blob: 32a87fd68de1e2d890a016c0066696308d322d46 [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/core/SkDevice.h"
#include "include/core/SkColorFilter.h"
#include "include/core/SkColorSpace.h"
#include "include/core/SkDrawable.h"
#include "include/core/SkImageFilter.h"
#include "include/core/SkPathMeasure.h"
#include "include/core/SkRSXform.h"
#include "include/core/SkShader.h"
#include "include/core/SkVertices.h"
#include "include/private/SkTo.h"
#include "src/core/SkDraw.h"
#include "src/core/SkGlyphRun.h"
#include "src/core/SkImageFilterCache.h"
#include "src/core/SkImageFilter_Base.h"
#include "src/core/SkImagePriv.h"
#include "src/core/SkLatticeIter.h"
#include "src/core/SkMatrixPriv.h"
#include "src/core/SkOpts.h"
#include "src/core/SkPathPriv.h"
#include "src/core/SkRasterClip.h"
#include "src/core/SkRectPriv.h"
#include "src/core/SkSpecialImage.h"
#include "src/core/SkTLazy.h"
#include "src/core/SkTextBlobPriv.h"
#include "src/image/SkImage_Base.h"
#include "src/shaders/SkLocalMatrixShader.h"
#include "src/utils/SkPatchUtils.h"
#if SK_SUPPORT_GPU
#include "include/private/chromium/GrSlug.h"
#endif
SkBaseDevice::SkBaseDevice(const SkImageInfo& info, const SkSurfaceProps& surfaceProps)
: SkMatrixProvider(/* localToDevice = */ SkMatrix::I())
, fInfo(info)
, fSurfaceProps(surfaceProps) {
fDeviceToGlobal.setIdentity();
fGlobalToDevice.setIdentity();
}
void SkBaseDevice::setDeviceCoordinateSystem(const SkM44& deviceToGlobal,
const SkM44& globalToDevice,
const SkM44& localToDevice,
int bufferOriginX,
int bufferOriginY) {
fDeviceToGlobal = deviceToGlobal;
fDeviceToGlobal.normalizePerspective();
fGlobalToDevice = globalToDevice;
fGlobalToDevice.normalizePerspective();
fLocalToDevice = localToDevice;
fLocalToDevice.normalizePerspective();
if (bufferOriginX | bufferOriginY) {
fDeviceToGlobal.preTranslate(bufferOriginX, bufferOriginY);
fGlobalToDevice.postTranslate(-bufferOriginX, -bufferOriginY);
fLocalToDevice.postTranslate(-bufferOriginX, -bufferOriginY);
}
fLocalToDevice33 = fLocalToDevice.asM33();
fLocalToDeviceDirty = true;
}
void SkBaseDevice::setGlobalCTM(const SkM44& ctm) {
fLocalToDevice = ctm;
fLocalToDevice.normalizePerspective();
// Map from the global CTM state to this device's coordinate system.
fLocalToDevice.postConcat(fGlobalToDevice);
fLocalToDevice33 = fLocalToDevice.asM33();
fLocalToDeviceDirty = true;
}
bool SkBaseDevice::isPixelAlignedToGlobal() const {
// pixelAligned is set to the identity + integer translation of the device-to-global matrix.
// If they are equal then the device is by definition pixel aligned.
SkM44 pixelAligned = SkM44();
pixelAligned.setRC(0, 3, SkScalarFloorToScalar(fDeviceToGlobal.rc(0, 3)));
pixelAligned.setRC(1, 3, SkScalarFloorToScalar(fDeviceToGlobal.rc(1, 3)));
return pixelAligned == fDeviceToGlobal;
}
SkIPoint SkBaseDevice::getOrigin() const {
// getOrigin() is deprecated, the old origin has been moved into the fDeviceToGlobal matrix.
// This extracts the origin from the matrix, but asserts that a more complicated coordinate
// space hasn't been set of the device. This function can be removed once existing use cases
// have been updated to use the device-to-global matrix instead or have themselves been removed
// (e.g. Android's device-space clip regions are going away, and are not compatible with the
// generalized device coordinate system).
