-max, -max, max, max}; |
| } |
| inline SkGlyphRect rect_union(SkGlyphRect a, SkGlyphRect b) { |
| return skvx::max(a.fRect, b.fRect); |
| } |
| inline SkGlyphRect rect_intersection(SkGlyphRect a, SkGlyphRect b) { |
| return skvx::min(a.fRect, b.fRect); |
| } |
| } // namespace skglyph |
| |
| class SkGlyph; |
| |
| // SkGlyphDigest contains a digest of information for making GPU drawing decisions. It can be |
| // referenced instead of the glyph itself in many situations. In the remote glyphs cache the |
| // SkGlyphDigest is the only information that needs to be stored in the cache. |
| class SkGlyphDigest { |
| public: |
| // Default ctor is only needed for the hash table. |
| SkGlyphDigest() = default; |
| SkGlyphDigest(size_t index, const SkGlyph& glyph); |
| int index() const { return fIndex; } |
| bool isEmpty() const { return fIsEmpty; } |
| bool isColor() const { return fIsColor; } |
| bool canDrawAsMask() const { return fCanDrawAsMask; } |
| bool canDrawAsSDFT() const { return fCanDrawAsSDFT; } |
| uint16_t maxDimension() const { |
| return std::max(fWidth, fHeight); |
| } |
| |
| private: |
| static_assert(SkPackedGlyphID::kEndData == 20); |
| struct { |
| uint32_t fIndex : SkPackedGlyphID::kEndData; |
| uint32_t fIsEmpty : 1; |
| uint32_t fIsColor : 1; |
| uint32_t fCanDrawAsMask : 1; |
| uint32_t fCanDrawAsSDFT : 1; |
| }; |
| int16_t fLeft, fTop; |
| uint16_t fWidth, fHeight; |
| }; |
| |
| class SkGlyph { |
| public: |
| // SkGlyph() is used for testing. |
| constexpr SkGlyph() : SkGlyph{SkPackedGlyphID()} { } |
| SkGlyph(const SkGlyph&); |
| SkGlyph& operator=(const SkGlyph&); |
| SkGlyph(SkGlyph&&); |
| SkGlyph& operator=(SkGlyph&&); |
| ~SkGlyph(); |
| constexpr explicit SkGlyph(SkPackedGlyphID id) : fID{id} { } |
| |
| SkVector advanceVector() const { return SkVector{fAdvanceX, fAdvanceY}; } |
| SkScalar advanceX() const { return fAdvanceX; } |
| SkScalar advanceY() const { return fAdvanceY; } |
| |
| SkGlyphID getGlyphID() const { return fID.glyphID(); } |
| SkPackedGlyphID getPackedID() const { return fID; } |
| SkFixed getSubXFixed() const { return fID.getSubXFixed(); } |
| SkFixed getSubYFixed() const { return fID.getSubYFixed(); } |
| |
| size_t rowBytes() const; |
| size_t rowBytesUsingFormat(SkMask::Format format) const; |
| |
| // Call this to set all of the metrics fields to 0 (e.g. if the scaler |
| // encounters an error measuring a glyph). Note: this does not alter the |
| // fImage, fPath, fID, fMaskFormat fields. |
| void zeroMetrics(); |
| |
| SkMask mask() const; |
| |
| SkMask mask(SkPoint position) const; |
| |
| // Image |
| // If we haven't already tried to associate an image with this glyph |
| // (i.e. setImageHasBeenCalled() returns false), then use the |
| // SkScalerContext or const void* argument to set the image. |
| bool setImage(SkArenaAlloc* alloc, SkScalerContext* scalerContext); |
| bool setImage(SkArenaAlloc* alloc, const void* image); |
| |
| // Merge the from glyph into this glyph using alloc to allocate image data. Return the number |
| // of bytes allocated. Copy the width, height, top, left, format, and image into this glyph |
| // making a copy of the image using the alloc. |
| size_t setMetricsAndImage(SkArenaAlloc* alloc, const SkGlyph& from); |
| |
| // Returns true if the image has been set. |
| bool setImageHasBeenCalled() const { |
| return fImage != nullptr || this->isEmpty() || this->imageTooLarge(); |
| } |
| |
