| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/core/SkDevice.h" |
| |
| #include "include/core/SkColorFilter.h" |
| #include "include/core/SkColorSpace.h" |
| #include "include/core/SkDrawable.h" |
| #include "include/core/SkImageFilter.h" |
| #include "include/core/SkPathMeasure.h" |
| #include "include/core/SkRSXform.h" |
| #include "include/core/SkShader.h" |
| #include "include/core/SkVertices.h" |
| #include "include/private/SkTo.h" |
| #include "src/core/SkDraw.h" |
| #include "src/core/SkGlyphRun.h" |
| #include "src/core/SkImageFilterCache.h" |
| #include "src/core/SkImageFilter_Base.h" |
| #include "src/core/SkImagePriv.h" |
| #include "src/core/SkLatticeIter.h" |
| #include "src/core/SkMatrixPriv.h" |
| #include "src/core/SkOpts.h" |
| #include "src/core/SkPathPriv.h" |
| #include "src/core/SkRasterClip.h" |
| #include "src/core/SkRectPriv.h" |
| #include "src/core/SkSpecialImage.h" |
| #include "src/core/SkTLazy.h" |
| #include "src/core/SkTextBlobPriv.h" |
| #include "src/image/SkImage_Base.h" |
| #include "src/shaders/SkLocalMatrixShader.h" |
| #include "src/utils/SkPatchUtils.h" |
| #if SK_SUPPORT_GPU |
| #include "include/private/chromium/GrSlug.h" |
| #endif |
| |
| SkBaseDevice::SkBaseDevice(const SkImageInfo& info, const SkSurfaceProps& surfaceProps) |
| : SkMatrixProvider(/* localToDevice = */ SkMatrix::I()) |
| , fInfo(info) |
| , fSurfaceProps(surfaceProps) { |
| fDeviceToGlobal.setIdentity(); |
| fGlobalToDevice.setIdentity(); |
| } |
| |
| void SkBaseDevice::setDeviceCoordinateSystem(const SkM44& deviceToGlobal, |
| const SkM44& globalToDevice, |
| const SkM44& localToDevice, |
| int bufferOriginX, |
| int bufferOriginY) { |
| fDeviceToGlobal = deviceToGlobal; |
| fDeviceToGlobal.normalizePerspective(); |
| fGlobalToDevice = globalToDevice; |
| fGlobalToDevice.normalizePerspective(); |
| |
| fLocalToDevice = localToDevice; |
| fLocalToDevice.normalizePerspective(); |
| if (bufferOriginX | bufferOriginY) { |
| fDeviceToGlobal.preTranslate(bufferOriginX, bufferOriginY); |
| fGlobalToDevice.postTranslate(-bufferOriginX, -bufferOriginY); |
| fLocalToDevice.postTranslate(-bufferOriginX, -bufferOriginY); |
| } |
| fLocalToDevice33 = fLocalToDevice.asM33(); |
| fLocalToDeviceDirty = true; |
| } |
| |
| void SkBaseDevice::setGlobalCTM(const SkM44& ctm) { |
| fLocalToDevice = ctm; |
| fLocalToDevice.normalizePerspective(); |
| // Map from the global CTM state to this device's coordinate system. |
| fLocalToDevice.postConcat(fGlobalToDevice); |
| fLocalToDevice33 = fLocalToDevice.asM33(); |
| fLocalToDeviceDirty = true; |
| } |
| |
| bool SkBaseDevice::isPixelAlignedToGlobal() const { |
| // pixelAligned is set to the identity + integer translation of the device-to-global matrix. |
| // If they are equal then the device is by definition pixel aligned. |
| SkM44 pixelAligned = SkM44(); |
| pixelAligned.setRC(0, 3, SkScalarFloorToScalar(fDeviceToGlobal.rc(0, 3))); |
| pixelAligned.setRC(1, 3, SkScalarFloorToScalar(fDeviceToGlobal.rc(1, 3))); |
| return pixelAligned == fDeviceToGlobal; |
| } |
| |
| SkIPoint SkBaseDevice::getOrigin() const { |
| // getOrigin() is deprecated, the old origin has been moved into the fDeviceToGlobal matrix. |
| // This extracts the origin from the matrix, but asserts that a more complicated coordinate |