SkASSERT(this->isPixelAlignedToGlobal());
return SkIPoint::Make(SkScalarFloorToInt(fDeviceToGlobal.rc(0, 3)),
SkScalarFloorToInt(fDeviceToGlobal.rc(1, 3)));
}
SkMatrix SkBaseDevice::getRelativeTransform(const SkBaseDevice& dstDevice) const {
// To get the transform from this space to the other device's, transform from our space to
// global and then from global to the other device.
return (dstDevice.fGlobalToDevice * fDeviceToGlobal).asM33();
}
static inline bool is_int(float x) {
return x == (float) sk_float_round2int(x);
}
void SkBaseDevice::drawRegion(const SkRegion& region, const SkPaint& paint) {
const SkMatrix& localToDevice = this->localToDevice();
bool isNonTranslate = localToDevice.getType() & ~(SkMatrix::kTranslate_Mask);
bool complexPaint = paint.getStyle() != SkPaint::kFill_Style || paint.getMaskFilter() ||
paint.getPathEffect();
bool antiAlias = paint.isAntiAlias() && (!is_int(localToDevice.getTranslateX()) ||
!is_int(localToDevice.getTranslateY()));
if (isNonTranslate || complexPaint || antiAlias) {
SkPath path;
region.getBoundaryPath(&path);
path.setIsVolatile(true);
return this->drawPath(path, paint, true);
}
SkRegion::Iterator it(region);
while (!it.done()) {
this->drawRect(SkRect::Make(it.rect()), paint);
it.next();
}
}
void SkBaseDevice::drawArc(const SkRect& oval, SkScalar startAngle,
SkScalar sweepAngle, bool useCenter, const SkPaint& paint) {
SkPath path;
bool isFillNoPathEffect = SkPaint::kFill_Style == paint.getStyle() && !paint.getPathEffect();
SkPathPriv::CreateDrawArcPath(&path, oval, startAngle, sweepAngle, useCenter,
isFillNoPathEffect);
this->drawPath(path, paint);
}
void SkBaseDevice::drawDRRect(const SkRRect& outer,
const SkRRect& inner, const SkPaint& paint) {
SkPath path;
path.addRRect(outer);
path.addRRect(inner);
path.setFillType(SkPathFillType::kEvenOdd);
path.setIsVolatile(true);
this->drawPath(path, paint, true);
}
void SkBaseDevice::drawPatch(const SkPoint cubics[12], const SkColor colors[4],
const SkPoint texCoords[4], sk_sp<SkBlender> blender,
const SkPaint& paint) {
SkISize lod = SkPatchUtils::GetLevelOfDetail(cubics, &this->localToDevice());
auto vertices = SkPatchUtils::MakeVertices(cubics, colors, texCoords, lod.width(), lod.height(),
this->imageInfo().colorSpace());
if (vertices) {
this->drawVertices(vertices.get(), std::move(blender), paint);
}
}
void SkBaseDevice::drawImageLattice(const SkImage* image, const SkCanvas::Lattice& lattice,
const SkRect& dst, SkFilterMode filter, const SkPaint& paint) {
SkLatticeIter iter(lattice, dst);
SkRect srcR, dstR;
SkColor c;
bool isFixedColor = false;
const SkImageInfo info = SkImageInfo::Make(1, 1, kBGRA_8888_SkColorType, kUnpremul_SkAlphaType);
while (iter.next(&srcR, &dstR, &isFixedColor, &c)) {
// TODO: support this fast-path for GPU images
if (isFixedColor || (srcR.width() <= 1.0f && srcR.height() <= 1.0f &&
image->readPixels(nullptr, info, &c, 4, srcR.fLeft, srcR.fTop))) {
// Fast draw with drawRect, if this is a patch containing a single color
// or if this is a patch containing a single pixel.
