blob: 3b06328e65c7c67b6f2d4c03664131e76fff6767 [file] [log] [blame]
/*
* Copyright 2020 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/sksl/SkSLDehydrator.h"
#include <map>
#include "include/private/SkSLProgramElement.h"
#include "include/private/SkSLStatement.h"
#include "include/private/SkSLSymbol.h"
#include "src/sksl/SkSLRehydrator.h"
#include "src/sksl/ir/SkSLBinaryExpression.h"
#include "src/sksl/ir/SkSLBreakStatement.h"
#include "src/sksl/ir/SkSLConstructor.h"
#include "src/sksl/ir/SkSLConstructorArray.h"
#include "src/sksl/ir/SkSLConstructorCompound.h"
#include "src/sksl/ir/SkSLConstructorCompoundCast.h"
#include "src/sksl/ir/SkSLConstructorDiagonalMatrix.h"
#include "src/sksl/ir/SkSLConstructorMatrixResize.h"
#include "src/sksl/ir/SkSLConstructorScalarCast.h"
#include "src/sksl/ir/SkSLConstructorSplat.h"
#include "src/sksl/ir/SkSLContinueStatement.h"
#include "src/sksl/ir/SkSLDiscardStatement.h"
#include "src/sksl/ir/SkSLDoStatement.h"
#include "src/sksl/ir/SkSLEnum.h"
#include "src/sksl/ir/SkSLExpressionStatement.h"
#include "src/sksl/ir/SkSLField.h"
#include "src/sksl/ir/SkSLFieldAccess.h"
#include "src/sksl/ir/SkSLForStatement.h"
#include "src/sksl/ir/SkSLFunctionCall.h"
#include "src/sksl/ir/SkSLFunctionDeclaration.h"
#include "src/sksl/ir/SkSLFunctionDefinition.h"
#include "src/sksl/ir/SkSLIfStatement.h"
#include "src/sksl/ir/SkSLIndexExpression.h"
#include "src/sksl/ir/SkSLInlineMarker.h"
#include "src/sksl/ir/SkSLIntLiteral.h"
#include "src/sksl/ir/SkSLInterfaceBlock.h"
#include "src/sksl/ir/SkSLPostfixExpression.h"
#include "src/sksl/ir/SkSLPrefixExpression.h"
#include "src/sksl/ir/SkSLReturnStatement.h"
#include "src/sksl/ir/SkSLSetting.h"
#include "src/sksl/ir/SkSLStructDefinition.h"
#include "src/sksl/ir/SkSLSwitchCase.h"
#include "src/sksl/ir/SkSLSwitchStatement.h"
#include "src/sksl/ir/SkSLSwizzle.h"
#include "src/sksl/ir/SkSLSymbolAlias.h"
#include "src/sksl/ir/SkSLSymbolTable.h"
#include "src/sksl/ir/SkSLTernaryExpression.h"
#include "src/sksl/ir/SkSLUnresolvedFunction.h"
#include "src/sksl/ir/SkSLVarDeclarations.h"
#include "src/sksl/ir/SkSLVariable.h"
#ifdef SKSL_STANDALONE
namespace SkSL {
static constexpr int HEADER_SIZE = 2;
class AutoDehydratorSymbolTable {
public:
AutoDehydratorSymbolTable(Dehydrator* dehydrator, const std::shared_ptr<SymbolTable>& symbols)
: fDehydrator(dehydrator) {
dehydrator->fSymbolMap.emplace_back();
if (symbols) {
dehydrator->write(*symbols);
} else {
dehydrator->writeCommand(Rehydrator::kVoid_Command);
}
}
~AutoDehydratorSymbolTable() {
fDehydrator->fSymbolMap.pop_back();
}
private:
Dehydrator* fDehydrator;
};
void Dehydrator::write(Layout l) {
if (l == Layout()) {
this->writeCommand(Rehydrator::kDefaultLayout_Command);
} else if (l == Layout::builtin(l.fBuiltin)) {
this->writeCommand(Rehydrator::kBuiltinLayout_Command);
this->writeS16(l.fBuiltin);
} else {
this->writeCommand(Rehydrator::kLayout_Command);
fBody.write32(l.fFlags);
this->writeS8(l.fLocation);
this->writeS8(l.fOffset);
this->writeS8(l.fBinding);
this->writeS8(l.fIndex);
this->writeS8(l.fSet);
this->writeS16(l.fBuiltin);
this->writeS8(l.fInputAttachmentIndex);
this->writeS8(l.fPrimitive);
this->writeS8(l.fMaxVertices);
this->writeS8(l.fInvocations);
this->write(l.fMarker);
this->write(l.fWhen);
this->writeS8((int) l.fCType);
}
}
void Dehydrator::write(Modifiers m) {
if (m == Modifiers()) {
this->writeCommand(Rehydrator::kDefaultModifiers_Command);
} else {
if (m.fFlags <= 255) {
this->writeCommand(Rehydrator::kModifiers8Bit_Command);
this->write(m.fLayout);
this->writeU8(m.fFlags);
} else {
this->writeCommand(Rehydrator::kModifiers_Command);
this->write(m.fLayout);
this->writeS32(m.fFlags);
}
}
}