| // space hasn't been set of the device. This function can be removed once existing use cases |
| // have been updated to use the device-to-global matrix instead or have themselves been removed |
| // (e.g. Android's device-space clip regions are going away, and are not compatible with the |
| // generalized device coordinate system). |
| SkASSERT(this->isPixelAlignedToGlobal()); |
| return SkIPoint::Make(SkScalarFloorToInt(fDeviceToGlobal.rc(0, 3)), |
| SkScalarFloorToInt(fDeviceToGlobal.rc(1, 3))); |
| } |
| |
| SkMatrix SkBaseDevice::getRelativeTransform(const SkBaseDevice& dstDevice) const { |
| // To get the transform from this space to the other device's, transform from our space to |
| // global and then from global to the other device. |
| return (dstDevice.fGlobalToDevice * fDeviceToGlobal).asM33(); |
| } |
| |
| static inline bool is_int(float x) { |
| return x == (float) sk_float_round2int(x); |
| } |
| |
| void SkBaseDevice::drawRegion(const SkRegion& region, const SkPaint& paint) { |
| const SkMatrix& localToDevice = this->localToDevice(); |
| bool isNonTranslate = localToDevice.getType() & ~(SkMatrix::kTranslate_Mask); |
| bool complexPaint = paint.getStyle() != SkPaint::kFill_Style || paint.getMaskFilter() || |
| paint.getPathEffect(); |
| bool antiAlias = paint.isAntiAlias() && (!is_int(localToDevice.getTranslateX()) || |
| !is_int(localToDevice.getTranslateY())); |
| if (isNonTranslate || complexPaint || antiAlias) { |
| SkPath path; |
| region.getBoundaryPath(&path); |
| path.setIsVolatile(true); |
| return this->drawPath(path, paint, true); |
| } |
| |
| SkRegion::Iterator it(region); |
| while (!it.done()) { |
| this->drawRect(SkRect::Make(it.rect()), paint); |
| it.next(); |
| } |
| } |
| |
| void SkBaseDevice::drawArc(const SkRect& oval, SkScalar startAngle, |
| SkScalar sweepAngle, bool useCenter, const SkPaint& paint) { |
| SkPath path; |
| bool isFillNoPathEffect = SkPaint::kFill_Style == paint.getStyle() && !paint.getPathEffect(); |
| SkPathPriv::CreateDrawArcPath(&path, oval, startAngle, sweepAngle, useCenter, |
| isFillNoPathEffect); |
| this->drawPath(path, paint); |
| } |
| |
| void SkBaseDevice::drawDRRect(const SkRRect& outer, |
| const SkRRect& inner, const SkPaint& paint) { |
| SkPath path; |
| path.addRRect(outer); |
| path.addRRect(inner); |
| path.setFillType(SkPathFillType::kEvenOdd); |
| path.setIsVolatile(true); |
| |
| this->drawPath(path, paint, true); |
| } |
| |
| void SkBaseDevice::drawPatch(const SkPoint cubics[12], const SkColor colors[4], |
| const SkPoint texCoords[4], sk_sp<SkBlender> blender, |
| const SkPaint& paint) { |
| SkISize lod = SkPatchUtils::GetLevelOfDetail(cubics, &this->localToDevice()); |
| auto vertices = SkPatchUtils::MakeVertices(cubics, colors, texCoords, lod.width(), lod.height(), |
| this->imageInfo().colorSpace()); |
| if (vertices) { |
| this->drawVertices(vertices.get(), std::move(blender), paint); |
| } |
| } |
| |
| void SkBaseDevice::drawImageLattice(const SkImage* image, const SkCanvas::Lattice& lattice, |
| const SkRect& dst, SkFilterMode filter, const SkPaint& paint) { |
| SkLatticeIter iter(lattice, dst); |
| |
| SkRect srcR, dstR; |
| SkColor c; |
| bool isFixedColor = false; |
| const SkImageInfo info = SkImageInfo::Make(1, 1, kBGRA_8888_SkColorType, kUnpremul_SkAlphaType); |
| |
| while (iter.next(&srcR, &dstR, &isFixedColor, &c)) { |