if (0 != c || !paint.isSrcOver()) {
SkPaint paintCopy(paint);
int alpha = SkAlphaMul(SkColorGetA(c), SkAlpha255To256(paint.getAlpha()));
paintCopy.setColor(SkColorSetA(c, alpha));
this->drawRect(dstR, paintCopy);
}
} else {
this->drawImageRect(image, &srcR, dstR, SkSamplingOptions(filter), paint,
SkCanvas::kStrict_SrcRectConstraint);
}
}
}
static SkPoint* quad_to_tris(SkPoint tris[6], const SkPoint quad[4]) {
tris[0] = quad[0];
tris[1] = quad[1];
tris[2] = quad[2];
tris[3] = quad[0];
tris[4] = quad[2];
tris[5] = quad[3];
return tris + 6;
}
void SkBaseDevice::drawAtlas(const SkRSXform xform[],
const SkRect tex[],
const SkColor colors[],
int quadCount,
sk_sp<SkBlender> blender,
const SkPaint& paint) {
const int triCount = quadCount << 1;
const int vertexCount = triCount * 3;
uint32_t flags = SkVertices::kHasTexCoords_BuilderFlag;
if (colors) {
flags |= SkVertices::kHasColors_BuilderFlag;
}
SkVertices::Builder builder(SkVertices::kTriangles_VertexMode, vertexCount, 0, flags);
SkPoint* vPos = builder.positions();
SkPoint* vTex = builder.texCoords();
SkColor* vCol = builder.colors();
for (int i = 0; i < quadCount; ++i) {
SkPoint tmp[4];
xform[i].toQuad(tex[i].width(), tex[i].height(), tmp);
vPos = quad_to_tris(vPos, tmp);
tex[i].toQuad(tmp);
vTex = quad_to_tris(vTex, tmp);
if (colors) {
sk_memset32(vCol, colors[i], 6);
vCol += 6;
}
}
this->drawVertices(builder.detach().get(), std::move(blender), paint);
}
void SkBaseDevice::drawEdgeAAQuad(const SkRect& r, const SkPoint clip[4], SkCanvas::QuadAAFlags aa,
const SkColor4f& color, SkBlendMode mode) {
SkPaint paint;
paint.setColor4f(color);
paint.setBlendMode(mode);
paint.setAntiAlias(aa == SkCanvas::kAll_QuadAAFlags);
if (clip) {
// Draw the clip directly as a quad since it's a filled color with no local coords
SkPath clipPath;
clipPath.addPoly(clip, 4, true);
this->drawPath(clipPath, paint);
} else {
this->drawRect(r, paint);
}
}
void SkBaseDevice::drawEdgeAAImageSet(const SkCanvas::ImageSetEntry images[], int count,
const SkPoint dstClips[], const SkMatrix preViewMatrices[],
const SkSamplingOptions& sampling, const SkPaint& paint,
SkCanvas::SrcRectConstraint constraint) {
SkASSERT(paint.getStyle() == SkPaint::kFill_Style);
SkASSERT(!paint.getPathEffect());
SkPaint entryPaint = paint;
const SkM44 baseLocalToDevice = this->localToDevice44();
int clipIndex = 0;
for (int i = 0; i < count; ++i) {
// TODO: Handle per-edge AA. Right now this mirrors the SkiaRenderer component of Chrome
// which turns off antialiasing unless all four edges should be antialiased. This avoids
// seaming in tiled composited layers.
entryPaint.setAntiAlias(images[i].fAAFlags == SkCanvas::kAll_QuadAAFlags);
entryPaint.setAlphaf(paint.getAlphaf() * images[i].fAlpha);
bool needsRestore = false;
SkASSERT(images[i].fMatrixIndex < 0 || preViewMatrices);
if (images[i].fMatrixIndex >= 0) {
this->save();
this->setLocalToDevice(baseLocalToDevice *
SkM44(preViewMatrices[images[i].fMatrixIndex]));
needsRestore = true;
}
SkASSERT(!images[i].fHasClip || dstClips);
if (images[i].fHasClip) {
// Since drawImageRect requires a srcRect, the dst clip is implemented as a true clip
if (!needsRestore) {
this->save();
needsRestore = true;
}
SkPath clipPath;
clipPath.addPoly(dstClips + clipIndex, 4, true);
this->clipPath(clipPath, SkClipOp::kIntersect, entryPaint.isAntiAlias());
clipIndex += 4;
}
this->drawImageRect(images[i].fImage.get(), &images[i].fSrcRect, images[i].fDstRect,
sampling, entryPaint, constraint);
if (needsRestore) {
this->restoreLocal(baseLocalToDevice);
}
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
void SkBaseDevice::drawDrawable(SkCanvas* canvas, SkDrawable* drawable, const SkMatrix* matrix) {
drawable->draw(canvas, matrix);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
void SkBaseDevice::drawSpecial(SkSpecialImage*, const SkMatrix&, const SkSamplingOptions&,
const SkPaint&) {}
sk_sp<SkSpecialImage> SkBaseDevice::makeSpecial(const SkBitmap&) { return nullptr; }
sk_sp<SkSpecialImage> SkBaseDevice::makeSpecial(const SkImage*) { return nullptr; }
sk_sp<SkSpecialImage> SkBaseDevice::snapSpecial(const SkIRect&, bool) { return nullptr; }
sk_sp<SkSpecialImage> SkBaseDevice::snapSpecial() {
return this->snapSpecial(SkIRect::MakeWH(this->width(), this->height()));
}
void SkBaseDevice::drawDevice(SkBaseDevice* device, const SkSamplingOptions& sampling,
const SkPaint& paint) {
sk_sp<SkSpecialImage> deviceImage = device->snapSpecial();
if (deviceImage) {
this->drawSpecial(deviceImage.get(), device->getRelativeTransform(*this), sampling, paint);
}
}
void SkBaseDevice::drawFilteredImage(const skif::Mapping& mapping, SkSpecialImage* src,
const SkImageFilter* filter, const SkSamplingOptions& sampling,
const SkPaint& paint) {
SkASSERT(!paint.getImageFilter() && !paint.getMaskFilter());
skif::LayerSpace<SkIRect> targetOutput = mapping.deviceToLayer(
skif::DeviceSpace<SkIRect>(this->devClipBounds()));
// FIXME If the saved layer (so src) was created to use F16, should we do all image filtering
// in F16 and then only flatten to the destination color encoding at the end?