void Dehydrator::write(StringFragment s) {
this->write(String(s));
}
void Dehydrator::write(String s) {
auto found = fStrings.find(s);
int offset;
if (found == fStrings.end()) {
offset = fStringBuffer.str().length() + HEADER_SIZE;
fStrings.insert({ s, offset });
SkASSERT(s.length() <= 255);
fStringBreaks.add(fStringBuffer.bytesWritten());
fStringBuffer.write8(s.length());
fStringBuffer.writeString(s);
} else {
offset = found->second;
}
this->writeU16(offset);
}
void Dehydrator::write(const Symbol& s) {
uint16_t id = this->symbolId(&s, false);
if (id) {
this->writeCommand(Rehydrator::kSymbolRef_Command);
this->writeU16(id);
return;
}
switch (s.kind()) {
case Symbol::Kind::kFunctionDeclaration: {
const FunctionDeclaration& f = s.as<FunctionDeclaration>();
this->writeCommand(Rehydrator::kFunctionDeclaration_Command);
this->writeId(&f);
this->write(f.modifiers());
this->write(f.name());
this->writeU8(f.parameters().size());
for (const Variable* p : f.parameters()) {
this->writeU16(this->symbolId(p));
}
this->write(f.returnType());
break;
}
case Symbol::Kind::kSymbolAlias: {
const SymbolAlias& alias = s.as<SymbolAlias>();
this->writeCommand(Rehydrator::kSymbolAlias_Command);
this->writeId(&alias);
this->write(alias.name());
this->write(*alias.origSymbol());
break;
}
case Symbol::Kind::kUnresolvedFunction: {
const UnresolvedFunction& f = s.as<UnresolvedFunction>();
this->writeCommand(Rehydrator::kUnresolvedFunction_Command);
this->writeId(&f);
this->writeU8(f.functions().size());
for (const FunctionDeclaration* funcDecl : f.functions()) {
this->write(*funcDecl);
}
break;
}
case Symbol::Kind::kType: {
const Type& t = s.as<Type>();
switch (t.typeKind()) {
case Type::TypeKind::kArray:
this->writeCommand(Rehydrator::kArrayType_Command);
this->writeId(&t);
this->write(t.componentType());
this->writeS8(t.columns());
break;
case Type::TypeKind::kEnum:
this->writeCommand(Rehydrator::kEnumType_Command);
this->writeId(&t);
this->write(t.name());
break;
case Type::TypeKind::kStruct:
this->writeCommand(Rehydrator::kStructType_Command);
this->writeId(&t);
this->write(t.name());
this->writeU8(t.fields().size());
for (const Type::Field& f : t.fields()) {
this->write(f.fModifiers);
this->write(f.fName);
this->write(*f.fType);
}
break;
default:
this->writeCommand(Rehydrator::kSystemType_Command);
this->writeId(&t);
this->write(t.name());
}
break;
}
case Symbol::Kind::kVariable: {
const Variable& v = s.as<Variable>();
this->writeCommand(Rehydrator::kVariable_Command);
this->writeId(&v);
this->write(v.modifiers());
this->write(v.name());
this->write(v.type());
this->writeU8((int8_t) v.storage());
break;
}
case Symbol::Kind::kField: {
const Field& f = s.as<Field>();
this->writeCommand(Rehydrator::kField_Command);
this->writeU16(this->symbolId(&f.owner()));
this->writeU8(f.fieldIndex());
break;
}
case Symbol::Kind::kExternal:
SkASSERT(false);
break;
}
}
void Dehydrator::write(const SymbolTable& symbols) {
this->writeCommand(Rehydrator::kSymbolTable_Command);
this->writeU16(symbols.fOwnedSymbols.size());
for (const std::unique_ptr<const Symbol>& s : symbols.fOwnedSymbols) {
this->write(*s);
}
this->writeU16(symbols.fSymbols.count());
std::map<StringFragment, const Symbol*> ordered;
symbols.foreach([&](StringFragment name, const Symbol* symbol) {
ordered.insert({name, symbol});
});
for (std::pair<StringFragment, const Symbol*> p : ordered) {
bool found = false;
for (size_t i = 0; i < symbols.fOwnedSymbols.size(); ++i) {
if (symbols.fOwnedSymbols[i].get() == p.second) {
fCommandBreaks.add(fBody.bytesWritten());
this->writeU16(i);
found = true;
break;
}
}
SkASSERT(found);
}
}
void Dehydrator::writeExpressionSpan(const SkSpan<const std::unique_ptr<Expression>>& span) {
this->writeU8(span.size());
