blob: 60d18e92bb80e0ebe9b88e7f57addb30df5d0489 [file] [log] [blame]
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/core/SkDraw.h"
#include "include/core/SkBitmap.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkMatrix.h"
#include "include/core/SkPaint.h"
#include "include/core/SkPathEffect.h"
#include "include/core/SkRRect.h"
#include "include/core/SkShader.h"
#include "include/core/SkString.h"
#include "include/core/SkStrokeRec.h"
#include "include/private/SkColorData.h"
#include "include/private/SkImageInfoPriv.h"
#include "include/private/SkMacros.h"
#include "include/private/SkTemplates.h"
#include "include/private/SkTo.h"
#include "src/core/SkArenaAlloc.h"
#include "src/core/SkAutoBlitterChoose.h"
#include "src/core/SkBlendModePriv.h"
#include "src/core/SkBlitter.h"
#include "src/core/SkDevice.h"
#include "src/core/SkDrawProcs.h"
#include "src/core/SkMaskFilterBase.h"
#include "src/core/SkMatrixUtils.h"
#include "src/core/SkPathEffectBase.h"
#include "src/core/SkPathPriv.h"
#include "src/core/SkRasterClip.h"
#include "src/core/SkRectPriv.h"
#include "src/core/SkSamplingPriv.h"
#include "src/core/SkScan.h"
#include "src/core/SkStroke.h"
#include "src/core/SkTLazy.h"
#include "src/core/SkUtils.h"
#include <utility>
static SkPaint make_paint_with_image(const SkPaint& origPaint, const SkBitmap& bitmap,
const SkSamplingOptions& sampling,
SkMatrix* matrix = nullptr) {
SkPaint paint(origPaint);
paint.setShader(SkMakeBitmapShaderForPaint(origPaint, bitmap, SkTileMode::kClamp,
SkTileMode::kClamp, sampling, matrix,
kNever_SkCopyPixelsMode));
return paint;
}
///////////////////////////////////////////////////////////////////////////////
SkDraw::SkDraw() {}
bool SkDraw::computeConservativeLocalClipBounds(SkRect* localBounds) const {
if (fRC->isEmpty()) {
return false;
}
SkMatrix inverse;
if (!fMatrixProvider->localToDevice().invert(&inverse)) {
return false;
}
SkIRect devBounds = fRC->getBounds();
// outset to have slop for antialasing and hairlines
devBounds.outset(1, 1);
inverse.mapRect(localBounds, SkRect::Make(devBounds));
return true;
}
///////////////////////////////////////////////////////////////////////////////
void SkDraw::drawPaint(const SkPaint& paint) const {
SkDEBUGCODE(this->validate();)
if (fRC->isEmpty()) {
return;
}
SkIRect devRect;
devRect.setWH(fDst.width(), fDst.height());
SkAutoBlitterChoose blitter(*this, nullptr, paint);
SkScan::FillIRect(devRect, *fRC, blitter.get());
}
///////////////////////////////////////////////////////////////////////////////
struct PtProcRec {
SkCanvas::PointMode fMode;
const SkPaint* fPaint;
const SkRegion* fClip;
const SkRasterClip* fRC;
// computed values
SkRect fClipBounds;
SkScalar fRadius;
typedef void (*Proc)(const PtProcRec&, const SkPoint devPts[], int count,
SkBlitter*);
bool init(SkCanvas::PointMode, const SkPaint&, const SkMatrix* matrix,
const SkRasterClip*);
Proc chooseProc(SkBlitter** blitter);
private:
SkAAClipBlitterWrapper fWrapper;
};
static void bw_pt_rect_hair_proc(const PtProcRec& rec, const SkPoint devPts[],
int count, SkBlitter* blitter) {
SkASSERT(rec.fClip->isRect());
const SkIRect& r = rec.fClip->getBounds();
for (int i = 0; i < count; i++) {
int x = SkScalarFloorToInt(devPts[i].fX);
int y = SkScalarFloorToInt(devPts[i].fY);
if (r.contains(x, y)) {
blitter->blitH(x, y, 1);
}
}
}
static void bw_pt_rect_16_hair_proc(const PtProcRec& rec,
const SkPoint devPts[], int count,
SkBlitter* blitter) {
SkASSERT(rec.fRC->isRect());
const SkIRect& r = rec.fRC->getBounds();
uint32_t value;
const SkPixmap* dst = blitter->justAnOpaqueColor(&value);
SkASSERT(dst);
uint16_t* addr = dst->writable_addr16(0, 0);
size_t rb = dst->rowBytes();
for (int i = 0; i < count; i++) {
int x = SkScalarFloorToInt(devPts[i].fX);