// Currently, this context converts everything to the dst color type ASAP.
SkColorType colorType = this->imageInfo().colorType();
if (colorType == kUnknown_SkColorType) {
colorType = kRGBA_8888_SkColorType;
}
// getImageFilterCache returns a bare image filter cache pointer that must be ref'ed until the
// filter's filterImage(ctx) function returns.
sk_sp<SkImageFilterCache> cache(this->getImageFilterCache());
skif::Context ctx(mapping, targetOutput, cache.get(), colorType, this->imageInfo().colorSpace(),
skif::FilterResult(sk_ref_sp(src)));
SkIPoint offset;
sk_sp<SkSpecialImage> result = as_IFB(filter)->filterImage(ctx).imageAndOffset(&offset);
if (result) {
SkMatrix deviceMatrixWithOffset = mapping.layerToDevice();
deviceMatrixWithOffset.preTranslate(offset.fX, offset.fY);
this->drawSpecial(result.get(), deviceMatrixWithOffset, sampling, paint);
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
bool SkBaseDevice::readPixels(const SkPixmap& pm, int x, int y) {
return this->onReadPixels(pm, x, y);
}
bool SkBaseDevice::writePixels(const SkPixmap& pm, int x, int y) {
return this->onWritePixels(pm, x, y);
}
bool SkBaseDevice::onWritePixels(const SkPixmap&, int, int) {
return false;
}
bool SkBaseDevice::onReadPixels(const SkPixmap&, int x, int y) {
return false;
}
bool SkBaseDevice::accessPixels(SkPixmap* pmap) {
SkPixmap tempStorage;
if (nullptr == pmap) {
pmap = &tempStorage;
}
return this->onAccessPixels(pmap);
}
bool SkBaseDevice::peekPixels(SkPixmap* pmap) {
SkPixmap tempStorage;
if (nullptr == pmap) {
pmap = &tempStorage;
}
return this->onPeekPixels(pmap);
}
//////////////////////////////////////////////////////////////////////////////////////////
#include "src/core/SkUtils.h"
// TODO: This does not work for arbitrary shader DAGs (when there is no single leaf local matrix).
// What we really need is proper post-LM plumbing for shaders.