| // Return a pointer to the path if the image exists, otherwise return nullptr. |
| const void* image() const { SkASSERT(this->setImageHasBeenCalled()); return fImage; } |
| |
| // Return the size of the image. |
| size_t imageSize() const; |
| |
| // Path |
| // If we haven't already tried to associate a path to this glyph |
| // (i.e. setPathHasBeenCalled() returns false), then use the |
| // SkScalerContext or SkPath argument to try to do so. N.B. this |
| // may still result in no path being associated with this glyph, |
| // e.g. if you pass a null SkPath or the typeface is bitmap-only. |
| // |
| // This setPath() call is sticky... once you call it, the glyph |
| // stays in its state permanently, ignoring any future calls. |
| // |
| // Returns true if this is the first time you called setPath() |
| // and there actually is a path; call path() to get it. |
| bool setPath(SkArenaAlloc* alloc, SkScalerContext* scalerContext); |
| bool setPath(SkArenaAlloc* alloc, const SkPath* path, bool hairline); |
| |
| // Returns true if that path has been set. |
| bool setPathHasBeenCalled() const { return fPathData != nullptr; } |
| |
| // Return a pointer to the path if it exists, otherwise return nullptr. Only works if the |
| // path was previously set. |
| const SkPath* path() const; |
| bool pathIsHairline() const; |
| |
| bool setDrawable(SkArenaAlloc* alloc, SkScalerContext* scalerContext); |
| bool setDrawable(SkArenaAlloc* alloc, sk_sp<SkDrawable> drawable); |
| bool setDrawableHasBeenCalled() const { return fDrawableData != nullptr; } |
| SkDrawable* drawable() const; |
| |
| // Format |
| bool isColor() const { return fMaskFormat == SkMask::kARGB32_Format; } |
| SkMask::Format maskFormat() const { return fMaskFormat; } |
| size_t formatAlignment() const; |
| |
| // Bounds |
| int maxDimension() const { return std::max(fWidth, fHeight); } |
| SkIRect iRect() const { return SkIRect::MakeXYWH(fLeft, fTop, fWidth, fHeight); } |
| SkRect rect() const { return SkRect::MakeXYWH(fLeft, fTop, fWidth, fHeight); } |
| SkGlyphRect glyphRect() const { |
| return {fLeft, fTop, |
| SkTo<int16_t>(fLeft + fWidth), SkTo<int16_t>(fTop + fHeight)}; |
| } |
| int left() const { return fLeft; } |
| int top() const { return fTop; } |
| int width() const { return fWidth; } |
| int height() const { return fHeight; } |
| bool isEmpty() const { |
| // fHeight == 0 -> fWidth == 0; |
| SkASSERT(fHeight != 0 || fWidth == 0); |
| return fWidth == 0; |
| } |
| bool imageTooLarge() const { return fWidth >= kMaxGlyphWidth; } |
| |
| // Make sure that the intercept information is on the glyph and return it, or return it if it |
| // already exists. |
| // * bounds - either end of the gap for the character. |
| // * scale, xPos - information about how wide the gap is. |
| // * array - accumulated gaps for many characters if not null. |
| // * count - the number of gaps. |
| void ensureIntercepts(const SkScalar bounds[2], SkScalar scale, SkScalar xPos, |
| SkScalar* array, int* count, SkArenaAlloc* alloc); |
| |
| void setImage(void* image) { fImage = image; } |
| |
| private: |
| // There are two sides to an SkGlyph, the scaler side (things that create glyph data) have |
| // access to all the fields. Scalers are assumed to maintain all the SkGlyph invariants. The |
| // consumer side has a tighter interface. |
| friend class RandomScalerContext; |
| friend class SkScalerContext; |
| friend class SkScalerContextProxy; |