int y = SkScalarFloorToInt(devPts[i].fY);
if (r.contains(x, y)) {
((uint16_t*)((char*)addr + y * rb))[x] = SkToU16(value);
}
}
}
static void bw_pt_rect_32_hair_proc(const PtProcRec& rec,
const SkPoint devPts[], int count,
SkBlitter* blitter) {
SkASSERT(rec.fRC->isRect());
const SkIRect& r = rec.fRC->getBounds();
uint32_t value;
const SkPixmap* dst = blitter->justAnOpaqueColor(&value);
SkASSERT(dst);
SkPMColor* addr = dst->writable_addr32(0, 0);
size_t rb = dst->rowBytes();
for (int i = 0; i < count; i++) {
int x = SkScalarFloorToInt(devPts[i].fX);
int y = SkScalarFloorToInt(devPts[i].fY);
if (r.contains(x, y)) {
((SkPMColor*)((char*)addr + y * rb))[x] = value;
}
}
}
static void bw_pt_hair_proc(const PtProcRec& rec, const SkPoint devPts[],
int count, SkBlitter* blitter) {
for (int i = 0; i < count; i++) {
int x = SkScalarFloorToInt(devPts[i].fX);
int y = SkScalarFloorToInt(devPts[i].fY);
if (rec.fClip->contains(x, y)) {
blitter->blitH(x, y, 1);
}
}
}
static void bw_line_hair_proc(const PtProcRec& rec, const SkPoint devPts[],
int count, SkBlitter* blitter) {
for (int i = 0; i < count; i += 2) {
SkScan::HairLine(&devPts[i], 2, *rec.fRC, blitter);
}
}
static void bw_poly_hair_proc(const PtProcRec& rec, const SkPoint devPts[],
int count, SkBlitter* blitter) {
SkScan::HairLine(devPts, count, *rec.fRC, blitter);
}
// aa versions
static void aa_line_hair_proc(const PtProcRec& rec, const SkPoint devPts[],
int count, SkBlitter* blitter) {
for (int i = 0; i < count; i += 2) {
SkScan::AntiHairLine(&devPts[i], 2, *rec.fRC, blitter);
}
}
static void aa_poly_hair_proc(const PtProcRec& rec, const SkPoint devPts[],
int count, SkBlitter* blitter) {
SkScan::AntiHairLine(devPts, count, *rec.fRC, blitter);
}
// square procs (strokeWidth > 0 but matrix is square-scale (sx == sy)
static SkRect make_square_rad(SkPoint center, SkScalar radius) {
return {
center.fX - radius, center.fY - radius,
center.fX + radius, center.fY + radius
};
}
static SkXRect make_xrect(const SkRect& r) {
SkASSERT(SkRectPriv::FitsInFixed(r));
return {
SkScalarToFixed(r.fLeft), SkScalarToFixed(r.fTop),
SkScalarToFixed(r.fRight), SkScalarToFixed(r.fBottom)
};
}
static void bw_square_proc(const PtProcRec& rec, const SkPoint devPts[],
int count, SkBlitter* blitter) {
for (int i = 0; i < count; i++) {
SkRect r = make_square_rad(devPts[i], rec.fRadius);
if (r.intersect(rec.fClipBounds)) {
SkScan::FillXRect(make_xrect(r), *rec.fRC, blitter);
}
}
}
static void aa_square_proc(const PtProcRec& rec, const SkPoint devPts[],
int count, SkBlitter* blitter) {
for (int i = 0; i < count; i++) {
SkRect r = make_square_rad(devPts[i], rec.fRadius);
if (r.intersect(rec.fClipBounds)) {
SkScan::AntiFillXRect(make_xrect(r), *rec.fRC, blitter);
}
}
}
// If this returns true, then chooseProc() must return a valid proc
bool PtProcRec::init(SkCanvas::PointMode mode, const SkPaint& paint,
const SkMatrix* matrix, const SkRasterClip* rc) {
if ((unsigned)mode > (unsigned)SkCanvas::kPolygon_PointMode) {
return false;
}
if (paint.getPathEffect() || paint.getMaskFilter()) {
return false;
}
SkScalar width = paint.getStrokeWidth();
SkScalar radius = -1; // sentinel value, a "valid" value must be > 0
if (0 == width) {
radius = 0.5f;
} else if (paint.getStrokeCap() != SkPaint::kRound_Cap &&
matrix->isScaleTranslate() && SkCanvas::kPoints_PointMode == mode) {
SkScalar sx = matrix->get(SkMatrix::kMScaleX);
SkScalar sy = matrix->get(SkMatrix::kMScaleY);
if (SkScalarNearlyZero(sx - sy)) {
radius = SkScalarHalf(width * SkScalarAbs(sx));
}
}
if (radius > 0) {
SkRect clipBounds = SkRect::Make(rc->getBounds());
// if we return true, the caller may assume that the constructed shapes can be represented
// using SkFixed (after clipping), so we preflight that here.