for (const auto& expr : span) {
this->write(expr.get());
}
}
void Dehydrator::write(const Expression* e) {
if (e) {
switch (e->kind()) {
case Expression::Kind::kBinary: {
const BinaryExpression& b = e->as<BinaryExpression>();
this->writeCommand(Rehydrator::kBinary_Command);
this->write(b.left().get());
this->writeU8((int) b.getOperator().kind());
this->write(b.right().get());
break;
}
case Expression::Kind::kBoolLiteral: {
const BoolLiteral& b = e->as<BoolLiteral>();
this->writeCommand(Rehydrator::kBoolLiteral_Command);
this->writeU8(b.value());
break;
}
case Expression::Kind::kCodeString:
SkDEBUGFAIL("shouldn't be able to receive kCodeString here");
break;
case Expression::Kind::kConstructorArray:
this->writeCommand(Rehydrator::kConstructorArray_Command);
this->write(e->type());
this->writeExpressionSpan(e->as<ConstructorArray>().argumentSpan());
break;
case Expression::Kind::kConstructorCompound:
this->writeCommand(Rehydrator::kConstructorCompound_Command);
this->write(e->type());
this->writeExpressionSpan(e->as<ConstructorCompound>().argumentSpan());
break;
case Expression::Kind::kConstructorCompoundCast:
this->writeCommand(Rehydrator::kConstructorCompoundCast_Command);
this->write(e->type());
this->writeExpressionSpan(e->as<ConstructorCompoundCast>().argumentSpan());
break;
case Expression::Kind::kConstructorDiagonalMatrix:
this->writeCommand(Rehydrator::kConstructorDiagonalMatrix_Command);
this->write(e->type());
this->writeExpressionSpan(e->as<ConstructorDiagonalMatrix>().argumentSpan());
break;
case Expression::Kind::kConstructorMatrixResize:
this->writeCommand(Rehydrator::kConstructorMatrixResize_Command);
this->write(e->type());
this->writeExpressionSpan(e->as<ConstructorMatrixResize>().argumentSpan());
break;
case Expression::Kind::kConstructorScalarCast:
this->writeCommand(Rehydrator::kConstructorScalarCast_Command);
this->write(e->type());
this->writeExpressionSpan(e->as<ConstructorScalarCast>().argumentSpan());
break;
case Expression::Kind::kConstructorSplat:
this->writeCommand(Rehydrator::kConstructorSplat_Command);
this->write(e->type());
this->writeExpressionSpan(e->as<ConstructorSplat>().argumentSpan());
break;
case Expression::Kind::kExternalFunctionCall:
case Expression::Kind::kExternalFunctionReference:
SkDEBUGFAIL("unimplemented--not expected to be used from within an include file");
break;
case Expression::Kind::kFieldAccess: {
const FieldAccess& f = e->as<FieldAccess>();
this->writeCommand(Rehydrator::kFieldAccess_Command);
this->write(f.base().get());
this->writeU8(f.fieldIndex());
this->writeU8((int8_t) f.ownerKind());
break;
}
case Expression::Kind::kFloatLiteral: {
const FloatLiteral& f = e->as<FloatLiteral>();
this->writeCommand(Rehydrator::kFloatLiteral_Command);
this->write(f.type());
FloatIntUnion u;
u.fFloat = f.value();
this->writeS32(u.fInt);
break;
}
case Expression::Kind::kFunctionCall: {
const FunctionCall& f = e->as<FunctionCall>();
this->writeCommand(Rehydrator::kFunctionCall_Command);
this->write(f.type());
this->writeId(&f.function());
this->writeU8(f.arguments().size());
for (const auto& a : f.arguments()) {
this->write(a.get());
}
break;
}
case Expression::Kind::kIndex: {
const IndexExpression& i = e->as<IndexExpression>();
this->writeCommand(Rehydrator::kIndex_Command);
this->write(i.base().get());
this->write(i.index().get());
break;
}
case Expression::Kind::kIntLiteral: {
const IntLiteral& i = e->as<IntLiteral>();
this->writeCommand(Rehydrator::kIntLiteral_Command);
this->write(i.type());
this->writeS32(i.value());
break;
}
case Expression::Kind::kPostfix: {
const PostfixExpression& p = e->as<PostfixExpression>();
this->writeCommand(Rehydrator::kPostfix_Command);
this->writeU8((int) p.getOperator().kind());
