blob: 8d43066b47b044543fdd3245b8a1fc6ac106a91e [file] [log] [blame]
/*
* Copyright 2011 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/effects/SkBlurImageFilter.h"
#include <algorithm>
#include "include/core/SkBitmap.h"
#include "include/core/SkTileMode.h"
#include "include/private/SkColorData.h"
#include "include/private/SkNx.h"
#include "include/private/SkTFitsIn.h"
#include "include/private/SkTPin.h"
#include "src/core/SkArenaAlloc.h"
#include "src/core/SkAutoPixmapStorage.h"
#include "src/core/SkGpuBlurUtils.h"
#include "src/core/SkImageFilter_Base.h"
#include "src/core/SkOpts.h"
#include "src/core/SkReadBuffer.h"
#include "src/core/SkSpecialImage.h"
#include "src/core/SkWriteBuffer.h"
#if SK_SUPPORT_GPU
#include "src/gpu/GrTextureProxy.h"
#include "src/gpu/SkGr.h"
#endif
namespace {
class SkBlurImageFilterImpl final : public SkImageFilter_Base {
public:
SkBlurImageFilterImpl(SkScalar sigmaX, SkScalar sigmaY, SkTileMode tileMode,
sk_sp<SkImageFilter> input, const CropRect* cropRect)
: INHERITED(&input, 1, cropRect)
, fSigma{sigmaX, sigmaY}
, fTileMode(tileMode) {}
SkRect computeFastBounds(const SkRect&) const override;
protected:
void flatten(SkWriteBuffer&) const override;
sk_sp<SkSpecialImage> onFilterImage(const Context&, SkIPoint* offset) const override;
SkIRect onFilterNodeBounds(const SkIRect& src, const SkMatrix& ctm,
MapDirection, const SkIRect* inputRect) const override;
private:
friend void SkBlurImageFilter::RegisterFlattenables();
SK_FLATTENABLE_HOOKS(SkBlurImageFilterImpl)
#if SK_SUPPORT_GPU
sk_sp<SkSpecialImage> gpuFilter(
const Context& ctx, SkVector sigma,
const sk_sp<SkSpecialImage> &input,
SkIRect inputBounds, SkIRect dstBounds, SkIPoint inputOffset, SkIPoint* offset) const;
#endif
SkSize fSigma;
SkTileMode fTileMode;
using INHERITED = SkImageFilter_Base;
};
} // end namespace
static SkTileMode to_sktilemode(SkBlurImageFilter::TileMode tileMode) {
switch(tileMode) {
case SkBlurImageFilter::kClamp_TileMode:
return SkTileMode::kClamp;
case SkBlurImageFilter::kRepeat_TileMode:
return SkTileMode::kRepeat;
case SkBlurImageFilter::kClampToBlack_TileMode:
// Fall through
default:
return SkTileMode::kDecal;
}
}
sk_sp<SkImageFilter> SkBlurImageFilter::Make(SkScalar sigmaX, SkScalar sigmaY,
sk_sp<SkImageFilter> input,
const SkImageFilter::CropRect* cropRect,
TileMode tileMode) {
return Make(sigmaX, sigmaY, to_sktilemode(tileMode), std::move(input), cropRect);
}
sk_sp<SkImageFilter> SkBlurImageFilter::Make(SkScalar sigmaX, SkScalar sigmaY, SkTileMode tileMode,
sk_sp<SkImageFilter> input,
const SkImageFilter::CropRect* cropRect) {
if (sigmaX < SK_ScalarNearlyZero && sigmaY < SK_ScalarNearlyZero && !cropRect) {
return input;
}
return sk_sp<SkImageFilter>(
new SkBlurImageFilterImpl(sigmaX, sigmaY, tileMode, input, cropRect));
}
void SkBlurImageFilter::RegisterFlattenables() { SK_REGISTER_FLATTENABLE(SkBlurImageFilterImpl); }
///////////////////////////////////////////////////////////////////////////////
sk_sp<SkFlattenable> SkBlurImageFilterImpl::CreateProc(SkReadBuffer& buffer) {
SK_IMAGEFILTER_UNFLATTEN_COMMON(common, 1);
SkScalar sigmaX = buffer.readScalar();
SkScalar sigmaY = buffer.readScalar();
SkTileMode tileMode = buffer.read32LE(SkTileMode::kLastTileMode);
static_assert(SkBlurImageFilter::kLast_TileMode == 2, "CreateProc");