if (!SkRectPriv::FitsInFixed(clipBounds)) {
return false;
}
fMode = mode;
fPaint = &paint;
fClip = nullptr;
fRC = rc;
fClipBounds = clipBounds;
fRadius = radius;
return true;
}
return false;
}
PtProcRec::Proc PtProcRec::chooseProc(SkBlitter** blitterPtr) {
Proc proc = nullptr;
SkBlitter* blitter = *blitterPtr;
if (fRC->isBW()) {
fClip = &fRC->bwRgn();
} else {
fWrapper.init(*fRC, blitter);
fClip = &fWrapper.getRgn();
blitter = fWrapper.getBlitter();
*blitterPtr = blitter;
}
// for our arrays
SkASSERT(0 == SkCanvas::kPoints_PointMode);
SkASSERT(1 == SkCanvas::kLines_PointMode);
SkASSERT(2 == SkCanvas::kPolygon_PointMode);
SkASSERT((unsigned)fMode <= (unsigned)SkCanvas::kPolygon_PointMode);
if (fPaint->isAntiAlias()) {
if (0 == fPaint->getStrokeWidth()) {
static const Proc gAAProcs[] = {
aa_square_proc, aa_line_hair_proc, aa_poly_hair_proc
};
proc = gAAProcs[fMode];
} else if (fPaint->getStrokeCap() != SkPaint::kRound_Cap) {
SkASSERT(SkCanvas::kPoints_PointMode == fMode);
proc = aa_square_proc;
}
} else { // BW
if (fRadius <= 0.5f) { // small radii and hairline
if (SkCanvas::kPoints_PointMode == fMode && fClip->isRect()) {
uint32_t value;
const SkPixmap* bm = blitter->justAnOpaqueColor(&value);
if (bm && kRGB_565_SkColorType == bm->colorType()) {
proc = bw_pt_rect_16_hair_proc;
} else if (bm && kN32_SkColorType == bm->colorType()) {
proc = bw_pt_rect_32_hair_proc;
} else {
proc = bw_pt_rect_hair_proc;
}
} else {
static Proc gBWProcs[] = {
bw_pt_hair_proc, bw_line_hair_proc, bw_poly_hair_proc
};
proc = gBWProcs[fMode];
}
} else {
proc = bw_square_proc;
}
}
return proc;
}
// each of these costs 8-bytes of stack space, so don't make it too large
// must be even for lines/polygon to work
#define MAX_DEV_PTS 32
void SkDraw::drawPoints(SkCanvas::PointMode mode, size_t count,
const SkPoint pts[], const SkPaint& paint,
SkBaseDevice* device) const {
// if we're in lines mode, force count to be even
if (SkCanvas::kLines_PointMode == mode) {
count &= ~(size_t)1;
}
if ((long)count <= 0) {
return;
}
SkASSERT(pts != nullptr);
SkDEBUGCODE(this->validate();)
// nothing to draw
if (fRC->isEmpty()) {
return;
}
if (!SkScalarsAreFinite(&pts[0].fX, count * 2)) {
return;
}
SkMatrix ctm = fMatrixProvider->localToDevice();
PtProcRec rec;
if (!device && rec.init(mode, paint, &ctm, fRC)) {
SkAutoBlitterChoose blitter(*this, nullptr, paint);
SkPoint devPts[MAX_DEV_PTS];
SkBlitter* bltr = blitter.get();
PtProcRec::Proc proc = rec.chooseProc(&bltr);
// we have to back up subsequent passes if we're in polygon mode
const size_t backup = (SkCanvas::kPolygon_PointMode == mode);
do {
int n = SkToInt(count);
if (n > MAX_DEV_PTS) {
n = MAX_DEV_PTS;
}
ctm.mapPoints(devPts, pts, n);
if (!SkScalarsAreFinite(&devPts[0].fX, n * 2)) {
return;
}
proc(rec, devPts, n, bltr);
pts += n - backup;
SkASSERT(SkToInt(count) >= n);
count -= n;
if (count > 0) {
count += backup;
}
} while (count != 0);
} else {
switch (mode) {
case SkCanvas::kPoints_PointMode: {
// temporarily mark the paint as filling.