| // TODO: support this fast-path for GPU images |
| if (isFixedColor || (srcR.width() <= 1.0f && srcR.height() <= 1.0f && |
| image->readPixels(nullptr, info, &c, 4, srcR.fLeft, srcR.fTop))) { |
| // Fast draw with drawRect, if this is a patch containing a single color |
| // or if this is a patch containing a single pixel. |
| if (0 != c || !paint.isSrcOver()) { |
| SkPaint paintCopy(paint); |
| int alpha = SkAlphaMul(SkColorGetA(c), SkAlpha255To256(paint.getAlpha())); |
| paintCopy.setColor(SkColorSetA(c, alpha)); |
| this->drawRect(dstR, paintCopy); |
| } |
| } else { |
| this->drawImageRect(image, &srcR, dstR, SkSamplingOptions(filter), paint, |
| SkCanvas::kStrict_SrcRectConstraint); |
| } |
| } |
| } |
| |
| static SkPoint* quad_to_tris(SkPoint tris[6], const SkPoint quad[4]) { |
| tris[0] = quad[0]; |
| tris[1] = quad[1]; |
| tris[2] = quad[2]; |
| |
| tris[3] = quad[0]; |
| tris[4] = quad[2]; |
| tris[5] = quad[3]; |
| |
| return tris + 6; |
| } |
| |
| void SkBaseDevice::drawAtlas(const SkRSXform xform[], |
| const SkRect tex[], |
| const SkColor colors[], |
| int quadCount, |
| sk_sp<SkBlender> blender, |
| const SkPaint& paint) { |
| const int triCount = quadCount << 1; |
| const int vertexCount = triCount * 3; |
| uint32_t flags = SkVertices::kHasTexCoords_BuilderFlag; |
| if (colors) { |
| flags |= SkVertices::kHasColors_BuilderFlag; |
| } |
| SkVertices::Builder builder(SkVertices::kTriangles_VertexMode, vertexCount, 0, flags); |
| |
| SkPoint* vPos = builder.positions(); |
| SkPoint* vTex = builder.texCoords(); |
| SkColor* vCol = builder.colors(); |
| for (int i = 0; i < quadCount; ++i) { |
| SkPoint tmp[4]; |
| xform[i].toQuad(tex[i].width(), tex[i].height(), tmp); |
| vPos = quad_to_tris(vPos, tmp); |
| |
| tex[i].toQuad(tmp); |
| vTex = quad_to_tris(vTex, tmp); |
| |
| if (colors) { |
| sk_memset32(vCol, colors[i], 6); |
| vCol += 6; |
| } |
| } |
| this->drawVertices(builder.detach().get(), std::move(blender), paint); |
| } |
| |
| void SkBaseDevice::drawEdgeAAQuad(const SkRect& r, const SkPoint clip[4], SkCanvas::QuadAAFlags aa, |
| const SkColor4f& color, SkBlendMode mode) { |
| SkPaint paint; |
| paint.setColor4f(color); |
| paint.setBlendMode(mode); |
| paint.setAntiAlias(aa == SkCanvas::kAll_QuadAAFlags); |
| |
| if (clip) { |
| // Draw the clip directly as a quad since it's a filled color with no local coords |
| SkPath clipPath; |
| clipPath.addPoly(clip, 4, true); |
| this->drawPath(clipPath, paint); |
| } else { |
| this->drawRect(r, paint); |
| } |
| } |
| |
| void SkBaseDevice::drawEdgeAAImageSet(const SkCanvas::ImageSetEntry images[], int count, |
| const SkPoint dstClips[], const SkMatrix preViewMatrices[], |
| const SkSamplingOptions& sampling, const SkPaint& paint, |
| SkCanvas::SrcRectConstraint constraint) { |
| SkASSERT(paint.getStyle() == SkPaint::kFill_Style); |
| SkASSERT(!paint.getPathEffect()); |
| |
| SkPaint entryPaint = paint; |
| const SkM44 baseLocalToDevice = this->localToDevice44(); |
| int clipIndex = 0; |
| for (int i = 0; i < count; ++i) { |
| // TODO: Handle per-edge AA. Right now this mirrors the SkiaRenderer component of Chrome |
| // which turns off antialiasing unless all four edges should be antialiased. This avoids |
| // seaming in tiled composited layers. |
| entryPaint.setAntiAlias(images[i].fAAFlags == SkCanvas::kAll_QuadAAFlags); |