static sk_sp<SkShader> make_post_inverse_lm(const SkShader* shader, const SkMatrix& m) {
SkMatrix inverse;
if (!shader || !m.invert(&inverse)) {
return nullptr;
}
// Normal LMs pre-compose. In order to push a post local matrix, we shoot for
// something along these lines (where all new components are pre-composed):
//
// new_lm X current_lm == current_lm X inv(current_lm) X new_lm X current_lm
//
// We also have two sources of local matrices:
// - the actual shader lm
// - outer lms applied via SkLocalMatrixShader
SkMatrix outer_lm;
const auto nested_shader = as_SB(shader)->makeAsALocalMatrixShader(&outer_lm);
if (nested_shader) {
// unfurl the shader
shader = nested_shader.get();
} else {
outer_lm.reset();
}
const auto lm = *as_SB(shader)->totalLocalMatrix(nullptr);
SkMatrix lm_inv;
if (!lm.invert(&lm_inv)) {
return nullptr;
}
// Note: since we unfurled the shader above, we don't need to apply an outer_lm inverse
return shader->makeWithLocalMatrix(lm_inv * inverse * lm * outer_lm);
}
void SkBaseDevice::drawGlyphRunList(SkCanvas* canvas,
const SkGlyphRunList& glyphRunList,
const SkPaint& initialPaint,
const SkPaint& drawingPaint) {
if (!this->localToDevice().isFinite()) {
return;
}
if (!glyphRunList.hasRSXForm()) {
this->onDrawGlyphRunList(canvas, glyphRunList, initialPaint, drawingPaint);
} else {
this->simplifyGlyphRunRSXFormAndRedraw(canvas, glyphRunList, initialPaint, drawingPaint);
}
}
void SkBaseDevice::simplifyGlyphRunRSXFormAndRedraw(SkCanvas* canvas,
const SkGlyphRunList& glyphRunList,
const SkPaint& initialPaint,
const SkPaint& drawingPaint) {
for (const SkGlyphRun& run : glyphRunList) {
if (run.scaledRotations().empty()) {
SkGlyphRunList subList{run, run.sourceBounds(drawingPaint), {0, 0}};
this->drawGlyphRunList(canvas, subList, initialPaint, drawingPaint);
} else {
SkPoint origin = glyphRunList.origin();
SkPoint sharedPos{0, 0}; // we're at the origin
SkGlyphID sharedGlyphID;
SkGlyphRun glyphRun {
run.font(),
SkSpan<const SkPoint>{&sharedPos, 1},
SkSpan<const SkGlyphID>{&sharedGlyphID, 1},
SkSpan<const char>{},
SkSpan<const uint32_t>{},
SkSpan<const SkVector>{}
};
for (auto [i, glyphID, pos] : SkMakeEnumerate(run.source())) {
sharedGlyphID = glyphID;
auto [scos, ssin] = run.scaledRotations()[i];
SkRSXform rsxForm = SkRSXform::Make(scos, ssin, pos.x(), pos.y());
SkMatrix glyphToLocal;
glyphToLocal.setRSXform(rsxForm).postTranslate(origin.x(), origin.y());
// We want to rotate each glyph by the rsxform, but we don't want to rotate "space"
// (i.e. the shader that cares about the ctm) so we have to undo our little ctm
// trick with a localmatrixshader so that the shader draws as if there was no
// change to the ctm.
SkPaint invertingPaint{drawingPaint};
invertingPaint.setShader(
make_post_inverse_lm(drawingPaint.getShader(), glyphToLocal));
SkAutoCanvasRestore acr(canvas, true);
canvas->concat(SkM44(glyphToLocal));
SkGlyphRunList subList{glyphRun, glyphRun.sourceBounds(drawingPaint), {0, 0}};
this->drawGlyphRunList(canvas, subList, initialPaint, invertingPaint);
}
}
}
}
#if SK_SUPPORT_GPU
sk_sp<GrSlug> SkBaseDevice::convertGlyphRunListToSlug(
const SkGlyphRunList& glyphRunList,
const SkPaint& initialPaint,
const SkPaint& drawingPaint) {
return nullptr;
}
void SkBaseDevice::drawSlug(SkCanvas*, const GrSlug*, const SkPaint&) {
SK_ABORT("GrSlug drawing not supported.");
}
#endif
//////////////////////////////////////////////////////////////////////////////////////////
sk_sp<SkSurface> SkBaseDevice::makeSurface(SkImageInfo const&, SkSurfaceProps const&) {
return nullptr;
}
//////////////////////////////////////////////////////////////////////////////////////////
SkNoPixelsDevice::SkNoPixelsDevice(const SkIRect& bounds, const SkSurfaceProps& props)
: SkNoPixelsDevice(bounds, props, nullptr) {}
SkNoPixelsDevice::SkNoPixelsDevice(const SkIRect& bounds, const SkSurfaceProps& props,
sk_sp<SkColorSpace> colorSpace)
