| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/core/SkCanvas.h" |
| #include "include/core/SkPath.h" |
| #include "src/core/SkClipStack.h" |
| #include "src/core/SkRectPriv.h" |
| #include "src/shaders/SkShaderBase.h" |
| |
| #include <atomic> |
| #include <new> |
| |
| #if SK_SUPPORT_GPU |
| #include "src/gpu/ganesh/GrProxyProvider.h" |
| #endif |
| |
| SkClipStack::Element::Element(const Element& that) { |
| switch (that.getDeviceSpaceType()) { |
| case DeviceSpaceType::kEmpty: |
| fDeviceSpaceRRect.setEmpty(); |
| fDeviceSpacePath.reset(); |
| fShader.reset(); |
| break; |
| case DeviceSpaceType::kRect: // Rect uses rrect |
| case DeviceSpaceType::kRRect: |
| fDeviceSpacePath.reset(); |
| fShader.reset(); |
| fDeviceSpaceRRect = that.fDeviceSpaceRRect; |
| break; |
| case DeviceSpaceType::kPath: |
| fShader.reset(); |
| fDeviceSpacePath.set(that.getDeviceSpacePath()); |
| break; |
| case DeviceSpaceType::kShader: |
| fDeviceSpacePath.reset(); |
| fShader = that.fShader; |
| break; |
| } |
| |
| fSaveCount = that.fSaveCount; |
| fOp = that.fOp; |
| fDeviceSpaceType = that.fDeviceSpaceType; |
| fDoAA = that.fDoAA; |
| fIsReplace = that.fIsReplace; |
| fFiniteBoundType = that.fFiniteBoundType; |
| fFiniteBound = that.fFiniteBound; |
| fIsIntersectionOfRects = that.fIsIntersectionOfRects; |
| fGenID = that.fGenID; |
| } |
| |
| SkClipStack::Element::~Element() { |
| #if SK_SUPPORT_GPU |
| for (int i = 0; i < fKeysToInvalidate.count(); ++i) { |
| fProxyProvider->processInvalidUniqueKey(fKeysToInvalidate[i], nullptr, |
| GrProxyProvider::InvalidateGPUResource::kYes); |
| } |
| #endif |
| } |
| |
| bool SkClipStack::Element::operator== (const Element& element) const { |
| if (this == &element) { |
| return true; |
| } |
| if (fOp != element.fOp || fDeviceSpaceType != element.fDeviceSpaceType || |
| fDoAA != element.fDoAA || fIsReplace != element.fIsReplace || |
| fSaveCount != element.fSaveCount) { |
| return false; |
| } |
| switch (fDeviceSpaceType) { |
| case DeviceSpaceType::kShader: |
| return this->getShader() == element.getShader(); |
| case DeviceSpaceType::kPath: |
| return this->getDeviceSpacePath() == element.getDeviceSpacePath(); |
| case DeviceSpaceType::kRRect: |
| return fDeviceSpaceRRect == element.fDeviceSpaceRRect; |
| case DeviceSpaceType::kRect: |
| return this->getDeviceSpaceRect() == element.getDeviceSpaceRect(); |
| case DeviceSpaceType::kEmpty: |
| return true; |
| default: |
| SkDEBUGFAIL("Unexpected type."); |
| return false; |
| } |
| } |
| |
| const SkRect& SkClipStack::Element::getBounds() const { |
| static const SkRect kEmpty = {0, 0, 0, 0}; |
| static const SkRect kInfinite = SkRectPriv::MakeLargeS32(); |
| switch (fDeviceSpaceType) { |
| case DeviceSpaceType::kRect: // fallthrough |
| case DeviceSpaceType::kRRect: |
| return fDeviceSpaceRRect.getBounds(); |
| case DeviceSpaceType::kPath: |
| return fDeviceSpacePath->getBounds(); |
| case DeviceSpaceType::kShader: |
| // Shaders have infinite bounds since any pixel could have clipped or full coverage |
| // (which is different from wide-open, where every pixel has 1.0 coverage, or empty |
| // where every pixel has 0.0 coverage). |
| return kInfinite; |
| case DeviceSpaceType::kEmpty: |
| return kEmpty; |
| default: |
| SkDEBUGFAIL("Unexpected type."); |
| return kEmpty; |
| } |
| } |
| |
| bool SkClipStack::Element::contains(const SkRect& rect) const { |
| switch (fDeviceSpaceType) { |
| case DeviceSpaceType::kRect: |
| return this->getDeviceSpaceRect().contains(rect); |
| case DeviceSpaceType::kRRect: |
| return fDeviceSpaceRRect.contains(rect); |
| case DeviceSpaceType::kPath: |
| return fDeviceSpacePath->conservativelyContainsRect(rect); |
| case DeviceSpaceType::kEmpty: |
| case DeviceSpaceType::kShader: |
| return false; |
| default: |
| SkDEBUGFAIL("Unexpected type."); |
| return false; |
| } |
| } |
| |
| bool SkClipStack::Element::contains(const SkRRect& rrect) const { |
| switch (fDeviceSpaceType) { |
| case DeviceSpaceType::kRect: |
| return this->getDeviceSpaceRect().contains(rrect.getBounds()); |