| entryPaint.setAlphaf(paint.getAlphaf() * images[i].fAlpha); |
| |
| bool needsRestore = false; |
| SkASSERT(images[i].fMatrixIndex < 0 || preViewMatrices); |
| if (images[i].fMatrixIndex >= 0) { |
| this->save(); |
| this->setLocalToDevice(baseLocalToDevice * |
| SkM44(preViewMatrices[images[i].fMatrixIndex])); |
| needsRestore = true; |
| } |
| |
| SkASSERT(!images[i].fHasClip || dstClips); |
| if (images[i].fHasClip) { |
| // Since drawImageRect requires a srcRect, the dst clip is implemented as a true clip |
| if (!needsRestore) { |
| this->save(); |
| needsRestore = true; |
| } |
| SkPath clipPath; |
| clipPath.addPoly(dstClips + clipIndex, 4, true); |
| this->clipPath(clipPath, SkClipOp::kIntersect, entryPaint.isAntiAlias()); |
| clipIndex += 4; |
| } |
| this->drawImageRect(images[i].fImage.get(), &images[i].fSrcRect, images[i].fDstRect, |
| sampling, entryPaint, constraint); |
| if (needsRestore) { |
| this->restoreLocal(baseLocalToDevice); |
| } |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| void SkBaseDevice::drawDrawable(SkCanvas* canvas, SkDrawable* drawable, const SkMatrix* matrix) { |
| drawable->draw(canvas, matrix); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| void SkBaseDevice::drawSpecial(SkSpecialImage*, const SkMatrix&, const SkSamplingOptions&, |
| const SkPaint&) {} |
| sk_sp<SkSpecialImage> SkBaseDevice::makeSpecial(const SkBitmap&) { return nullptr; } |
| sk_sp<SkSpecialImage> SkBaseDevice::makeSpecial(const SkImage*) { return nullptr; } |
| sk_sp<SkSpecialImage> SkBaseDevice::snapSpecial(const SkIRect&, bool) { return nullptr; } |
| sk_sp<SkSpecialImage> SkBaseDevice::snapSpecial() { |
| return this->snapSpecial(SkIRect::MakeWH(this->width(), this->height())); |
| } |
| |
| void SkBaseDevice::drawDevice(SkBaseDevice* device, const SkSamplingOptions& sampling, |
| const SkPaint& paint) { |
| sk_sp<SkSpecialImage> deviceImage = device->snapSpecial(); |
| if (deviceImage) { |
| this->drawSpecial(deviceImage.get(), device->getRelativeTransform(*this), sampling, paint); |
| } |
| } |
| |
| void SkBaseDevice::drawFilteredImage(const skif::Mapping& mapping, SkSpecialImage* src, |
| const SkImageFilter* filter, const SkSamplingOptions& sampling, |
| const SkPaint& paint) { |
| SkASSERT(!paint.getImageFilter() && !paint.getMaskFilter()); |
| |
| skif::LayerSpace<SkIRect> targetOutput = mapping.deviceToLayer( |
| skif::DeviceSpace<SkIRect>(this->devClipBounds())); |
| |
| // FIXME If the saved layer (so src) was created to use F16, should we do all image filtering |
| // in F16 and then only flatten to the destination color encoding at the end? |
| // Currently, this context converts everything to the dst color type ASAP. |
| SkColorType colorType = this->imageInfo().colorType(); |
| if (colorType == kUnknown_SkColorType) { |
| colorType = kRGBA_8888_SkColorType; |
| } |
| |
| // getImageFilterCache returns a bare image filter cache pointer that must be ref'ed until the |
| // filter's filterImage(ctx) function returns. |
| sk_sp<SkImageFilterCache> cache(this->getImageFilterCache()); |
| skif::Context ctx(mapping, targetOutput, cache.get(), colorType, this->imageInfo().colorSpace(), |
| skif::FilterResult(sk_ref_sp(src))); |
| |
| SkIPoint offset; |
| sk_sp<SkSpecialImage> result = as_IFB(filter)->filterImage(ctx).imageAndOffset(&offset); |