SkPaint newPaint(paint);
newPaint.setStyle(SkPaint::kFill_Style);
SkScalar width = newPaint.getStrokeWidth();
SkScalar radius = SkScalarHalf(width);
if (newPaint.getStrokeCap() == SkPaint::kRound_Cap) {
if (device) {
for (size_t i = 0; i < count; ++i) {
SkRect r = SkRect::MakeLTRB(pts[i].fX - radius, pts[i].fY - radius,
pts[i].fX + radius, pts[i].fY + radius);
device->drawOval(r, newPaint);
}
} else {
SkPath path;
SkMatrix preMatrix;
path.addCircle(0, 0, radius);
for (size_t i = 0; i < count; i++) {
preMatrix.setTranslate(pts[i].fX, pts[i].fY);
// pass true for the last point, since we can modify
// then path then
path.setIsVolatile((count-1) == i);
this->drawPath(path, newPaint, &preMatrix, (count-1) == i);
}
}
} else {
SkRect r;
for (size_t i = 0; i < count; i++) {
r.fLeft = pts[i].fX - radius;
r.fTop = pts[i].fY - radius;
r.fRight = r.fLeft + width;
r.fBottom = r.fTop + width;
if (device) {
device->drawRect(r, newPaint);
} else {
this->drawRect(r, newPaint);
}
}
}
break;
}
case SkCanvas::kLines_PointMode:
if (2 == count && paint.getPathEffect()) {
// most likely a dashed line - see if it is one of the ones
// we can accelerate
SkStrokeRec stroke(paint);
SkPathEffectBase::PointData pointData;
SkPath path = SkPath::Line(pts[0], pts[1]);
SkRect cullRect = SkRect::Make(fRC->getBounds());
if (as_PEB(paint.getPathEffect())->asPoints(&pointData, path, stroke, ctm,
&cullRect)) {
// 'asPoints' managed to find some fast path
SkPaint newP(paint);
newP.setPathEffect(nullptr);
newP.setStyle(SkPaint::kFill_Style);
if (!pointData.fFirst.isEmpty()) {
if (device) {
device->drawPath(pointData.fFirst, newP);
} else {
this->drawPath(pointData.fFirst, newP);
}
}
if (!pointData.fLast.isEmpty()) {
if (device) {
device->drawPath(pointData.fLast, newP);
} else {
this->drawPath(pointData.fLast, newP);
}
}
if (pointData.fSize.fX == pointData.fSize.fY) {
// The rest of the dashed line can just be drawn as points
SkASSERT(pointData.fSize.fX == SkScalarHalf(newP.getStrokeWidth()));
if (SkPathEffectBase::PointData::kCircles_PointFlag & pointData.fFlags) {
newP.setStrokeCap(SkPaint::kRound_Cap);
} else {
newP.setStrokeCap(SkPaint::kButt_Cap);
}
if (device) {
device->drawPoints(SkCanvas::kPoints_PointMode,
pointData.fNumPoints,
pointData.fPoints,
newP);
} else {
this->drawPoints(SkCanvas::kPoints_PointMode,
pointData.fNumPoints,
pointData.fPoints,
newP,
device);
}
break;
} else {
// The rest of the dashed line must be drawn as rects
SkASSERT(!(SkPathEffectBase::PointData::kCircles_PointFlag &
pointData.fFlags));
SkRect r;
for (int i = 0; i < pointData.fNumPoints; ++i) {
r.setLTRB(pointData.fPoints[i].fX - pointData.fSize.fX,
pointData.fPoints[i].fY - pointData.fSize.fY,
pointData.fPoints[i].fX + pointData.fSize.fX,
pointData.fPoints[i].fY + pointData.fSize.fY);
if (device) {
device->drawRect(r, newP);
} else {
this->drawRect(r, newP);
}
}
}
break;
}
}
[[fallthrough]]; // couldn't take fast path
case SkCanvas::kPolygon_PointMode: {
count -= 1;
SkPath path;
SkPaint p(paint);
p.setStyle(SkPaint::kStroke_Style);
size_t inc = (SkCanvas::kLines_PointMode == mode) ? 2 : 1;
path.setIsVolatile(true);
for (size_t i = 0; i < count; i += inc) {
path.moveTo(pts[i]);
path.lineTo(pts[i+1]);
if (device) {
device->drawPath(path, p, true);
} else {
this->drawPath(path, p, nullptr, true);
}
path.rewind();
}
break;
}
}
}
}
static inline SkPoint compute_stroke_size(const SkPaint& paint, const SkMatrix& matrix) {
SkASSERT(matrix.rectStaysRect());
SkASSERT(SkPaint::kFill_Style != paint.getStyle());
SkVector size;
SkPoint pt = { paint.getStrokeWidth(), paint.getStrokeWidth() };
matrix.mapVectors(&size, &pt, 1);
return SkPoint::Make(SkScalarAbs(size.fX), SkScalarAbs(size.fY));
}
static bool easy_rect_join(const SkRect& rect, const SkPaint& paint, const SkMatrix& matrix,
SkPoint* strokeSize) {
if (rect.isEmpty() || SkPaint::kMiter_Join != paint.getStrokeJoin() ||
paint.getStrokeMiter() < SK_ScalarSqrt2) {
return false;
}
*strokeSize = compute_stroke_size(paint, matrix);
return true;
}
SkDraw::RectType SkDraw::ComputeRectType(const SkRect& rect,
const SkPaint& paint,
const SkMatrix& matrix,
SkPoint* strokeSize) {
RectType rtype;
const SkScalar width = paint.getStrokeWidth();
const bool zeroWidth = (0 == width);
SkPaint::Style style = paint.getStyle();
if ((SkPaint::kStrokeAndFill_Style == style) && zeroWidth) {
style = SkPaint::kFill_Style;
}
if (paint.getPathEffect() || paint.getMaskFilter() ||
!matrix.rectStaysRect() || SkPaint::kStrokeAndFill_Style == style) {