| friend class SkScalerContext_Empty; |
| friend class SkScalerContext_FreeType; |
| friend class SkScalerContext_FreeType_Base; |
| friend class SkScalerContext_DW; |
| friend class SkScalerContext_GDI; |
| friend class SkScalerContext_Mac; |
| friend class SkStrikeClientImpl; |
| friend class SkTestScalerContext; |
| friend class SkTestSVGScalerContext; |
| friend class SkUserScalerContext; |
| friend class TestSVGTypeface; |
| friend class TestTypeface; |
| |
| inline static constexpr uint16_t kMaxGlyphWidth = 1u << 13u; |
| |
| // Support horizontal and vertical skipping strike-through / underlines. |
| // The caller walks the linked list looking for a match. For a horizontal underline, |
| // the fBounds contains the top and bottom of the underline. The fInterval pair contains the |
| // beginning and end of the intersection of the bounds and the glyph's path. |
| // If interval[0] >= interval[1], no intersection was found. |
| struct Intercept { |
| Intercept* fNext; |
| SkScalar fBounds[2]; // for horz underlines, the boundaries in Y |
| SkScalar fInterval[2]; // the outside intersections of the axis and the glyph |
| }; |
| |
| struct PathData { |
| Intercept* fIntercept{nullptr}; |
| SkPath fPath; |
| bool fHasPath{false}; |
| // A normal user-path will have patheffects applied to it and eventually become a dev-path. |
| // A dev-path is always a fill-path, except when it is hairline. |
| // The fPath is a dev-path, so sidecar the paths hairline status. |
| // This allows the user to avoid filling paths which should not be filled. |
| bool fHairline{false}; |
| }; |
| |
| struct DrawableData { |
| Intercept* fIntercept{nullptr}; |
| sk_sp<SkDrawable> fDrawable; |
| bool fHasDrawable{false}; |
| }; |
| |
| size_t allocImage(SkArenaAlloc* alloc); |
| |
| // path == nullptr indicates that there is no path. |
| void installPath(SkArenaAlloc* alloc, const SkPath* path, bool hairline); |
| |
| // drawable == nullptr indicates that there is no path. |
| void installDrawable(SkArenaAlloc* alloc, sk_sp<SkDrawable> drawable); |
| |
| // The width and height of the glyph mask. |
| uint16_t fWidth = 0, |
| fHeight = 0; |
| |
| // The offset from the glyphs origin on the baseline to the top left of the glyph mask. |
| int16_t fTop = 0, |
| fLeft = 0; |
| |
| // fImage must remain null if the glyph is empty or if width > kMaxGlyphWidth. |
| void* fImage = nullptr; |
| |
| // Path data has tricky state. If the glyph isEmpty, then fPathData should always be nullptr, |
| // else if fPathData is not null, then a path has been requested. The fPath field of fPathData |
| // may still be null after the request meaning that there is no path for this glyph. |
| PathData* fPathData = nullptr; |
| DrawableData* fDrawableData = nullptr; |
| |
| // The advance for this glyph. |
| float fAdvanceX = 0, |
| fAdvanceY = 0; |
| |
| SkMask::Format fMaskFormat{SkMask::kBW_Format}; |
| |
| // Used by the SkScalerContext to pass state from generateMetrics to generateImage. |
| // Usually specifies which glyph representation was used to generate the metrics. |
| uint16_t fScalerContextBits = 0; |
| |
| // An SkGlyph can be created with just a packedID, but generally speaking some glyph factory |
| // needs to actually fill out the glyph before it can be used as part of that system. |
| SkDEBUGCODE(bool fAdvancesBoundsFormatAndInitialPathDone{false};) |
| |
| SkPackedGlyphID fID; |
| }; |
| |
| #endif |