| if (result) { |
| SkMatrix deviceMatrixWithOffset = mapping.layerToDevice(); |
| deviceMatrixWithOffset.preTranslate(offset.fX, offset.fY); |
| this->drawSpecial(result.get(), deviceMatrixWithOffset, sampling, paint); |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| bool SkBaseDevice::readPixels(const SkPixmap& pm, int x, int y) { |
| return this->onReadPixels(pm, x, y); |
| } |
| |
| bool SkBaseDevice::writePixels(const SkPixmap& pm, int x, int y) { |
| return this->onWritePixels(pm, x, y); |
| } |
| |
| bool SkBaseDevice::onWritePixels(const SkPixmap&, int, int) { |
| return false; |
| } |
| |
| bool SkBaseDevice::onReadPixels(const SkPixmap&, int x, int y) { |
| return false; |
| } |
| |
| bool SkBaseDevice::accessPixels(SkPixmap* pmap) { |
| SkPixmap tempStorage; |
| if (nullptr == pmap) { |
| pmap = &tempStorage; |
| } |
| return this->onAccessPixels(pmap); |
| } |
| |
| bool SkBaseDevice::peekPixels(SkPixmap* pmap) { |
| SkPixmap tempStorage; |
| if (nullptr == pmap) { |
| pmap = &tempStorage; |
| } |
| return this->onPeekPixels(pmap); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////////////////// |
| |
| #include "src/core/SkUtils.h" |
| |
| |
| // TODO: This does not work for arbitrary shader DAGs (when there is no single leaf local matrix). |
| // What we really need is proper post-LM plumbing for shaders. |
| static sk_sp<SkShader> make_post_inverse_lm(const SkShader* shader, const SkMatrix& m) { |
| SkMatrix inverse; |
| if (!shader || !m.invert(&inverse)) { |
| return nullptr; |
| } |
| |
| // Normal LMs pre-compose. In order to push a post local matrix, we shoot for |
| // something along these lines (where all new components are pre-composed): |
| // |
| // new_lm X current_lm == current_lm X inv(current_lm) X new_lm X current_lm |
| // |
| // We also have two sources of local matrices: |
| // - the actual shader lm |
| // - outer lms applied via SkLocalMatrixShader |
| |
| SkMatrix outer_lm; |
| const auto nested_shader = as_SB(shader)->makeAsALocalMatrixShader(&outer_lm); |
| if (nested_shader) { |
| // unfurl the shader |
| shader = nested_shader.get(); |
| } else { |
| outer_lm.reset(); |
| } |
| |
| const auto lm = *as_SB(shader)->totalLocalMatrix(nullptr); |
| SkMatrix lm_inv; |
| if (!lm.invert(&lm_inv)) { |
| return nullptr; |
| } |
| |
| // Note: since we unfurled the shader above, we don't need to apply an outer_lm inverse |
| return shader->makeWithLocalMatrix(lm_inv * inverse * lm * outer_lm); |
| } |
| |
| void SkBaseDevice::drawGlyphRunList(SkCanvas* canvas, |
| const SkGlyphRunList& glyphRunList, |
| const SkPaint& initialPaint, |
| const SkPaint& drawingPaint) { |
| if (!this->localToDevice().isFinite()) { |
| return; |
| } |
| |
| if (!glyphRunList.hasRSXForm()) { |
| this->onDrawGlyphRunList(canvas, glyphRunList, initialPaint, drawingPaint); |
| } else { |
| this->simplifyGlyphRunRSXFormAndRedraw(canvas, glyphRunList, initialPaint, drawingPaint); |
| } |
| } |
| |
| void SkBaseDevice::simplifyGlyphRunRSXFormAndRedraw(SkCanvas* canvas, |
| const SkGlyphRunList& glyphRunList, |
| const SkPaint& initialPaint, |
| const SkPaint& drawingPaint) { |
| for (const SkGlyphRun& run : glyphRunList) { |
| if (run.scaledRotations().empty()) { |
| SkGlyphRunList subList{run, run.sourceBounds(drawingPaint), {0, 0}}; |