rtype = kPath_RectType;
} else if (SkPaint::kFill_Style == style) {
rtype = kFill_RectType;
} else if (zeroWidth) {
rtype = kHair_RectType;
} else if (easy_rect_join(rect, paint, matrix, strokeSize)) {
rtype = kStroke_RectType;
} else {
rtype = kPath_RectType;
}
return rtype;
}
static const SkPoint* rect_points(const SkRect& r) {
return reinterpret_cast<const SkPoint*>(&r);
}
static SkPoint* rect_points(SkRect& r) {
return reinterpret_cast<SkPoint*>(&r);
}
static void draw_rect_as_path(const SkDraw& orig, const SkRect& prePaintRect,
const SkPaint& paint, const SkMatrixProvider* matrixProvider) {
SkDraw draw(orig);
draw.fMatrixProvider = matrixProvider;
SkPath tmp;
tmp.addRect(prePaintRect);
tmp.setFillType(SkPathFillType::kWinding);
draw.drawPath(tmp, paint, nullptr, true);
}
void SkDraw::drawRect(const SkRect& prePaintRect, const SkPaint& paint,
const SkMatrix* paintMatrix, const SkRect* postPaintRect) const {
SkDEBUGCODE(this->validate();)
// nothing to draw
if (fRC->isEmpty()) {
return;
}
const SkMatrixProvider* matrixProvider = fMatrixProvider;
SkTLazy<SkPreConcatMatrixProvider> preConcatMatrixProvider;
if (paintMatrix) {
SkASSERT(postPaintRect);
matrixProvider = preConcatMatrixProvider.init(*matrixProvider, *paintMatrix);
} else {
SkASSERT(!postPaintRect);
}
SkMatrix ctm = fMatrixProvider->localToDevice();
SkPoint strokeSize;
RectType rtype = ComputeRectType(prePaintRect, paint, ctm, &strokeSize);
if (kPath_RectType == rtype) {
draw_rect_as_path(*this, prePaintRect, paint, matrixProvider);
return;
}
SkRect devRect;
const SkRect& paintRect = paintMatrix ? *postPaintRect : prePaintRect;
// skip the paintMatrix when transforming the rect by the CTM
ctm.mapPoints(rect_points(devRect), rect_points(paintRect), 2);
devRect.sort();
// look for the quick exit, before we build a blitter
SkRect bbox = devRect;
if (paint.getStyle() != SkPaint::kFill_Style) {
// extra space for hairlines
if (paint.getStrokeWidth() == 0) {
bbox.outset(1, 1);
} else {
// For kStroke_RectType, strokeSize is already computed.
const SkPoint& ssize = (kStroke_RectType == rtype)
? strokeSize
: compute_stroke_size(paint, ctm);
bbox.outset(SkScalarHalf(ssize.x()), SkScalarHalf(ssize.y()));
}
}
if (SkPathPriv::TooBigForMath(bbox)) {
return;
}
if (!SkRectPriv::FitsInFixed(bbox) && rtype != kHair_RectType) {
draw_rect_as_path(*this, prePaintRect, paint, matrixProvider);
return;
}
SkIRect ir = bbox.roundOut();
if (fRC->quickReject(ir)) {
return;
}
SkAutoBlitterChoose blitterStorage(*this, matrixProvider, paint);
const SkRasterClip& clip = *fRC;
SkBlitter* blitter = blitterStorage.get();
// we want to "fill" if we are kFill or kStrokeAndFill, since in the latter
// case we are also hairline (if we've gotten to here), which devolves to
// effectively just kFill
switch (rtype) {
case kFill_RectType:
if (paint.isAntiAlias()) {
SkScan::AntiFillRect(devRect, clip, blitter);
} else {
SkScan::FillRect(devRect, clip, blitter);
}
break;
case kStroke_RectType:
if (paint.isAntiAlias()) {
SkScan::AntiFrameRect(devRect, strokeSize, clip, blitter);
} else {
SkScan::FrameRect(devRect, strokeSize, clip, blitter);
}
break;
case kHair_RectType:
if (paint.isAntiAlias()) {
SkScan::AntiHairRect(devRect, clip, blitter);
} else {
SkScan::HairRect(devRect, clip, blitter);
}
break;
default:
SkDEBUGFAIL("bad rtype");
}
}
static SkScalar fast_len(const SkVector& vec) {
SkScalar x = SkScalarAbs(vec.fX);
SkScalar y = SkScalarAbs(vec.fY);
if (x < y) {
using std::swap;
swap(x, y);
}
return x + SkScalarHalf(y);
}
bool SkDrawTreatAAStrokeAsHairline(SkScalar strokeWidth, const SkMatrix& matrix,
SkScalar* coverage) {
SkASSERT(strokeWidth > 0);
// We need to try to fake a thick-stroke with a modulated hairline.
if (matrix.hasPerspective()) {
return false;
}
SkVector src[2], dst[2];
src[0].set(strokeWidth, 0);
src[1].set(0, strokeWidth);
matrix.mapVectors(dst, src, 2);
SkScalar len0 = fast_len(dst[0]);
SkScalar len1 = fast_len(dst[1]);
if (len0 <= SK_Scalar1 && len1 <= SK_Scalar1) {
if (coverage) {
*coverage = SkScalarAve(len0, len1);
}
return true;
}
return false;
}
void SkDraw::drawRRect(const SkRRect& rrect, const SkPaint& paint) const {
SkDEBUGCODE(this->validate());
if (fRC->isEmpty()) {
return;
}
SkMatrix ctm = fMatrixProvider->localToDevice();
{
// TODO: Investigate optimizing these options. They are in the same
// order as SkDraw::drawPath, which handles each case. It may be
// that there is no way to optimize for these using the SkRRect path.