| case DeviceSpaceType::kRRect: |
| // We don't currently have a generalized rrect-rrect containment. |
| return fDeviceSpaceRRect.contains(rrect.getBounds()) || rrect == fDeviceSpaceRRect; |
| case DeviceSpaceType::kPath: |
| return fDeviceSpacePath->conservativelyContainsRect(rrect.getBounds()); |
| case DeviceSpaceType::kEmpty: |
| case DeviceSpaceType::kShader: |
| return false; |
| default: |
| SkDEBUGFAIL("Unexpected type."); |
| return false; |
| } |
| } |
| |
| void SkClipStack::Element::invertShapeFillType() { |
| switch (fDeviceSpaceType) { |
| case DeviceSpaceType::kRect: |
| fDeviceSpacePath.init(); |
| fDeviceSpacePath->addRect(this->getDeviceSpaceRect()); |
| fDeviceSpacePath->setFillType(SkPathFillType::kInverseEvenOdd); |
| fDeviceSpaceType = DeviceSpaceType::kPath; |
| break; |
| case DeviceSpaceType::kRRect: |
| fDeviceSpacePath.init(); |
| fDeviceSpacePath->addRRect(fDeviceSpaceRRect); |
| fDeviceSpacePath->setFillType(SkPathFillType::kInverseEvenOdd); |
| fDeviceSpaceType = DeviceSpaceType::kPath; |
| break; |
| case DeviceSpaceType::kPath: |
| fDeviceSpacePath->toggleInverseFillType(); |
| break; |
| case DeviceSpaceType::kShader: |
| fShader = as_SB(fShader)->makeInvertAlpha(); |
| break; |
| case DeviceSpaceType::kEmpty: |
| // Should this set to an empty, inverse filled path? |
| break; |
| } |
| } |
| |
| void SkClipStack::Element::initCommon(int saveCount, SkClipOp op, bool doAA) { |
| fSaveCount = saveCount; |
| fOp = op; |
| fDoAA = doAA; |
| fIsReplace = false; |
| // A default of inside-out and empty bounds means the bounds are effectively void as it |
| // indicates that nothing is known to be outside the clip. |
| fFiniteBoundType = kInsideOut_BoundsType; |
| fFiniteBound.setEmpty(); |
| fIsIntersectionOfRects = false; |
| fGenID = kInvalidGenID; |
| } |
| |
| void SkClipStack::Element::initRect(int saveCount, const SkRect& rect, const SkMatrix& m, |
| SkClipOp op, bool doAA) { |
| if (m.rectStaysRect()) { |
| SkRect devRect; |
| m.mapRect(&devRect, rect); |
| fDeviceSpaceRRect.setRect(devRect); |
| fDeviceSpaceType = DeviceSpaceType::kRect; |
| this->initCommon(saveCount, op, doAA); |
| return; |
| } |
| SkPath path; |
| path.addRect(rect); |
| path.setIsVolatile(true); |
| this->initAsPath(saveCount, path, m, op, doAA); |
| } |
| |
| void SkClipStack::Element::initRRect(int saveCount, const SkRRect& rrect, const SkMatrix& m, |
| SkClipOp op, bool doAA) { |
| if (rrect.transform(m, &fDeviceSpaceRRect)) { |
| SkRRect::Type type = fDeviceSpaceRRect.getType(); |
| if (SkRRect::kRect_Type == type || SkRRect::kEmpty_Type == type) { |
| fDeviceSpaceType = DeviceSpaceType::kRect; |
| } else { |
| fDeviceSpaceType = DeviceSpaceType::kRRect; |
| } |
| this->initCommon(saveCount, op, doAA); |
| return; |
| } |
| SkPath path; |
| path.addRRect(rrect); |
| path.setIsVolatile(true); |
| this->initAsPath(saveCount, path, m, op, doAA); |
| } |
| |
| void SkClipStack::Element::initPath(int saveCount, const SkPath& path, const SkMatrix& m, |
| SkClipOp op, bool doAA) { |
| if (!path.isInverseFillType()) { |
| SkRect r; |
| if (path.isRect(&r)) { |
| this->initRect(saveCount, r, m, op, doAA); |
| return; |
| } |
| SkRect ovalRect; |
| if (path.isOval(&ovalRect)) { |
| SkRRect rrect; |
| rrect.setOval(ovalRect); |
| this->initRRect(saveCount, rrect, m, op, doAA); |
| return; |
| } |
| } |
| this->initAsPath(saveCount, path, m, op, doAA); |
| } |
| |
| void SkClipStack::Element::initAsPath(int saveCount, const SkPath& path, const SkMatrix& m, |
| SkClipOp op, bool doAA) { |
| path.transform(m, fDeviceSpacePath.init()); |
| fDeviceSpacePath->setIsVolatile(true); |
| fDeviceSpaceType = DeviceSpaceType::kPath; |
| this->initCommon(saveCount, op, doAA); |
| } |
| |
| void SkClipStack::Element::initShader(int saveCount, sk_sp<SkShader> shader) { |
| SkASSERT(shader); |
| fDeviceSpaceType = DeviceSpaceType::kShader; |
| fShader = std::move(shader); |
| this->initCommon(saveCount, SkClipOp::kIntersect, false); |
| } |
| |
| void SkClipStack::Element::initReplaceRect(int saveCount, const SkRect& rect, bool doAA) { |