| this->drawGlyphRunList(canvas, subList, initialPaint, drawingPaint); |
| } else { |
| SkPoint origin = glyphRunList.origin(); |
| SkPoint sharedPos{0, 0}; // we're at the origin |
| SkGlyphID sharedGlyphID; |
| SkGlyphRun glyphRun { |
| run.font(), |
| SkSpan<const SkPoint>{&sharedPos, 1}, |
| SkSpan<const SkGlyphID>{&sharedGlyphID, 1}, |
| SkSpan<const char>{}, |
| SkSpan<const uint32_t>{}, |
| SkSpan<const SkVector>{} |
| }; |
| |
| for (auto [i, glyphID, pos] : SkMakeEnumerate(run.source())) { |
| sharedGlyphID = glyphID; |
| auto [scos, ssin] = run.scaledRotations()[i]; |
| SkRSXform rsxForm = SkRSXform::Make(scos, ssin, pos.x(), pos.y()); |
| SkMatrix glyphToLocal; |
| glyphToLocal.setRSXform(rsxForm).postTranslate(origin.x(), origin.y()); |
| |
| // We want to rotate each glyph by the rsxform, but we don't want to rotate "space" |
| // (i.e. the shader that cares about the ctm) so we have to undo our little ctm |
| // trick with a localmatrixshader so that the shader draws as if there was no |
| // change to the ctm. |
| SkPaint invertingPaint{drawingPaint}; |
| invertingPaint.setShader( |
| make_post_inverse_lm(drawingPaint.getShader(), glyphToLocal)); |
| SkAutoCanvasRestore acr(canvas, true); |
| canvas->concat(SkM44(glyphToLocal)); |
| SkGlyphRunList subList{glyphRun, glyphRun.sourceBounds(drawingPaint), {0, 0}}; |
| this->drawGlyphRunList(canvas, subList, initialPaint, invertingPaint); |
| } |
| } |
| } |
| } |
| |
| #if SK_SUPPORT_GPU |
| sk_sp<GrSlug> SkBaseDevice::convertGlyphRunListToSlug( |
| const SkGlyphRunList& glyphRunList, |
| const SkPaint& initialPaint, |
| const SkPaint& drawingPaint) { |
| return nullptr; |
| } |
| |
| void SkBaseDevice::drawSlug(SkCanvas*, const GrSlug*, const SkPaint&) { |
| SK_ABORT("GrSlug drawing not supported."); |
| } |
| #endif |
| |
| ////////////////////////////////////////////////////////////////////////////////////////// |
| |
| sk_sp<SkSurface> SkBaseDevice::makeSurface(SkImageInfo const&, SkSurfaceProps const&) { |
| return nullptr; |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////////////////// |
| |
| SkNoPixelsDevice::SkNoPixelsDevice(const SkIRect& bounds, const SkSurfaceProps& props) |
| : SkNoPixelsDevice(bounds, props, nullptr) {} |
| |
| SkNoPixelsDevice::SkNoPixelsDevice(const SkIRect& bounds, const SkSurfaceProps& props, |
| sk_sp<SkColorSpace> colorSpace) |
| : SkBaseDevice(SkImageInfo::Make(bounds.size(), kUnknown_SkColorType, kUnknown_SkAlphaType, |
| std::move(colorSpace)), props) { |
| // this fails if we enable this assert: DiscardableImageMapTest.GetDiscardableImagesInRectMaxImage |
| //SkASSERT(bounds.width() >= 0 && bounds.height() >= 0); |
| |
| this->setOrigin(SkM44(), bounds.left(), bounds.top()); |
| this->resetClipStack(); |
| } |
| |
| void SkNoPixelsDevice::onSave() { |
| SkASSERT(!fClipStack.empty()); |
| fClipStack.back().fDeferredSaveCount++; |
| } |
| |
| void SkNoPixelsDevice::onRestore() { |
| SkASSERT(!fClipStack.empty()); |
| if (fClipStack.back().fDeferredSaveCount > 0) { |
| fClipStack.back().fDeferredSaveCount--; |
| } else { |
| fClipStack.pop_back(); |
| SkASSERT(!fClipStack.empty()); |
| } |
| } |
| |
| SkNoPixelsDevice::ClipState& SkNoPixelsDevice::writableClip() { |
| SkASSERT(!fClipStack.empty()); |
| ClipState& current = fClipStack.back(); |
| if (current.fDeferredSaveCount > 0) { |
| current.fDeferredSaveCount--; |