return SkBlurImageFilter::Make(
sigmaX, sigmaY, tileMode, common.getInput(0), &common.cropRect());
}
void SkBlurImageFilterImpl::flatten(SkWriteBuffer& buffer) const {
this->INHERITED::flatten(buffer);
buffer.writeScalar(fSigma.fWidth);
buffer.writeScalar(fSigma.fHeight);
static_assert((int) SkTileMode::kLastTileMode == 3 && SkBlurImageFilter::kLast_TileMode == 2,
"SkBlurImageFilterImpl::flatten");
SkASSERT(fTileMode <= SkTileMode::kLastTileMode);
buffer.writeInt(static_cast<int>(fTileMode));
}
// This is defined by the SVG spec:
// https://drafts.fxtf.org/filter-effects/#feGaussianBlurElement
static int calculate_window(double sigma) {
// NB 136 is the largest sigma that will not cause a buffer full of 255 mask values to overflow
// using the Gauss filter. It also limits the size of buffers used hold intermediate values.
// Explanation of maximums:
// sum0 = window * 255
// sum1 = window * sum0 -> window * window * 255
// sum2 = window * sum1 -> window * window * window * 255 -> window^3 * 255
//
// The value window^3 * 255 must fit in a uint32_t. So,
// window^3 < 2^32. window = 255.
//
// window = floor(sigma * 3 * sqrt(2 * kPi) / 4 + 0.5)
// For window <= 255, the largest value for sigma is 136.
sigma = SkTPin(sigma, 0.0, 136.0);
auto possibleWindow = static_cast<int>(floor(sigma * 3 * sqrt(2 * SK_DoublePI) / 4 + 0.5));
return std::max(1, possibleWindow);
}
// Calculating the border is tricky. The border is the distance in pixels between the first dst
// pixel and the first src pixel (or the last src pixel and the last dst pixel).
// I will go through the odd case which is simpler, and then through the even case. Given a
// stack of filters seven wide for the odd case of three passes.
//
// S
// aaaAaaa
// bbbBbbb
// cccCccc
// D
//
// The furthest changed pixel is when the filters are in the following configuration.
//
// S
// aaaAaaa
// bbbBbbb
// cccCccc
// D
//
// The A pixel is calculated using the value S, the B uses A, and the C uses B, and
// finally D is C. So, with a window size of seven the border is nine. In the odd case, the
// border is 3*((window - 1)/2).
//
// For even cases the filter stack is more complicated. The spec specifies two passes
// of even filters and a final pass of odd filters. A stack for a width of six looks like
// this.
//
// S
// aaaAaa
// bbBbbb
// cccCccc
// D
//
// The furthest pixel looks like this.
//
// S
// aaaAaa
// bbBbbb
// cccCccc
// D
//
// For a window of six, the border value is eight. In the even case the border is 3 *
// (window/2) - 1.
static int calculate_border(int window) {
return (window & 1) == 1 ? 3 * ((window - 1) / 2) : 3 * (window / 2) - 1;
}
static int calculate_buffer(int window) {
int bufferSize = window - 1;
return (window & 1) == 1 ? 3 * bufferSize : 3 * bufferSize + 1;
}
// blur_one_direction implements the common three pass box filter approximation of Gaussian blur,
// but combines all three passes into a single pass. This approach is facilitated by three circular
// buffers the width of the window which track values for trailing edges of each of the three
// passes. This allows the algorithm to use more precision in the calculation because the values
// are not rounded each pass. And this implementation also avoids a trap that's easy to fall
// into resulting in blending in too many zeroes near the edge.