| fDeviceSpaceRRect.setRect(rect); |
| fDeviceSpaceType = DeviceSpaceType::kRect; |
| this->initCommon(saveCount, SkClipOp::kIntersect, doAA); |
| fIsReplace = true; |
| } |
| |
| void SkClipStack::Element::asDeviceSpacePath(SkPath* path) const { |
| switch (fDeviceSpaceType) { |
| case DeviceSpaceType::kEmpty: |
| path->reset(); |
| break; |
| case DeviceSpaceType::kRect: |
| path->reset(); |
| path->addRect(this->getDeviceSpaceRect()); |
| break; |
| case DeviceSpaceType::kRRect: |
| path->reset(); |
| path->addRRect(fDeviceSpaceRRect); |
| break; |
| case DeviceSpaceType::kPath: |
| *path = *fDeviceSpacePath; |
| break; |
| case DeviceSpaceType::kShader: |
| path->reset(); |
| path->addRect(SkRectPriv::MakeLargeS32()); |
| break; |
| } |
| path->setIsVolatile(true); |
| } |
| |
| void SkClipStack::Element::setEmpty() { |
| fDeviceSpaceType = DeviceSpaceType::kEmpty; |
| fFiniteBound.setEmpty(); |
| fFiniteBoundType = kNormal_BoundsType; |
| fIsIntersectionOfRects = false; |
| fDeviceSpaceRRect.setEmpty(); |
| fDeviceSpacePath.reset(); |
| fShader.reset(); |
| fGenID = kEmptyGenID; |
| SkDEBUGCODE(this->checkEmpty();) |
| } |
| |
| void SkClipStack::Element::checkEmpty() const { |
| SkASSERT(fFiniteBound.isEmpty()); |
| SkASSERT(kNormal_BoundsType == fFiniteBoundType); |
| SkASSERT(!fIsIntersectionOfRects); |
| SkASSERT(kEmptyGenID == fGenID); |
| SkASSERT(fDeviceSpaceRRect.isEmpty()); |
| SkASSERT(!fDeviceSpacePath.isValid()); |
| SkASSERT(!fShader); |
| } |
| |
| bool SkClipStack::Element::canBeIntersectedInPlace(int saveCount, SkClipOp op) const { |
| if (DeviceSpaceType::kEmpty == fDeviceSpaceType && |
| (SkClipOp::kDifference == op || SkClipOp::kIntersect == op)) { |
| return true; |
| } |
| // Only clips within the same save/restore frame (as captured by |
| // the save count) can be merged |
| return fSaveCount == saveCount && |
| SkClipOp::kIntersect == op && |
| (SkClipOp::kIntersect == fOp || this->isReplaceOp()); |
| } |
| |
| bool SkClipStack::Element::rectRectIntersectAllowed(const SkRect& newR, bool newAA) const { |
| SkASSERT(DeviceSpaceType::kRect == fDeviceSpaceType); |
| |
| if (fDoAA == newAA) { |
| // if the AA setting is the same there is no issue |
| return true; |
| } |
| |
| if (!SkRect::Intersects(this->getDeviceSpaceRect(), newR)) { |
| // The calling code will correctly set the result to the empty clip |
| return true; |
| } |
| |
| if (this->getDeviceSpaceRect().contains(newR)) { |
| // if the new rect carves out a portion of the old one there is no |
| // issue |
| return true; |
| } |
| |
| // So either the two overlap in some complex manner or newR contains oldR. |
| // In the first, case the edges will require different AA. In the second, |
| // the AA setting that would be carried forward is incorrect (e.g., oldR |
| // is AA while newR is BW but since newR contains oldR, oldR will be |
| // drawn BW) since the new AA setting will predominate. |
| return false; |
| } |
| |
| // a mirror of combineBoundsRevDiff |
| void SkClipStack::Element::combineBoundsDiff(FillCombo combination, const SkRect& prevFinite) { |
| switch (combination) { |
| case kInvPrev_InvCur_FillCombo: |
| // In this case the only pixels that can remain set |
| // are inside the current clip rect since the extensions |
| // to infinity of both clips cancel out and whatever |
| // is outside of the current clip is removed |
| fFiniteBoundType = kNormal_BoundsType; |
| break; |
| case kInvPrev_Cur_FillCombo: |
| // In this case the current op is finite so the only pixels |
| // that aren't set are whatever isn't set in the previous |
| // clip and whatever this clip carves out |
| fFiniteBound.join(prevFinite); |
| fFiniteBoundType = kInsideOut_BoundsType; |
| break; |
| case kPrev_InvCur_FillCombo: |
| // In this case everything outside of this clip's bound |
| // is erased, so the only pixels that can remain set |
| // occur w/in the intersection of the two finite bounds |
| if (!fFiniteBound.intersect(prevFinite)) { |
| fFiniteBound.setEmpty(); |
| fGenID = kEmptyGenID; |