| // Stash current state in case 'current' moves during a resize |
| SkIRect bounds = current.fClipBounds; |
| bool aa = current.fIsAA; |
| bool rect = current.fIsRect; |
| return fClipStack.emplace_back(bounds, aa, rect); |
| } else { |
| return current; |
| } |
| } |
| |
| void SkNoPixelsDevice::onClipRect(const SkRect& rect, SkClipOp op, bool aa) { |
| this->writableClip().op(op, this->localToDevice44(), rect, |
| aa, /*fillsBounds=*/true); |
| } |
| |
| void SkNoPixelsDevice::onClipRRect(const SkRRect& rrect, SkClipOp op, bool aa) { |
| this->writableClip().op(op, this->localToDevice44(), rrect.getBounds(), |
| aa, /*fillsBounds=*/rrect.isRect()); |
| } |
| |
| void SkNoPixelsDevice::onClipPath(const SkPath& path, SkClipOp op, bool aa) { |
| // Toggle op if the path is inverse filled |
| if (path.isInverseFillType()) { |
| op = (op == SkClipOp::kDifference ? SkClipOp::kIntersect : SkClipOp::kDifference); |
| } |
| this->writableClip().op(op, this->localToDevice44(), path.getBounds(), |
| aa, /*fillsBounds=*/false); |
| } |
| |
| void SkNoPixelsDevice::onClipRegion(const SkRegion& globalRgn, SkClipOp op) { |
| this->writableClip().op(op, this->globalToDevice(), SkRect::Make(globalRgn.getBounds()), |
| /*isAA=*/false, /*fillsBounds=*/globalRgn.isRect()); |
| } |
| |
| void SkNoPixelsDevice::onClipShader(sk_sp<SkShader> shader) { |
| this->writableClip().fIsRect = false; |
| } |
| |
| void SkNoPixelsDevice::onReplaceClip(const SkIRect& rect) { |
| SkIRect deviceRect = SkMatrixPriv::MapRect(this->globalToDevice(), SkRect::Make(rect)).round(); |
| if (!deviceRect.intersect(this->bounds())) { |
| deviceRect.setEmpty(); |
| } |
| auto& clip = this->writableClip(); |
| clip.fClipBounds = deviceRect; |
| clip.fIsRect = true; |
| clip.fIsAA = false; |
| } |
| |
| SkBaseDevice::ClipType SkNoPixelsDevice::onGetClipType() const { |
| const auto& clip = this->clip(); |
| if (clip.fClipBounds.isEmpty()) { |
| return ClipType::kEmpty; |
| } else if (clip.fIsRect) { |
| return ClipType::kRect; |
| } else { |
| return ClipType::kComplex; |
| } |
| } |
| |
| void SkNoPixelsDevice::ClipState::op(SkClipOp op, const SkM44& transform, const SkRect& bounds, |
| bool isAA, bool fillsBounds) { |
| const bool isRect = fillsBounds && SkMatrixPriv::IsScaleTranslateAsM33(transform); |
| fIsAA |= isAA; |
| |
| SkRect devBounds = bounds.isEmpty() ? SkRect::MakeEmpty() |
| : SkMatrixPriv::MapRect(transform, bounds); |
| if (op == SkClipOp::kIntersect) { |
| if (!fClipBounds.intersect(isAA ? devBounds.roundOut() : devBounds.round())) { |
| fClipBounds.setEmpty(); |
| } |
| // A rectangular clip remains rectangular if the intersection is a rect |
| fIsRect &= isRect; |
| } else if (isRect) { |
| // Conservatively, we can leave the clip bounds unchanged and respect the difference op. |
| // But, if we're subtracting out an axis-aligned rectangle that fully spans our existing |
| // clip on an axis, we can shrink the clip bounds. |
| SkASSERT(op == SkClipOp::kDifference); |
| SkIRect difference; |
| if (SkRectPriv::Subtract(fClipBounds, isAA ? devBounds.roundIn() : devBounds.round(), |
| &difference)) { |
| fClipBounds = difference; |
| } else { |
| // The difference couldn't be represented as a rect |
| fIsRect = false; |
| } |
| } else { |
| // A non-rect shape was applied |
| fIsRect = false; |
| } |
| } |