: SkBaseDevice(SkImageInfo::Make(bounds.size(), kUnknown_SkColorType, kUnknown_SkAlphaType,
std::move(colorSpace)), props) {
// this fails if we enable this assert: DiscardableImageMapTest.GetDiscardableImagesInRectMaxImage
//SkASSERT(bounds.width() >= 0 && bounds.height() >= 0);
this->setOrigin(SkM44(), bounds.left(), bounds.top());
this->resetClipStack();
}
void SkNoPixelsDevice::onSave() {
SkASSERT(!fClipStack.empty());
fClipStack.back().fDeferredSaveCount++;
}
void SkNoPixelsDevice::onRestore() {
SkASSERT(!fClipStack.empty());
if (fClipStack.back().fDeferredSaveCount > 0) {
fClipStack.back().fDeferredSaveCount--;
} else {
fClipStack.pop_back();
SkASSERT(!fClipStack.empty());
}
}
SkNoPixelsDevice::ClipState& SkNoPixelsDevice::writableClip() {
SkASSERT(!fClipStack.empty());
ClipState& current = fClipStack.back();
if (current.fDeferredSaveCount > 0) {
current.fDeferredSaveCount--;
// Stash current state in case 'current' moves during a resize
SkIRect bounds = current.fClipBounds;
bool aa = current.fIsAA;
bool rect = current.fIsRect;
return fClipStack.emplace_back(bounds, aa, rect);
} else {
return current;
}
}
void SkNoPixelsDevice::onClipRect(const SkRect& rect, SkClipOp op, bool aa) {
this->writableClip().op(op, this->localToDevice44(), rect,
aa, /*fillsBounds=*/true);
}
void SkNoPixelsDevice::onClipRRect(const SkRRect& rrect, SkClipOp op, bool aa) {
this->writableClip().op(op, this->localToDevice44(), rrect.getBounds(),
aa, /*fillsBounds=*/rrect.isRect());
}
void SkNoPixelsDevice::onClipPath(const SkPath& path, SkClipOp op, bool aa) {
// Toggle op if the path is inverse filled
if (path.isInverseFillType()) {
op = (op == SkClipOp::kDifference ? SkClipOp::kIntersect : SkClipOp::kDifference);
}
this->writableClip().op(op, this->localToDevice44(), path.getBounds(),
aa, /*fillsBounds=*/false);
}
void SkNoPixelsDevice::onClipRegion(const SkRegion& globalRgn, SkClipOp op) {
this->writableClip().op(op, this->globalToDevice(), SkRect::Make(globalRgn.getBounds()),
/*isAA=*/false, /*fillsBounds=*/globalRgn.isRect());
}
void SkNoPixelsDevice::onClipShader(sk_sp<SkShader> shader) {
this->writableClip().fIsRect = false;
}
void SkNoPixelsDevice::onReplaceClip(const SkIRect& rect) {
SkIRect deviceRect = SkMatrixPriv::MapRect(this->globalToDevice(), SkRect::Make(rect)).round();
if (!deviceRect.intersect(this->bounds())) {
deviceRect.setEmpty();
}
auto& clip = this->writableClip();
clip.fClipBounds = deviceRect;
clip.fIsRect = true;
clip.fIsAA = false;
}
SkBaseDevice::ClipType SkNoPixelsDevice::onGetClipType() const {
const auto& clip = this->clip();
if (clip.fClipBounds.isEmpty()) {
return ClipType::kEmpty;
} else if (clip.fIsRect) {
return ClipType::kRect;
} else {
return ClipType::kComplex;
}
}
void SkNoPixelsDevice::ClipState::op(SkClipOp op, const SkM44& transform, const SkRect& bounds,
bool isAA, bool fillsBounds) {
const bool isRect = fillsBounds && SkMatrixPriv::IsScaleTranslateAsM33(transform);
fIsAA |= isAA;
SkRect devBounds = bounds.isEmpty() ? SkRect::MakeEmpty()
: SkMatrixPriv::MapRect(transform, bounds);
if (op == SkClipOp::kIntersect) {
if (!fClipBounds.intersect(isAA ? devBounds.roundOut() : devBounds.round())) {
fClipBounds.setEmpty();
}
// A rectangular clip remains rectangular if the intersection is a rect
fIsRect &= isRect;
} else if (isRect) {
// Conservatively, we can leave the clip bounds unchanged and respect the difference op.
// But, if we're subtracting out an axis-aligned rectangle that fully spans our existing
// clip on an axis, we can shrink the clip bounds.
SkASSERT(op == SkClipOp::kDifference);
SkIRect difference;
if (SkRectPriv::Subtract(fClipBounds, isAA ? devBounds.roundIn() : devBounds.round(),
&difference)) {
fClipBounds = difference;
} else {
// The difference couldn't be represented as a rect
fIsRect = false;
}
} else {
// A non-rect shape was applied
fIsRect = false;
}
}