| } |
| fFiniteBoundType = kNormal_BoundsType; |
| break; |
| case kPrev_Cur_FillCombo: |
| // The most conservative result bound is that of the |
| // prior clip. This could be wildly incorrect if the |
| // second clip either exactly matches the first clip |
| // (which should yield the empty set) or reduces the |
| // size of the prior bound (e.g., if the second clip |
| // exactly matched the bottom half of the prior clip). |
| // We ignore these two possibilities. |
| fFiniteBound = prevFinite; |
| break; |
| default: |
| SkDEBUGFAIL("SkClipStack::Element::combineBoundsDiff Invalid fill combination"); |
| break; |
| } |
| } |
| |
| // a mirror of combineBoundsUnion |
| void SkClipStack::Element::combineBoundsIntersection(int combination, const SkRect& prevFinite) { |
| |
| switch (combination) { |
| case kInvPrev_InvCur_FillCombo: |
| // The only pixels that aren't writable in this case |
| // occur in the union of the two finite bounds |
| fFiniteBound.join(prevFinite); |
| fFiniteBoundType = kInsideOut_BoundsType; |
| break; |
| case kInvPrev_Cur_FillCombo: |
| // In this case the only pixels that will remain writeable |
| // are within the current clip |
| break; |
| case kPrev_InvCur_FillCombo: |
| // In this case the only pixels that will remain writeable |
| // are with the previous clip |
| fFiniteBound = prevFinite; |
| fFiniteBoundType = kNormal_BoundsType; |
| break; |
| case kPrev_Cur_FillCombo: |
| if (!fFiniteBound.intersect(prevFinite)) { |
| this->setEmpty(); |
| } |
| break; |
| default: |
| SkDEBUGFAIL("SkClipStack::Element::combineBoundsIntersection Invalid fill combination"); |
| break; |
| } |
| } |
| |
| void SkClipStack::Element::updateBoundAndGenID(const Element* prior) { |
| // We set this first here but we may overwrite it later if we determine that the clip is |
| // either wide-open or empty. |
| fGenID = GetNextGenID(); |
| |
| // First, optimistically update the current Element's bound information |
| // with the current clip's bound |
| fIsIntersectionOfRects = false; |
| switch (fDeviceSpaceType) { |
| case DeviceSpaceType::kRect: |
| fFiniteBound = this->getDeviceSpaceRect(); |
| fFiniteBoundType = kNormal_BoundsType; |
| |
| if (this->isReplaceOp() || |
| (SkClipOp::kIntersect == fOp && nullptr == prior) || |
| (SkClipOp::kIntersect == fOp && prior->fIsIntersectionOfRects && |
| prior->rectRectIntersectAllowed(this->getDeviceSpaceRect(), fDoAA))) { |
| fIsIntersectionOfRects = true; |
| } |
| break; |
| case DeviceSpaceType::kRRect: |
| fFiniteBound = fDeviceSpaceRRect.getBounds(); |
| fFiniteBoundType = kNormal_BoundsType; |
| break; |
| case DeviceSpaceType::kPath: |
| fFiniteBound = fDeviceSpacePath->getBounds(); |
| |
| if (fDeviceSpacePath->isInverseFillType()) { |
| fFiniteBoundType = kInsideOut_BoundsType; |
| } else { |
| fFiniteBoundType = kNormal_BoundsType; |
| } |
| break; |
| case DeviceSpaceType::kShader: |
| // A shader is infinite. We don't act as wide-open here (which is an empty bounds with |
| // the inside out type). This is because when the bounds is empty and inside-out, we |
| // know there's full coverage everywhere. With a shader, there's *unknown* coverage |
| // everywhere. |
| fFiniteBound = SkRectPriv::MakeLargeS32(); |
| fFiniteBoundType = kNormal_BoundsType; |
| break; |
| case DeviceSpaceType::kEmpty: |
| SkDEBUGFAIL("We shouldn't get here with an empty element."); |
| break; |
| } |
| |
| // Now determine the previous Element's bound information taking into |
| // account that there may be no previous clip |
| SkRect prevFinite; |
| SkClipStack::BoundsType prevType; |
| |
| if (nullptr == prior) { |
| // no prior clip means the entire plane is writable |
| prevFinite.setEmpty(); // there are no pixels that cannot be drawn to |
| prevType = kInsideOut_BoundsType; |
| } else { |
| prevFinite = prior->fFiniteBound; |
| prevType = prior->fFiniteBoundType; |
| } |
| |
| FillCombo combination = kPrev_Cur_FillCombo; |
| if (kInsideOut_BoundsType == fFiniteBoundType) { |
| combination = (FillCombo) (combination | 0x01); |
| } |