this->write(p.operand().get());
break;
}
case Expression::Kind::kPrefix: {
const PrefixExpression& p = e->as<PrefixExpression>();
this->writeCommand(Rehydrator::kPrefix_Command);
this->writeU8((int) p.getOperator().kind());
this->write(p.operand().get());
break;
}
case Expression::Kind::kSetting: {
const Setting& s = e->as<Setting>();
this->writeCommand(Rehydrator::kSetting_Command);
this->write(s.name());
break;
}
case Expression::Kind::kSwizzle: {
const Swizzle& s = e->as<Swizzle>();
this->writeCommand(Rehydrator::kSwizzle_Command);
this->write(s.base().get());
this->writeU8(s.components().size());
for (int c : s.components()) {
this->writeU8(c);
}
break;
}
case Expression::Kind::kTernary: {
const TernaryExpression& t = e->as<TernaryExpression>();
this->writeCommand(Rehydrator::kTernary_Command);
this->write(t.test().get());
this->write(t.ifTrue().get());
this->write(t.ifFalse().get());
break;
}
case Expression::Kind::kVariableReference: {
const VariableReference& v = e->as<VariableReference>();
this->writeCommand(Rehydrator::kVariableReference_Command);
this->writeId(v.variable());
this->writeU8((int8_t) v.refKind());
break;
}
case Expression::Kind::kFunctionReference:
case Expression::Kind::kTypeReference:
case Expression::Kind::kDefined:
SkDEBUGFAIL("this expression shouldn't appear in finished code");
break;
}
} else {
this->writeCommand(Rehydrator::kVoid_Command);
}
}
void Dehydrator::write(const Statement* s) {
if (s) {
switch (s->kind()) {
case Statement::Kind::kBlock: {
const Block& b = s->as<Block>();
this->writeCommand(Rehydrator::kBlock_Command);
AutoDehydratorSymbolTable symbols(this, b.symbolTable());
this->writeU8(b.children().size());
for (const std::unique_ptr<Statement>& blockStmt : b.children()) {
this->write(blockStmt.get());
}
this->writeU8(b.isScope());
break;
}
case Statement::Kind::kBreak:
this->writeCommand(Rehydrator::kBreak_Command);
break;
case Statement::Kind::kContinue:
this->writeCommand(Rehydrator::kContinue_Command);
break;
case Statement::Kind::kDiscard:
this->writeCommand(Rehydrator::kDiscard_Command);
break;
case Statement::Kind::kDo: {
const DoStatement& d = s->as<DoStatement>();
this->writeCommand(Rehydrator::kDo_Command);
this->write(d.statement().get());
this->write(d.test().get());
break;
}
case Statement::Kind::kExpression: {
const ExpressionStatement& e = s->as<ExpressionStatement>();
this->writeCommand(Rehydrator::kExpressionStatement_Command);
this->write(e.expression().get());
break;
}
case Statement::Kind::kFor: {
const ForStatement& f = s->as<ForStatement>();
this->writeCommand(Rehydrator::kFor_Command);
this->write(f.initializer().get());
this->write(f.test().get());
this->write(f.next().get());
this->write(f.statement().get());
this->write(*f.symbols());
break;
}
case Statement::Kind::kIf: {
const IfStatement& i = s->as<IfStatement>();
this->writeCommand(Rehydrator::kIf_Command);
this->writeU8(i.isStatic());
this->write(i.test().get());
this->write(i.ifTrue().get());
this->write(i.ifFalse().get());
break;
}
case Statement::Kind::kInlineMarker: {
const InlineMarker& i = s->as<InlineMarker>();
this->writeCommand(Rehydrator::kInlineMarker_Command);
this->writeId(&i.function());
break;
}
case Statement::Kind::kNop:
SkDEBUGFAIL("unexpected--nop statement in finished code");
break;
case Statement::Kind::kReturn: {
const ReturnStatement& r = s->as<ReturnStatement>();
this->writeCommand(Rehydrator::kReturn_Command);
this->write(r.expression().get());
break;
}
case Statement::Kind::kSwitch: {
const SwitchStatement& ss = s->as<SwitchStatement>();
this->writeCommand(Rehydrator::kSwitch_Command);
this->writeU8(ss.isStatic());
AutoDehydratorSymbolTable symbols(this, ss.symbols());