SkScalar coverage;
if (SkDrawTreatAsHairline(paint, ctm, &coverage)) {
goto DRAW_PATH;
}
if (paint.getPathEffect() || paint.getStyle() != SkPaint::kFill_Style) {
goto DRAW_PATH;
}
}
if (paint.getMaskFilter()) {
// Transform the rrect into device space.
SkRRect devRRect;
if (rrect.transform(ctm, &devRRect)) {
SkAutoBlitterChoose blitter(*this, nullptr, paint);
if (as_MFB(paint.getMaskFilter())->filterRRect(devRRect, ctm, *fRC, blitter.get())) {
return; // filterRRect() called the blitter, so we're done
}
}
}
DRAW_PATH:
// Now fall back to the default case of using a path.
SkPath path;
path.addRRect(rrect);
this->drawPath(path, paint, nullptr, true);
}
void SkDraw::drawDevPath(const SkPath& devPath, const SkPaint& paint, bool drawCoverage,
SkBlitter* customBlitter, bool doFill) const {
if (SkPathPriv::TooBigForMath(devPath)) {
return;
}
SkBlitter* blitter = nullptr;
SkAutoBlitterChoose blitterStorage;
if (nullptr == customBlitter) {
blitter = blitterStorage.choose(*this, nullptr, paint, drawCoverage);
} else {
blitter = customBlitter;
}
if (paint.getMaskFilter()) {
SkStrokeRec::InitStyle style = doFill ? SkStrokeRec::kFill_InitStyle
: SkStrokeRec::kHairline_InitStyle;
if (as_MFB(paint.getMaskFilter())
->filterPath(devPath, fMatrixProvider->localToDevice(), *fRC, blitter, style)) {
return; // filterPath() called the blitter, so we're done
}
}
void (*proc)(const SkPath&, const SkRasterClip&, SkBlitter*);
if (doFill) {
if (paint.isAntiAlias()) {
proc = SkScan::AntiFillPath;
} else {
proc = SkScan::FillPath;
}
} else { // hairline
if (paint.isAntiAlias()) {
switch (paint.getStrokeCap()) {
case SkPaint::kButt_Cap:
proc = SkScan::AntiHairPath;
break;
case SkPaint::kSquare_Cap:
proc = SkScan::AntiHairSquarePath;
break;
case SkPaint::kRound_Cap:
proc = SkScan::AntiHairRoundPath;
break;
}
} else {
switch (paint.getStrokeCap()) {
case SkPaint::kButt_Cap:
proc = SkScan::HairPath;
break;
case SkPaint::kSquare_Cap:
proc = SkScan::HairSquarePath;
break;
case SkPaint::kRound_Cap:
proc = SkScan::HairRoundPath;
break;
}
}
}
proc(devPath, *fRC, blitter);
}
void SkDraw::drawPath(const SkPath& origSrcPath, const SkPaint& origPaint,
const SkMatrix* prePathMatrix, bool pathIsMutable,
bool drawCoverage, SkBlitter* customBlitter) const {
SkDEBUGCODE(this->validate();)
// nothing to draw
if (fRC->isEmpty()) {
return;
}
SkPath* pathPtr = (SkPath*)&origSrcPath;
bool doFill = true;
SkPath tmpPathStorage;
SkPath* tmpPath = &tmpPathStorage;
const SkMatrixProvider* matrixProvider = fMatrixProvider;
SkTLazy<SkPreConcatMatrixProvider> preConcatMatrixProvider;
tmpPath->setIsVolatile(true);
if (prePathMatrix) {
if (origPaint.getPathEffect() || origPaint.getStyle() != SkPaint::kFill_Style) {
SkPath* result = pathPtr;
if (!pathIsMutable) {
result = tmpPath;
pathIsMutable = true;
}
pathPtr->transform(*prePathMatrix, result);
pathPtr = result;
} else {
matrixProvider = preConcatMatrixProvider.init(*matrixProvider, *prePathMatrix);
}
}
SkTCopyOnFirstWrite<SkPaint> paint(origPaint);
{
SkScalar coverage;
if (SkDrawTreatAsHairline(origPaint, matrixProvider->localToDevice(), &coverage)) {
const auto bm = origPaint.asBlendMode();
if (SK_Scalar1 == coverage) {
paint.writable()->setStrokeWidth(0);
} else if (bm && SkBlendMode_SupportsCoverageAsAlpha(bm.value())) {
U8CPU newAlpha;
#if 0
newAlpha = SkToU8(SkScalarRoundToInt(coverage *
origPaint.getAlpha()));
#else
// this is the old technique, which we preserve for now so
// we don't change previous results (testing)
// the new way seems fine, its just (a tiny bit) different
int scale = (int)(coverage * 256);
newAlpha = origPaint.getAlpha() * scale >> 8;
#endif
SkPaint* writablePaint = paint.writable();
writablePaint->setStrokeWidth(0);
writablePaint->setAlpha(newAlpha);
}
}
}