| if (kInsideOut_BoundsType == prevType) { |
| combination = (FillCombo) (combination | 0x02); |
| } |
| |
| SkASSERT(kInvPrev_InvCur_FillCombo == combination || |
| kInvPrev_Cur_FillCombo == combination || |
| kPrev_InvCur_FillCombo == combination || |
| kPrev_Cur_FillCombo == combination); |
| |
| // Now integrate with clip with the prior clips |
| if (!this->isReplaceOp()) { |
| switch (fOp) { |
| case SkClipOp::kDifference: |
| this->combineBoundsDiff(combination, prevFinite); |
| break; |
| case SkClipOp::kIntersect: |
| this->combineBoundsIntersection(combination, prevFinite); |
| break; |
| default: |
| SkDebugf("SkClipOp error\n"); |
| SkASSERT(0); |
| break; |
| } |
| } // else Replace just ignores everything prior and should already have filled in bounds. |
| } |
| |
| // This constant determines how many Element's are allocated together as a block in |
| // the deque. As such it needs to balance allocating too much memory vs. |
| // incurring allocation/deallocation thrashing. It should roughly correspond to |
| // the deepest save/restore stack we expect to see. |
| static const int kDefaultElementAllocCnt = 8; |
| |
| SkClipStack::SkClipStack() |
| : fDeque(sizeof(Element), kDefaultElementAllocCnt) |
| , fSaveCount(0) { |
| } |
| |
| SkClipStack::SkClipStack(void* storage, size_t size) |
| : fDeque(sizeof(Element), storage, size, kDefaultElementAllocCnt) |
| , fSaveCount(0) { |
| } |
| |
| SkClipStack::SkClipStack(const SkClipStack& b) |
| : fDeque(sizeof(Element), kDefaultElementAllocCnt) { |
| *this = b; |
| } |
| |
| SkClipStack::~SkClipStack() { |
| reset(); |
| } |
| |
| SkClipStack& SkClipStack::operator=(const SkClipStack& b) { |
| if (this == &b) { |
| return *this; |
| } |
| reset(); |
| |
| fSaveCount = b.fSaveCount; |
| SkDeque::F2BIter recIter(b.fDeque); |
| for (const Element* element = (const Element*)recIter.next(); |
| element != nullptr; |
| element = (const Element*)recIter.next()) { |
| new (fDeque.push_back()) Element(*element); |
| } |
| |
| return *this; |
| } |
| |
| bool SkClipStack::operator==(const SkClipStack& b) const { |
| if (this->getTopmostGenID() == b.getTopmostGenID()) { |
| return true; |
| } |
| if (fSaveCount != b.fSaveCount || |
| fDeque.count() != b.fDeque.count()) { |
| return false; |
| } |
| SkDeque::F2BIter myIter(fDeque); |
| SkDeque::F2BIter bIter(b.fDeque); |
| const Element* myElement = (const Element*)myIter.next(); |
| const Element* bElement = (const Element*)bIter.next(); |
| |
| while (myElement != nullptr && bElement != nullptr) { |
| if (*myElement != *bElement) { |
| return false; |
| } |
| myElement = (const Element*)myIter.next(); |
| bElement = (const Element*)bIter.next(); |
| } |
| return myElement == nullptr && bElement == nullptr; |
| } |
| |
| void SkClipStack::reset() { |
| // We used a placement new for each object in fDeque, so we're responsible |
| // for calling the destructor on each of them as well. |
| while (!fDeque.empty()) { |
| Element* element = (Element*)fDeque.back(); |
| element->~Element(); |
| fDeque.pop_back(); |
| } |
| |
| fSaveCount = 0; |
| } |
| |
| void SkClipStack::save() { |
| fSaveCount += 1; |
| } |
| |
| void SkClipStack::restore() { |
| fSaveCount -= 1; |
| restoreTo(fSaveCount); |
| } |
| |
| void SkClipStack::restoreTo(int saveCount) { |
| while (!fDeque.empty()) { |
| Element* element = (Element*)fDeque.back(); |
| if (element->fSaveCount <= saveCount) { |
| break; |
| } |
| element->~Element(); |
| fDeque.pop_back(); |
| } |
| } |
| |
| SkRect SkClipStack::bounds(const SkIRect& deviceBounds) const { |
| // TODO: optimize this. |
| SkRect r; |
| SkClipStack::BoundsType bounds; |
| this->getBounds(&r, &bounds); |
| if (bounds == SkClipStack::kInsideOut_BoundsType) { |
| return SkRect::Make(deviceBounds); |
| } |
| return r.intersect(SkRect::Make(deviceBounds)) ? r : SkRect::MakeEmpty(); |
| } |
| |
| // TODO: optimize this. |
| bool SkClipStack::isEmpty(const SkIRect& r) const { return this->bounds(r).isEmpty(); } |
| |
| void SkClipStack::getBounds(SkRect* canvFiniteBound, |