this->write(ss.value().get());
this->writeU8(ss.cases().size());
for (const std::unique_ptr<Statement>& stmt : ss.cases()) {
const SwitchCase& sc = stmt->as<SwitchCase>();
this->write(sc.value().get());
this->write(sc.statement().get());
}
break;
}
case Statement::Kind::kSwitchCase:
SkDEBUGFAIL("SwitchCase statements shouldn't appear here");
break;
case Statement::Kind::kVarDeclaration: {
const VarDeclaration& v = s->as<VarDeclaration>();
this->writeCommand(Rehydrator::kVarDeclaration_Command);
this->writeU16(this->symbolId(&v.var()));
this->write(v.baseType());
this->writeS8(v.arraySize());
this->write(v.value().get());
break;
}
}
} else {
this->writeCommand(Rehydrator::kVoid_Command);
}
}
void Dehydrator::write(const ProgramElement& e) {
switch (e.kind()) {
case ProgramElement::Kind::kEnum: {
const Enum& en = e.as<Enum>();
this->writeCommand(Rehydrator::kEnum_Command);
this->write(en.typeName());
AutoDehydratorSymbolTable symbols(this, en.symbols());
for (const std::unique_ptr<const Symbol>& s : en.symbols()->fOwnedSymbols) {
const Variable& v = s->as<Variable>();
SkASSERT(v.initialValue());
const IntLiteral& i = v.initialValue()->as<IntLiteral>();
this->writeS32(i.value());
}
break;
}
case ProgramElement::Kind::kExtension:
SkASSERT(false);
break;
case ProgramElement::Kind::kFunction: {
const FunctionDefinition& f = e.as<FunctionDefinition>();
this->writeCommand(Rehydrator::kFunctionDefinition_Command);
this->writeU16(this->symbolId(&f.declaration()));
this->write(f.body().get());
this->writeU8(f.referencedIntrinsics().size());
std::set<uint16_t> ordered;
for (const FunctionDeclaration* ref : f.referencedIntrinsics()) {
ordered.insert(this->symbolId(ref));
}
for (uint16_t ref : ordered) {
this->writeU16(ref);
}
break;
}
case ProgramElement::Kind::kFunctionPrototype: {
// We don't need to emit function prototypes into the dehydrated data, because we don't
// ever need to re-emit the intrinsics files as raw GLSL/Metal. As long as the symbols
// exist in the symbol table, we're in good shape.
break;
}
case ProgramElement::Kind::kInterfaceBlock: {
const InterfaceBlock& i = e.as<InterfaceBlock>();
this->writeCommand(Rehydrator::kInterfaceBlock_Command);
this->write(i.variable());
this->write(i.typeName());
this->write(i.instanceName());
this->writeS8(i.arraySize());
break;
}
case ProgramElement::Kind::kModifiers:
SkASSERT(false);
break;
case ProgramElement::Kind::kSection:
SkASSERT(false);
break;
case ProgramElement::Kind::kStructDefinition: {
const StructDefinition& structDef = e.as<StructDefinition>();
this->writeCommand(Rehydrator::kStructDefinition_Command);
this->write(structDef.type());
break;
}
case ProgramElement::Kind::kGlobalVar: {
const GlobalVarDeclaration& v = e.as<GlobalVarDeclaration>();
this->writeCommand(Rehydrator::kVarDeclarations_Command);
this->write(v.declaration().get());
break;
}
}
}
void Dehydrator::write(const std::vector<std::unique_ptr<ProgramElement>>& elements) {
this->writeCommand(Rehydrator::kElements_Command);
for (const auto& e : elements) {
this->write(*e);
}
this->writeCommand(Rehydrator::kElementsComplete_Command);
}
void Dehydrator::finish(OutputStream& out) {
String stringBuffer = fStringBuffer.str();
String commandBuffer = fBody.str();
out.write16(fStringBuffer.str().size());
fStringBufferStart = 2;
out.writeString(stringBuffer);
fCommandStart = fStringBufferStart + stringBuffer.size();
out.writeString(commandBuffer);
}
const char* Dehydrator::prefixAtOffset(size_t byte) {
if (byte >= fCommandStart) {
return fCommandBreaks.contains(byte - fCommandStart) ? "\n" : "";
}
if (byte >= fStringBufferStart) {
return fStringBreaks.contains(byte - fStringBufferStart) ? "\n" : "";
}
return "";
}
} // namespace
#endif