if (paint->getPathEffect() || paint->getStyle() != SkPaint::kFill_Style) {
SkRect cullRect;
const SkRect* cullRectPtr = nullptr;
if (this->computeConservativeLocalClipBounds(&cullRect)) {
cullRectPtr = &cullRect;
}
doFill = paint->getFillPath(*pathPtr, tmpPath, cullRectPtr,
fMatrixProvider->localToDevice());
pathPtr = tmpPath;
}
// avoid possibly allocating a new path in transform if we can
SkPath* devPathPtr = pathIsMutable ? pathPtr : tmpPath;
// transform the path into device space
pathPtr->transform(matrixProvider->localToDevice(), devPathPtr);
#if defined(SK_BUILD_FOR_FUZZER)
if (devPathPtr->countPoints() > 1000) {
return;
}
#endif
this->drawDevPath(*devPathPtr, *paint, drawCoverage, customBlitter, doFill);
}
static bool clipped_out(const SkMatrix& m, const SkRasterClip& c,
const SkRect& srcR) {
SkRect dstR;
m.mapRect(&dstR, srcR);
return c.quickReject(dstR.roundOut());
}
static bool clipped_out(const SkMatrix& matrix, const SkRasterClip& clip,
int width, int height) {
SkRect r;
r.setIWH(width, height);
return clipped_out(matrix, clip, r);
}
static bool clipHandlesSprite(const SkRasterClip& clip, int x, int y, const SkPixmap& pmap) {
return clip.isBW() || clip.quickContains(SkIRect::MakeXYWH(x, y, pmap.width(), pmap.height()));
}
void SkDraw::drawBitmap(const SkBitmap& bitmap, const SkMatrix& prematrix,
const SkRect* dstBounds, const SkSamplingOptions& sampling,
const SkPaint& origPaint) const {
SkDEBUGCODE(this->validate();)
// nothing to draw
if (fRC->isEmpty() ||
bitmap.width() == 0 || bitmap.height() == 0 ||
bitmap.colorType() == kUnknown_SkColorType) {
return;
}
SkTCopyOnFirstWrite<SkPaint> paint(origPaint);
if (origPaint.getStyle() != SkPaint::kFill_Style) {
paint.writable()->setStyle(SkPaint::kFill_Style);
}
SkPreConcatMatrixProvider matrixProvider(*fMatrixProvider, prematrix);
SkMatrix matrix = matrixProvider.localToDevice();
if (clipped_out(matrix, *fRC, bitmap.width(), bitmap.height())) {
return;
}
if (!SkColorTypeIsAlphaOnly(bitmap.colorType()) &&
SkTreatAsSprite(matrix, bitmap.dimensions(), sampling, *paint)) {
//
// It is safe to call lock pixels now, since we know the matrix is
// (more or less) identity.
//
SkPixmap pmap;
if (!bitmap.peekPixels(&pmap)) {
return;
}
int ix = SkScalarRoundToInt(matrix.getTranslateX());
int iy = SkScalarRoundToInt(matrix.getTranslateY());
if (clipHandlesSprite(*fRC, ix, iy, pmap)) {
SkSTArenaAlloc<kSkBlitterContextSize> allocator;
// blitter will be owned by the allocator.
SkBlitter* blitter = SkBlitter::ChooseSprite(fDst, *paint, pmap, ix, iy, &allocator,
fRC->clipShader());
if (blitter) {
SkScan::FillIRect(SkIRect::MakeXYWH(ix, iy, pmap.width(), pmap.height()),
*fRC, blitter);
return;
}
// if !blitter, then we fall-through to the slower case
}
}
// now make a temp draw on the stack, and use it
//
SkDraw draw(*this);
draw.fMatrixProvider = &matrixProvider;
SkPaint paintWithShader = make_paint_with_image(*paint, bitmap, sampling);
const SkRect srcBounds = SkRect::MakeIWH(bitmap.width(), bitmap.height());
if (dstBounds) {
this->drawRect(srcBounds, paintWithShader, &prematrix, dstBounds);
} else {
draw.drawRect(srcBounds, paintWithShader);
}
}
void SkDraw::drawSprite(const SkBitmap& bitmap, int x, int y, const SkPaint& origPaint) const {
SkDEBUGCODE(this->validate();)
// nothing to draw
if (fRC->isEmpty() ||
bitmap.width() == 0 || bitmap.height() == 0 ||
bitmap.colorType() == kUnknown_SkColorType) {
return;
}
const SkIRect bounds = SkIRect::MakeXYWH(x, y, bitmap.width(), bitmap.height());
if (fRC->quickReject(bounds)) {
return; // nothing to draw
}
SkPaint paint(origPaint);
paint.setStyle(SkPaint::kFill_Style);
SkPixmap pmap;
if (!bitmap.peekPixels(&pmap)) {
return;
}
if (nullptr == paint.getColorFilter() && clipHandlesSprite(*fRC, x, y, pmap)) {
// blitter will be owned by the allocator.