//
// In general, a window sum has the form:
// sum_n+1 = sum_n + leading_edge - trailing_edge.
// If instead we do the subtraction at the end of the previous iteration, we can just
// calculate the sums instead of having to do the subtractions too.
//
// In previous iteration:
// sum_n+1 = sum_n - trailing_edge.
//
// In this iteration:
// sum_n+1 = sum_n + leading_edge.
//
// Now we can stack all three sums and do them at once. Sum0 gets its leading edge from the
// actual data. Sum1's leading edge is just Sum0, and Sum2's leading edge is Sum1. So, doing the
// three passes at the same time has the form:
//
// sum0_n+1 = sum0_n + leading edge
// sum1_n+1 = sum1_n + sum0_n+1
// sum2_n+1 = sum2_n + sum1_n+1
//
// sum2_n+1 / window^3 is the new value of the destination pixel.
//
// Reduce the sums by the trailing edges which were stored in the circular buffers,
// for the next go around. This is the case for odd sized windows, even windows the the third
// circular buffer is one larger then the first two circular buffers.
//
// sum2_n+2 = sum2_n+1 - buffer2[i];
// buffer2[i] = sum1;
// sum1_n+2 = sum1_n+1 - buffer1[i];
// buffer1[i] = sum0;
// sum0_n+2 = sum0_n+1 - buffer0[i];
// buffer0[i] = leading edge
//
// This is all encapsulated in the processValue function below.
//
using Pass0And1 = Sk4u[2];
// The would be dLeft parameter is assumed to be 0.
static void blur_one_direction(Sk4u* buffer, int window,
int srcLeft, int srcRight, int dstRight,
const uint32_t* src, int srcXStride, int srcYStride, int srcH,
uint32_t* dst, int dstXStride, int dstYStride) {
// The circular buffers are one less than the window.
auto pass0Count = window - 1,
pass1Count = window - 1,
pass2Count = (window & 1) == 1 ? window - 1 : window;
Pass0And1* buffer01Start = (Pass0And1*)buffer;
Sk4u* buffer2Start = buffer + pass0Count + pass1Count;
Pass0And1* buffer01End = (Pass0And1*)buffer2Start;
Sk4u* buffer2End = buffer2Start + pass2Count;
// If the window is odd then the divisor is just window ^ 3 otherwise,
// it is window * window * (window + 1) = window ^ 3 + window ^ 2;
auto window2 = window * window;
auto window3 = window2 * window;
auto divisor = (window & 1) == 1 ? window3 : window3 + window2;
// NB the sums in the blur code use the following technique to avoid
// adding 1/2 to round the divide.
//
// Sum/d + 1/2 == (Sum + h) / d
// Sum + d(1/2) == Sum + h
// h == (1/2)d
//
// But the d/2 it self should be rounded.
// h == d/2 + 1/2 == (d + 1) / 2
//
// weight = 1 / d * 2 ^ 32
auto weight = static_cast<uint32_t>(round(1.0 / divisor * (1ull << 32)));
auto half = static_cast<uint32_t>((divisor + 1) / 2);
auto border = calculate_border(window);
// Calculate the start and end of the source pixels with respect to the destination start.
auto srcStart = srcLeft - border,
srcEnd = srcRight - border,
dstEnd = dstRight;
for (auto y = 0; y < srcH; y++) {
auto buffer01Cursor = buffer01Start;
auto buffer2Cursor = buffer2Start;
Sk4u sum0{0u};
Sk4u sum1{0u};
Sk4u sum2{half};
sk_bzero(buffer01Start, (buffer2End - (Sk4u *) (buffer01Start)) * sizeof(*buffer2Start));
// Given an expanded input pixel, move the window ahead using the leadingEdge value.