| BoundsType* boundType, |
| bool* isIntersectionOfRects) const { |
| SkASSERT(canvFiniteBound && boundType); |
| |
| Element* element = (Element*)fDeque.back(); |
| |
| if (nullptr == element) { |
| // the clip is wide open - the infinite plane w/ no pixels un-writeable |
| canvFiniteBound->setEmpty(); |
| *boundType = kInsideOut_BoundsType; |
| if (isIntersectionOfRects) { |
| *isIntersectionOfRects = false; |
| } |
| return; |
| } |
| |
| *canvFiniteBound = element->fFiniteBound; |
| *boundType = element->fFiniteBoundType; |
| if (isIntersectionOfRects) { |
| *isIntersectionOfRects = element->fIsIntersectionOfRects; |
| } |
| } |
| |
| bool SkClipStack::internalQuickContains(const SkRect& rect) const { |
| Iter iter(*this, Iter::kTop_IterStart); |
| const Element* element = iter.prev(); |
| while (element != nullptr) { |
| // TODO: Once expanding ops are removed, this condition is equiv. to op == kDifference. |
| if (SkClipOp::kIntersect != element->getOp() && !element->isReplaceOp()) { |
| return false; |
| } |
| if (element->isInverseFilled()) { |
| // Part of 'rect' could be trimmed off by the inverse-filled clip element |
| if (SkRect::Intersects(element->getBounds(), rect)) { |
| return false; |
| } |
| } else { |
| if (!element->contains(rect)) { |
| return false; |
| } |
| } |
| if (element->isReplaceOp()) { |
| break; |
| } |
| element = iter.prev(); |
| } |
| return true; |
| } |
| |
| bool SkClipStack::internalQuickContains(const SkRRect& rrect) const { |
| Iter iter(*this, Iter::kTop_IterStart); |
| const Element* element = iter.prev(); |
| while (element != nullptr) { |
| // TODO: Once expanding ops are removed, this condition is equiv. to op == kDifference. |
| if (SkClipOp::kIntersect != element->getOp() && !element->isReplaceOp()) { |
| return false; |
| } |
| if (element->isInverseFilled()) { |
| // Part of 'rrect' could be trimmed off by the inverse-filled clip element |
| if (SkRect::Intersects(element->getBounds(), rrect.getBounds())) { |
| return false; |
| } |
| } else { |
| if (!element->contains(rrect)) { |
| return false; |
| } |
| } |
| if (element->isReplaceOp()) { |
| break; |
| } |
| element = iter.prev(); |
| } |
| return true; |
| } |
| |
| void SkClipStack::pushElement(const Element& element) { |
| // Use reverse iterator instead of back because Rect path may need previous |
| SkDeque::Iter iter(fDeque, SkDeque::Iter::kBack_IterStart); |
| Element* prior = (Element*) iter.prev(); |
| |
| if (prior) { |
| if (element.isReplaceOp()) { |
| this->restoreTo(fSaveCount - 1); |
| prior = (Element*) fDeque.back(); |
| } else if (prior->canBeIntersectedInPlace(fSaveCount, element.getOp())) { |
| switch (prior->fDeviceSpaceType) { |
| case Element::DeviceSpaceType::kEmpty: |
| SkDEBUGCODE(prior->checkEmpty();) |
| return; |
| case Element::DeviceSpaceType::kShader: |
| if (Element::DeviceSpaceType::kShader == element.getDeviceSpaceType()) { |
| prior->fShader = SkShaders::Blend(SkBlendMode::kSrcIn, |
| element.fShader, prior->fShader); |
| Element* priorPrior = (Element*) iter.prev(); |
| prior->updateBoundAndGenID(priorPrior); |
| return; |
| } |
| break; |
| case Element::DeviceSpaceType::kRect: |
| if (Element::DeviceSpaceType::kRect == element.getDeviceSpaceType()) { |
| if (prior->rectRectIntersectAllowed(element.getDeviceSpaceRect(), |
| element.isAA())) { |
| SkRect isectRect; |
| if (!isectRect.intersect(prior->getDeviceSpaceRect(), |
| element.getDeviceSpaceRect())) { |
| prior->setEmpty(); |
| return; |
| } |
| |
| prior->fDeviceSpaceRRect.setRect(isectRect); |
| prior->fDoAA = element.isAA(); |
| Element* priorPrior = (Element*) iter.prev(); |
| prior->updateBoundAndGenID(priorPrior); |
| return; |
| } |
| break; |
| } |
| [[fallthrough]]; |
| default: |
| if (!SkRect::Intersects(prior->getBounds(), element.getBounds())) { |
| prior->setEmpty(); |
| return; |
| } |
| break; |
| } |
| } |
| } |
| Element* newElement = new (fDeque.push_back()) Element(element); |
| newElement->updateBoundAndGenID(prior); |
| } |
| |
| void SkClipStack::clipRRect(const SkRRect& rrect, const SkMatrix& matrix, SkClipOp op, bool doAA) { |