SkSTArenaAlloc<kSkBlitterContextSize> allocator;
SkBlitter* blitter = SkBlitter::ChooseSprite(fDst, paint, pmap, x, y, &allocator,
fRC->clipShader());
if (blitter) {
SkScan::FillIRect(bounds, *fRC, blitter);
return;
}
}
SkMatrix matrix;
SkRect r;
// get a scalar version of our rect
r.set(bounds);
// create shader with offset
matrix.setTranslate(r.fLeft, r.fTop);
SkPaint paintWithShader = make_paint_with_image(paint, bitmap, SkSamplingOptions(), &matrix);
SkDraw draw(*this);
SkOverrideDeviceMatrixProvider matrixProvider(SkMatrix::I());
draw.fMatrixProvider = &matrixProvider;
// call ourself with a rect
draw.drawRect(r, paintWithShader);
}
////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef SK_DEBUG
void SkDraw::validate() const {
SkASSERT(fMatrixProvider != nullptr);
SkASSERT(fRC != nullptr);
const SkIRect& cr = fRC->getBounds();
SkIRect br;
br.setWH(fDst.width(), fDst.height());
SkASSERT(cr.isEmpty() || br.contains(cr));
}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////
#include "include/core/SkPath.h"
#include "include/core/SkRegion.h"
#include "src/core/SkBlitter.h"
#include "src/core/SkDraw.h"
bool SkDraw::ComputeMaskBounds(const SkRect& devPathBounds, const SkIRect& clipBounds,
const SkMaskFilter* filter, const SkMatrix* filterMatrix,
SkIRect* bounds) {
// init our bounds from the path
*bounds = devPathBounds.makeOutset(SK_ScalarHalf, SK_ScalarHalf).roundOut();
SkIPoint margin = SkIPoint::Make(0, 0);
if (filter) {
SkASSERT(filterMatrix);
SkMask srcM, dstM;
srcM.fBounds = *bounds;
srcM.fFormat = SkMask::kA8_Format;
if (!as_MFB(filter)->filterMask(&dstM, srcM, *filterMatrix, &margin)) {
return false;
}
}
// trim the bounds to reflect the clip (plus whatever slop the filter needs)
// Ugh. Guard against gigantic margins from wacky filters. Without this
// check we can request arbitrary amounts of slop beyond our visible
// clip, and bring down the renderer (at least on finite RAM machines
// like handsets, etc.). Need to balance this invented value between
// quality of large filters like blurs, and the corresponding memory
// requests.
static constexpr int kMaxMargin = 128;
if (!bounds->intersect(clipBounds.makeOutset(std::min(margin.fX, kMaxMargin),
std::min(margin.fY, kMaxMargin)))) {
return false;
}
return true;
}
static void draw_into_mask(const SkMask& mask, const SkPath& devPath,
SkStrokeRec::InitStyle style) {
SkDraw draw;
if (!draw.fDst.reset(mask)) {
return;
}
SkRasterClip clip;
SkMatrix matrix;
SkPaint paint;
clip.setRect(SkIRect::MakeWH(mask.fBounds.width(), mask.fBounds.height()));
matrix.setTranslate(-SkIntToScalar(mask.fBounds.fLeft),
-SkIntToScalar(mask.fBounds.fTop));
SkMatrixProvider matrixProvider(matrix);
draw.fRC = &clip;
draw.fMatrixProvider = &matrixProvider;
paint.setAntiAlias(true);
switch (style) {
case SkStrokeRec::kHairline_InitStyle:
SkASSERT(!paint.getStrokeWidth());
paint.setStyle(SkPaint::kStroke_Style);
break;
case SkStrokeRec::kFill_InitStyle:
SkASSERT(paint.getStyle() == SkPaint::kFill_Style);
break;
}
draw.drawPath(devPath, paint);
}
bool SkDraw::DrawToMask(const SkPath& devPath, const SkIRect& clipBounds,
const SkMaskFilter* filter, const SkMatrix* filterMatrix,
SkMask* mask, SkMask::CreateMode mode,
SkStrokeRec::InitStyle style) {
if (devPath.isEmpty()) {
return false;
}
if (SkMask::kJustRenderImage_CreateMode != mode) {
// By using infinite bounds for inverse fills, ComputeMaskBounds is able to clip it to
// 'clipBounds' outset by whatever extra margin the mask filter requires.
static const SkRect kInverseBounds = { SK_ScalarNegativeInfinity, SK_ScalarNegativeInfinity,
SK_ScalarInfinity, SK_ScalarInfinity};
SkRect pathBounds = devPath.isInverseFillType() ? kInverseBounds
: devPath.getBounds();
if (!ComputeMaskBounds(pathBounds, clipBounds, filter,
filterMatrix, &mask->fBounds))
return false;
}
if (SkMask::kComputeBoundsAndRenderImage_CreateMode == mode) {
mask->fFormat = SkMask::kA8_Format;
mask->fRowBytes = mask->fBounds.width();
size_t size = mask->computeImageSize();
if (0 == size) {
// we're too big to allocate the mask, abort
return false;
}
mask->fImage = SkMask::AllocImage(size, SkMask::kZeroInit_Alloc);
}
if (SkMask::kJustComputeBounds_CreateMode != mode) {
draw_into_mask(*mask, devPath, style);
}
return true;
}