auto processValue = [&](const Sk4u& leadingEdge) -> Sk4u {
sum0 += leadingEdge;
sum1 += sum0;
sum2 += sum1;
Sk4u value = sum2.mulHi(weight);
sum2 -= *buffer2Cursor;
*buffer2Cursor = sum1;
buffer2Cursor = (buffer2Cursor + 1) < buffer2End ? buffer2Cursor + 1 : buffer2Start;
sum1 -= (*buffer01Cursor)[1];
(*buffer01Cursor)[1] = sum0;
sum0 -= (*buffer01Cursor)[0];
(*buffer01Cursor)[0] = leadingEdge;
buffer01Cursor =
(buffer01Cursor + 1) < buffer01End ? buffer01Cursor + 1 : buffer01Start;
return value;
};
auto srcIdx = srcStart;
auto dstIdx = 0;
const uint32_t* srcCursor = src;
uint32_t* dstCursor = dst;
// The destination pixels are not effected by the src pixels,
// change to zero as per the spec.
// https://drafts.fxtf.org/filter-effects/#FilterPrimitivesOverviewIntro
while (dstIdx < srcIdx) {
*dstCursor = 0;
dstCursor += dstXStride;
SK_PREFETCH(dstCursor);
dstIdx++;
}
// The edge of the source is before the edge of the destination. Calculate the sums for
// the pixels before the start of the destination.
while (dstIdx > srcIdx) {
Sk4u leadingEdge = srcIdx < srcEnd ? SkNx_cast<uint32_t>(Sk4b::Load(srcCursor)) : 0;
(void) processValue(leadingEdge);
srcCursor += srcXStride;
srcIdx++;
}
// The dstIdx and srcIdx are in sync now; the code just uses the dstIdx for both now.
// Consume the source generating pixels to dst.
auto loopEnd = std::min(dstEnd, srcEnd);
while (dstIdx < loopEnd) {
Sk4u leadingEdge = SkNx_cast<uint32_t>(Sk4b::Load(srcCursor));
SkNx_cast<uint8_t>(processValue(leadingEdge)).store(dstCursor);
srcCursor += srcXStride;
dstCursor += dstXStride;
SK_PREFETCH(dstCursor);
dstIdx++;
}
// The leading edge is beyond the end of the source. Assume that the pixels
// are now 0x0000 until the end of the destination.
loopEnd = dstEnd;
while (dstIdx < loopEnd) {
SkNx_cast<uint8_t>(processValue(0u)).store(dstCursor);
dstCursor += dstXStride;
SK_PREFETCH(dstCursor);
dstIdx++;
}
src += srcYStride;
dst += dstYStride;
}
}
static sk_sp<SkSpecialImage> copy_image_with_bounds(
const SkImageFilter_Base::Context& ctx, const sk_sp<SkSpecialImage> &input,
SkIRect srcBounds, SkIRect dstBounds) {
SkBitmap inputBM;
if (!input->getROPixels(&inputBM)) {
return nullptr;
}
if (inputBM.colorType() != kN32_SkColorType) {
return nullptr;
}
SkBitmap src;
inputBM.extractSubset(&src, srcBounds);
// Make everything relative to the destination bounds.
srcBounds.offset(-dstBounds.x(), -dstBounds.y());
dstBounds.offset(-dstBounds.x(), -dstBounds.y());
auto srcW = srcBounds.width(),
dstW = dstBounds.width(),
dstH = dstBounds.height();
SkImageInfo dstInfo = SkImageInfo::Make(dstW, dstH, inputBM.colorType(), inputBM.alphaType());
SkBitmap dst;
if (!dst.tryAllocPixels(dstInfo)) {
return nullptr;
}
// There is no blurring to do, but we still need to copy the source while accounting for the
// dstBounds. Remember that the src was intersected with the dst.