| Element element(fSaveCount, rrect, matrix, op, doAA); |
| this->pushElement(element); |
| } |
| |
| void SkClipStack::clipRect(const SkRect& rect, const SkMatrix& matrix, SkClipOp op, bool doAA) { |
| Element element(fSaveCount, rect, matrix, op, doAA); |
| this->pushElement(element); |
| } |
| |
| void SkClipStack::clipPath(const SkPath& path, const SkMatrix& matrix, SkClipOp op, |
| bool doAA) { |
| Element element(fSaveCount, path, matrix, op, doAA); |
| this->pushElement(element); |
| } |
| |
| void SkClipStack::clipShader(sk_sp<SkShader> shader) { |
| Element element(fSaveCount, std::move(shader)); |
| this->pushElement(element); |
| } |
| |
| void SkClipStack::replaceClip(const SkRect& rect, bool doAA) { |
| Element element(fSaveCount, rect, doAA); |
| this->pushElement(element); |
| } |
| |
| void SkClipStack::clipEmpty() { |
| Element* element = (Element*) fDeque.back(); |
| |
| if (element && element->canBeIntersectedInPlace(fSaveCount, SkClipOp::kIntersect)) { |
| element->setEmpty(); |
| } |
| new (fDeque.push_back()) Element(fSaveCount); |
| |
| ((Element*)fDeque.back())->fGenID = kEmptyGenID; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| SkClipStack::Iter::Iter() : fStack(nullptr) { |
| } |
| |
| SkClipStack::Iter::Iter(const SkClipStack& stack, IterStart startLoc) |
| : fStack(&stack) { |
| this->reset(stack, startLoc); |
| } |
| |
| const SkClipStack::Element* SkClipStack::Iter::next() { |
| return (const SkClipStack::Element*)fIter.next(); |
| } |
| |
| const SkClipStack::Element* SkClipStack::Iter::prev() { |
| return (const SkClipStack::Element*)fIter.prev(); |
| } |
| |
| const SkClipStack::Element* SkClipStack::Iter::skipToTopmost(SkClipOp op) { |
| if (nullptr == fStack) { |
| return nullptr; |
| } |
| |
| fIter.reset(fStack->fDeque, SkDeque::Iter::kBack_IterStart); |
| |
| const SkClipStack::Element* element = nullptr; |
| |
| for (element = (const SkClipStack::Element*) fIter.prev(); |
| element; |
| element = (const SkClipStack::Element*) fIter.prev()) { |
| |
| if (op == element->fOp) { |
| // The Deque's iterator is actually one pace ahead of the |
| // returned value. So while "element" is the element we want to |
| // return, the iterator is actually pointing at (and will |
| // return on the next "next" or "prev" call) the element |
| // in front of it in the deque. Bump the iterator forward a |
| // step so we get the expected result. |
| if (nullptr == fIter.next()) { |
| // The reverse iterator has run off the front of the deque |
| // (i.e., the "op" clip is the first clip) and can't |
| // recover. Reset the iterator to start at the front. |
| fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart); |
| } |
| break; |
| } |
| } |
| |
| if (nullptr == element) { |
| // There were no "op" clips |
| fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart); |
| } |
| |
| return this->next(); |
| } |
| |
| void SkClipStack::Iter::reset(const SkClipStack& stack, IterStart startLoc) { |
| fStack = &stack; |
| fIter.reset(stack.fDeque, static_cast<SkDeque::Iter::IterStart>(startLoc)); |
| } |
| |
| // helper method |
| void SkClipStack::getConservativeBounds(int offsetX, |
| int offsetY, |
| int maxWidth, |
| int maxHeight, |
| SkRect* devBounds, |
| bool* isIntersectionOfRects) const { |
| SkASSERT(devBounds); |
| |
| devBounds->setLTRB(0, 0, |
| SkIntToScalar(maxWidth), SkIntToScalar(maxHeight)); |
| |
| SkRect temp; |
| SkClipStack::BoundsType boundType; |
| |
| // temp starts off in canvas space here |
| this->getBounds(&temp, &boundType, isIntersectionOfRects); |
| if (SkClipStack::kInsideOut_BoundsType == boundType) { |
| return; |
| } |
| |
| // but is converted to device space here |
| temp.offset(SkIntToScalar(offsetX), SkIntToScalar(offsetY)); |
| |
| if (!devBounds->intersect(temp)) { |
| devBounds->setEmpty(); |
| } |
| } |
| |
| bool SkClipStack::isRRect(const SkRect& bounds, SkRRect* rrect, bool* aa) const { |
| const Element* back = static_cast<const Element*>(fDeque.back()); |
| if (!back) { |