int y = 0;
size_t dstWBytes = dstW * sizeof(uint32_t);
for (;y < srcBounds.top(); y++) {
sk_bzero(dst.getAddr32(0, y), dstWBytes);
}
for (;y < srcBounds.bottom(); y++) {
int x = 0;
uint32_t* dstPtr = dst.getAddr32(0, y);
for (;x < srcBounds.left(); x++) {
*dstPtr++ = 0;
}
memcpy(dstPtr, src.getAddr32(x - srcBounds.left(), y - srcBounds.top()),
srcW * sizeof(uint32_t));
dstPtr += srcW;
x += srcW;
for (;x < dstBounds.right(); x++) {
*dstPtr++ = 0;
}
}
for (;y < dstBounds.bottom(); y++) {
sk_bzero(dst.getAddr32(0, y), dstWBytes);
}
return SkSpecialImage::MakeFromRaster(SkIRect::MakeWH(dstBounds.width(),
dstBounds.height()),
dst, ctx.surfaceProps());
}
// TODO: Implement CPU backend for different fTileMode.
static sk_sp<SkSpecialImage> cpu_blur(
const SkImageFilter_Base::Context& ctx,
SkVector sigma, const sk_sp<SkSpecialImage> &input,
SkIRect srcBounds, SkIRect dstBounds) {
auto windowW = calculate_window(sigma.x()),
windowH = calculate_window(sigma.y());
if (windowW <= 1 && windowH <= 1) {
return copy_image_with_bounds(ctx, input, srcBounds, dstBounds);
}
SkBitmap inputBM;
if (!input->getROPixels(&inputBM)) {
return nullptr;
}
if (inputBM.colorType() != kN32_SkColorType) {
return nullptr;
}
SkBitmap src;
inputBM.extractSubset(&src, srcBounds);
// Make everything relative to the destination bounds.
srcBounds.offset(-dstBounds.x(), -dstBounds.y());
dstBounds.offset(-dstBounds.x(), -dstBounds.y());
auto srcW = srcBounds.width(),
srcH = srcBounds.height(),
dstW = dstBounds.width(),
dstH = dstBounds.height();
SkImageInfo dstInfo = inputBM.info().makeWH(dstW, dstH);
SkBitmap dst;
if (!dst.tryAllocPixels(dstInfo)) {
return nullptr;
}
auto bufferSizeW = calculate_buffer(windowW),
bufferSizeH = calculate_buffer(windowH);
// The amount 1024 is enough for buffers up to 10 sigma. The tmp bitmap will be
// allocated on the heap.
SkSTArenaAlloc<1024> alloc;
Sk4u* buffer = alloc.makeArrayDefault<Sk4u>(std::max(bufferSizeW, bufferSizeH));
// Basic Plan: The three cases to handle
// * Horizontal and Vertical - blur horizontally while copying values from the source to
// the destination. Then, do an in-place vertical blur.
// * Horizontal only - blur horizontally copying values from the source to the destination.
// * Vertical only - blur vertically copying values from the source to the destination.
// Default to vertical only blur case. If a horizontal blur is needed, then these values
// will be adjusted while doing the horizontal blur.
auto intermediateSrc = static_cast<uint32_t *>(src.getPixels());
auto intermediateRowBytesAsPixels = src.rowBytesAsPixels();
auto intermediateWidth = srcW;
// Because the border is calculated before the fork of the GPU/CPU path. The border is
// the maximum of the two rendering methods. In the case where sigma is zero, then the
// src and dst left values are the same. If sigma is small resulting in a window size of
// 1, then border calculations add some pixels which will always be zero. Inset the
// destination by those zero pixels. This case is very rare.
auto intermediateDst = dst.getAddr32(srcBounds.left(), 0);
// The following code is executed very rarely, I have never seen it in a real web
// page. If sigma is small but not zero then shared GPU/CPU border calculation
// code adds extra pixels for the border. Just clear everything to clear those pixels.
// This solution is overkill, but very simple.
if (windowW == 1 || windowH == 1) {
dst.eraseColor(0);
}
if (windowW > 1) {
// Make int64 to avoid overflow in multiplication below.
int64_t shift = srcBounds.top() - dstBounds.top();
// For the horizontal blur, starts part way down in anticipation of the vertical blur.
// For a vertical sigma of zero shift should be zero. But, for small sigma,
// shift may be > 0 but the vertical window could be 1.
intermediateSrc = static_cast<uint32_t *>(dst.getPixels())
+ (shift > 0 ? shift * dst.rowBytesAsPixels() : 0);
intermediateRowBytesAsPixels = dst.rowBytesAsPixels();
intermediateWidth = dstW;
intermediateDst = static_cast<uint32_t *>(dst.getPixels());
blur_one_direction(
buffer, windowW,
srcBounds.left(), srcBounds.right(), dstBounds.right(),
static_cast<uint32_t *>(src.getPixels()), 1, src.rowBytesAsPixels(), srcH,
intermediateSrc, 1, intermediateRowBytesAsPixels);
}
if (windowH > 1) {
blur_one_direction(
buffer, windowH,
srcBounds.top(), srcBounds.bottom(), dstBounds.bottom(),
intermediateSrc, intermediateRowBytesAsPixels, 1, intermediateWidth,
intermediateDst, dst.rowBytesAsPixels(), 1);
}
return SkSpecialImage::MakeFromRaster(SkIRect::MakeWH(dstBounds.width(),
dstBounds.height()),
dst, ctx.surfaceProps());
}
// This rather arbitrary-looking value results in a maximum box blur kernel size
// of 1000 pixels on the raster path, which matches the WebKit and Firefox
// implementations. Since the GPU path does not compute a box blur, putting
// the limit on sigma ensures consistent behaviour between the GPU and
// raster paths.
#define MAX_SIGMA SkIntToScalar(532)
static SkVector map_sigma(const SkSize& localSigma, const SkMatrix& ctm) {
SkVector sigma = SkVector::Make(localSigma.width(), localSigma.height());
ctm.mapVectors(&sigma, 1);
sigma.fX = std::min(SkScalarAbs(sigma.fX), MAX_SIGMA);
sigma.fY = std::min(SkScalarAbs(sigma.fY), MAX_SIGMA);
return sigma;
}
sk_sp<SkSpecialImage> SkBlurImageFilterImpl::onFilterImage(const Context& ctx,
SkIPoint* offset) const {
SkIPoint inputOffset = SkIPoint::Make(0, 0);
sk_sp<SkSpecialImage> input(this->filterInput(0, ctx, &inputOffset));
if (!input) {
return nullptr;
}
SkIRect inputBounds = SkIRect::MakeXYWH(inputOffset.fX, inputOffset.fY,
input->width(), input->height());
// Calculate the destination bounds.
SkIRect dstBounds;
if (!this->applyCropRect(this->mapContext(ctx), inputBounds, &dstBounds)) {
return nullptr;
}
if (!inputBounds.intersect(dstBounds)) {
return nullptr;
}
// Save the offset in preparation to make all rectangles relative to the inputOffset.
SkIPoint resultOffset = SkIPoint::Make(dstBounds.fLeft, dstBounds.fTop);
// Make all bounds relative to the inputOffset.
inputBounds.offset(-inputOffset);
dstBounds.offset(-inputOffset);
SkVector sigma = map_sigma(fSigma, ctx.ctm());
if (sigma.x() < 0 || sigma.y() < 0) {
return nullptr;
}
sk_sp<SkSpecialImage> result;
#if SK_SUPPORT_GPU
if (ctx.gpuBacked()) {
// Ensure the input is in the destination's gamut. This saves us from having to do the
// xform during the filter itself.
input = ImageToColorSpace(input.get(), ctx.colorType(), ctx.colorSpace());
result = this->gpuFilter(ctx, sigma, input, inputBounds, dstBounds, inputOffset,
&resultOffset);
} else
#endif
{
// NB 135 is the largest sigma that will not cause a buffer full of 255 mask values to overflow
// using the Gauss filter. It also limits the size of buffers used hold intermediate values. The
// additional + 1 added to window represents adding one more leading element before subtracting the
// trailing element.