| // TODO: return bounds? |
| return false; |
| } |
| // First check if the entire stack is known to be a rect by the top element. |
| if (back->fIsIntersectionOfRects && back->fFiniteBoundType == BoundsType::kNormal_BoundsType) { |
| rrect->setRect(back->fFiniteBound); |
| *aa = back->isAA(); |
| return true; |
| } |
| |
| if (back->getDeviceSpaceType() != SkClipStack::Element::DeviceSpaceType::kRect && |
| back->getDeviceSpaceType() != SkClipStack::Element::DeviceSpaceType::kRRect) { |
| return false; |
| } |
| if (back->isReplaceOp()) { |
| *rrect = back->asDeviceSpaceRRect(); |
| *aa = back->isAA(); |
| return true; |
| } |
| |
| if (back->getOp() == SkClipOp::kIntersect) { |
| SkRect backBounds; |
| if (!backBounds.intersect(bounds, back->asDeviceSpaceRRect().rect())) { |
| return false; |
| } |
| // We limit to 17 elements. This means the back element will be bounds checked at most 16 |
| // times if it is an rrect. |
| int cnt = fDeque.count(); |
| if (cnt > 17) { |
| return false; |
| } |
| if (cnt > 1) { |
| SkDeque::Iter iter(fDeque, SkDeque::Iter::kBack_IterStart); |
| SkAssertResult(static_cast<const Element*>(iter.prev()) == back); |
| while (const Element* prior = (const Element*)iter.prev()) { |
| // TODO: Once expanding clip ops are removed, this is equiv. to op == kDifference |
| if ((prior->getOp() != SkClipOp::kIntersect && !prior->isReplaceOp()) || |
| !prior->contains(backBounds)) { |
| return false; |
| } |
| if (prior->isReplaceOp()) { |
| break; |
| } |
| } |
| } |
| *rrect = back->asDeviceSpaceRRect(); |
| *aa = back->isAA(); |
| return true; |
| } |
| return false; |
| } |
| |
| uint32_t SkClipStack::GetNextGenID() { |
| // 0-2 are reserved for invalid, empty & wide-open |
| static const uint32_t kFirstUnreservedGenID = 3; |
| static std::atomic<uint32_t> nextID{kFirstUnreservedGenID}; |
| |
| uint32_t id; |
| do { |
| id = nextID.fetch_add(1, std::memory_order_relaxed); |
| } while (id < kFirstUnreservedGenID); |
| return id; |
| } |
| |
| uint32_t SkClipStack::getTopmostGenID() const { |
| if (fDeque.empty()) { |
| return kWideOpenGenID; |
| } |
| |
| const Element* back = static_cast<const Element*>(fDeque.back()); |
| if (kInsideOut_BoundsType == back->fFiniteBoundType && back->fFiniteBound.isEmpty() && |
| Element::DeviceSpaceType::kShader != back->fDeviceSpaceType) { |
| return kWideOpenGenID; |
| } |
| |
| return back->getGenID(); |
| } |
| |
| #ifdef SK_DEBUG |
| void SkClipStack::Element::dump() const { |
| static const char* kTypeStrings[] = { |
| "empty", |
| "rect", |
| "rrect", |
| "path", |
| "shader" |
| }; |
| static_assert(0 == static_cast<int>(DeviceSpaceType::kEmpty), "enum mismatch"); |
| static_assert(1 == static_cast<int>(DeviceSpaceType::kRect), "enum mismatch"); |
| static_assert(2 == static_cast<int>(DeviceSpaceType::kRRect), "enum mismatch"); |
| static_assert(3 == static_cast<int>(DeviceSpaceType::kPath), "enum mismatch"); |
| static_assert(4 == static_cast<int>(DeviceSpaceType::kShader), "enum mismatch"); |
| static_assert(SK_ARRAY_COUNT(kTypeStrings) == kTypeCnt, "enum mismatch"); |
| |
| const char* opName = this->isReplaceOp() ? "replace" : |
| (fOp == SkClipOp::kDifference ? "difference" : "intersect"); |
| SkDebugf("Type: %s, Op: %s, AA: %s, Save Count: %d\n", kTypeStrings[(int)fDeviceSpaceType], |
| opName, (fDoAA ? "yes" : "no"), fSaveCount); |
| switch (fDeviceSpaceType) { |
| case DeviceSpaceType::kEmpty: |
| SkDebugf("\n"); |
| break; |
| case DeviceSpaceType::kRect: |
| this->getDeviceSpaceRect().dump(); |
| SkDebugf("\n"); |
| break; |
| case DeviceSpaceType::kRRect: |
| this->getDeviceSpaceRRect().dump(); |
| SkDebugf("\n"); |
| break; |
| case DeviceSpaceType::kPath: |
| this->getDeviceSpacePath().dump(nullptr, false); |
| break; |
| case DeviceSpaceType::kShader: |
| // SkShaders don't provide much introspection that's worth while. |
| break; |
| } |
| } |
| |
| void SkClipStack::dump() const { |
| B2TIter iter(*this); |
| const Element* e; |
| while ((e = iter.next())) { |
| e->dump(); |
| SkDebugf("\n"); |
| } |
| } |
| #endif |