// Explanation of maximums:
// sum0 = (window + 1) * 255
// sum1 = (window + 1) * sum0 -> (window + 1) * (window + 1) * 255
// sum2 = (window + 1) * sum1 -> (window + 1) * (window + 1) * (window + 1) * 255 -> window^3 * 255
//
// The value (window + 1)^3 * 255 must fit in a uint32_t. So,
// (window + 1)^3 * 255 < 2^32. window = 255.
//
// window = floor(sigma * 3 * sqrt(2 * kPi) / 4)
// For window <= 255, the largest value for sigma is 135.
sigma.fX = SkTPin(sigma.fX, 0.0f, 135.0f);
sigma.fY = SkTPin(sigma.fY, 0.0f, 135.0f);
result = cpu_blur(ctx, sigma, input, inputBounds, dstBounds);
}
// Return the resultOffset if the blur succeeded.
if (result != nullptr) {
*offset = resultOffset;
}
return result;
}
#if SK_SUPPORT_GPU
sk_sp<SkSpecialImage> SkBlurImageFilterImpl::gpuFilter(
const Context& ctx, SkVector sigma, const sk_sp<SkSpecialImage> &input, SkIRect inputBounds,
SkIRect dstBounds, SkIPoint inputOffset, SkIPoint* offset) const {
if (0 == sigma.x() && 0 == sigma.y()) {
offset->fX = inputBounds.x() + inputOffset.fX;
offset->fY = inputBounds.y() + inputOffset.fY;
return input->makeSubset(inputBounds);
}
auto context = ctx.getContext();
GrSurfaceProxyView inputView = input->view(context);
if (!inputView.proxy()) {
return nullptr;
}
SkASSERT(inputView.asTextureProxy());
// TODO (michaelludwig) - The color space choice is odd, should it just be ctx.refColorSpace()?
dstBounds.offset(input->subset().topLeft());
inputBounds.offset(input->subset().topLeft());
auto renderTargetContext = SkGpuBlurUtils::GaussianBlur(
context,
std::move(inputView),
SkColorTypeToGrColorType(input->colorType()),
input->alphaType(),
ctx.colorSpace() ? sk_ref_sp(input->getColorSpace()) : nullptr,
dstBounds,
inputBounds,
sigma.x(),
sigma.y(),
fTileMode);
if (!renderTargetContext) {
return nullptr;
}
return SkSpecialImage::MakeDeferredFromGpu(context,
SkIRect::MakeSize(dstBounds.size()),
kNeedNewImageUniqueID_SpecialImage,
renderTargetContext->readSurfaceView(),
renderTargetContext->colorInfo().colorType(),
sk_ref_sp(input->getColorSpace()),
ctx.surfaceProps());
}
#endif
SkRect SkBlurImageFilterImpl::computeFastBounds(const SkRect& src) const {
SkRect bounds = this->getInput(0) ? this->getInput(0)->computeFastBounds(src) : src;
bounds.outset(fSigma.width() * 3, fSigma.height() * 3);
return bounds;
}
SkIRect SkBlurImageFilterImpl::onFilterNodeBounds(const SkIRect& src, const SkMatrix& ctm,
MapDirection, const SkIRect* inputRect) const {
SkVector sigma = map_sigma(fSigma, ctm);
return src.makeOutset(SkScalarCeilToInt(sigma.x() * 3), SkScalarCeilToInt(sigma.y() * 3));
}