blob: a767958374a1e6a81b00aad8e37a0fb8c2ee1d7d [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/ganesh/geometry/GrAAConvexTessellator.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkPath.h"
#include "include/core/SkPoint.h"
#include "include/core/SkString.h"
#include "include/private/base/SkTPin.h"
#include "src/gpu/ganesh/geometry/GrPathUtils.h"
// Next steps:
// add an interactive sample app slide
// add debug check that all points are suitably far apart
// test more degenerate cases
// The tolerance for fusing vertices and eliminating colinear lines (It is in device space).
static constexpr SkScalar kClose = (SK_Scalar1 / 16);
static constexpr SkScalar kCloseSqd = kClose * kClose;
// tesselation tolerance values, in device space pixels
static constexpr SkScalar kQuadTolerance = 0.2f;
static constexpr SkScalar kCubicTolerance = 0.2f;
static constexpr SkScalar kQuadToleranceSqd = kQuadTolerance * kQuadTolerance;
static constexpr SkScalar kCubicToleranceSqd = kCubicTolerance * kCubicTolerance;
static constexpr SkScalar kConicTolerance = 0.25f;
// dot product below which we use a round cap between curve segments
static constexpr SkScalar kRoundCapThreshold = 0.8f;
// dot product above which we consider two adjacent curves to be part of the "same" curve
static constexpr SkScalar kCurveConnectionThreshold = 0.8f;
static bool intersect(const SkPoint& p0, const SkPoint& n0,
const SkPoint& p1, const SkPoint& n1,
SkScalar* t) {
const SkPoint v = p1 - p0;
SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX;
if (SkScalarNearlyZero(perpDot)) {
return false;
}
*t = (v.fX * n1.fY - v.fY * n1.fX) / perpDot;
return SkScalarIsFinite(*t);
}
// This is a special case version of intersect where we have the vector
// perpendicular to the second line rather than the vector parallel to it.
static bool perp_intersect(const SkPoint& p0, const SkPoint& n0,
const SkPoint& p1, const SkPoint& perp,
SkScalar* t) {
const SkPoint v = p1 - p0;
SkScalar perpDot = n0.dot(perp);
if (SkScalarNearlyZero(perpDot)) {
return false;
}
*t = v.dot(perp) / perpDot;
return SkScalarIsFinite(*t);
}
static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) {
SkScalar distSq = SkPointPriv::DistanceToSqd(p0, p1);
return distSq < kCloseSqd;
}
static bool points_are_colinear_and_b_is_middle(const SkPoint& a, const SkPoint& b,
const SkPoint& c, float* accumError) {
// First check distance from b to the infinite line through a, c
SkVector aToC = c - a;
SkVector n = {aToC.fY, -aToC.fX};
n.normalize();
SkScalar distBToLineAC = SkScalarAbs(n.dot(b) - n.dot(a));
if (*accumError + distBToLineAC >= kClose || aToC.dot(b - a) <= 0.f || aToC.dot(c - b) <= 0.f) {
// Too far from the line or not between the line segment from a to c
return false;
} else {
// Accumulate the distance from b to |ac| that goes "away" when this near-colinear point
// is removed to simplify the path.
*accumError += distBToLineAC;
return true;
}
}
int GrAAConvexTessellator::addPt(const SkPoint& pt,
SkScalar depth,
SkScalar coverage,
bool movable,
CurveState curve) {
SkASSERT(pt.isFinite());
this->validate();
int index = fPts.size();
*fPts.append() = pt;
*fCoverages.append() = coverage;
*fMovable.append() = movable;
*fCurveState.append() = curve;
this->validate();
return index;
}
void GrAAConvexTessellator::popLastPt() {
this->validate();
fPts.pop_back();
fCoverages.pop_back();
fMovable.pop_back();
fCurveState.pop_back();
this->validate();
}
void GrAAConvexTessellator::popFirstPtShuffle() {
this->validate();
fPts.removeShuffle(0);
fCoverages.removeShuffle(0);
fMovable.removeShuffle(0);
fCurveState.removeShuffle(0);
this->validate();
}
void GrAAConvexTessellator::updatePt(int index,
const SkPoint& pt,
SkScalar depth,
SkScalar coverage) {
this->validate();
SkASSERT(fMovable[index]);
fPts[index] = pt;
fCoverages[index] = coverage;
}
void GrAAConvexTessellator::addTri(int i0, int i1, int i2) {
if (i0 == i1 || i1 == i2 || i2 == i0) {
return;
}
*fIndices.append() = i0;
*fIndices.append() = i1;
*fIndices.append() = i2;
}
void GrAAConvexTessellator::rewind() {
fPts.clear();
fCoverages.clear();
fMovable.clear();
fIndices.clear();
fNorms.clear();
fCurveState.clear();
fInitialRing.rewind();
fCandidateVerts.rewind();
#if GR_AA_CONVEX_TESSELLATOR_VIZ
fRings.rewind(); // TODO: leak in this case!
#else
fRings[0].rewind();
fRings[1].rewind();
#endif
}
void GrAAConvexTessellator::computeNormals() {
auto normalToVector = [this](SkVector v) {
SkVector n = SkPointPriv::MakeOrthog(v, fSide);
SkAssertResult(n.normalize());
SkASSERT(SkScalarNearlyEqual(1.0f, n.length()));
return n;
};
// Check the cross product of the final trio
fNorms.append(fPts.size());
fNorms[0] = fPts[1] - fPts[0];
fNorms.back() = fPts[0] - fPts.back();
SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.back());
fSide = (cross > 0.0f) ? SkPointPriv::kRight_Side : SkPointPriv::kLeft_Side;
fNorms[0] = normalToVector(fNorms[0]);
for (int cur = 1; cur < fNorms.size() - 1; ++cur) {
fNorms[cur] = normalToVector(fPts[cur + 1] - fPts[cur]);
}
fNorms.back() = normalToVector(fNorms.back());
}
void GrAAConvexTessellator::computeBisectors() {
fBisectors.resize(fNorms.size());
int prev = fBisectors.size() - 1;
for (int cur = 0; cur < fBisectors.size(); prev = cur, ++cur) {
fBisectors[cur] = fNorms[cur] + fNorms[prev];
if (!fBisectors[cur].normalize()) {
fBisectors[cur] = SkPointPriv::MakeOrthog(fNorms[cur], (SkPointPriv::Side)-fSide) +
SkPointPriv::MakeOrthog(fNorms[prev], fSide);
SkAssertResult(fBisectors[cur].normalize());
} else {
fBisectors[cur].negate(); // make the bisector face in
}
if (fCurveState[prev] == kIndeterminate_CurveState) {
if (fCurveState[cur] == kSharp_CurveState) {
fCurveState[prev] = kSharp_CurveState;
} else {
if (SkScalarAbs(fNorms[cur].dot(fNorms[prev])) > kCurveConnectionThreshold) {
fCurveState[prev] = kCurve_CurveState;
fCurveState[cur] = kCurve_CurveState;
} else {
fCurveState[prev] = kSharp_CurveState;
fCurveState[cur] = kSharp_CurveState;
}
}
}
SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length()));
}
}
// Create as many rings as we need to (up to a predefined limit) to reach the specified target
// depth. If we are in fill mode, the final ring will automatically be fanned.
bool GrAAConvexTessellator::createInsetRings(Ring& previousRing, SkScalar initialDepth,
SkScalar initialCoverage, SkScalar targetDepth,
SkScalar targetCoverage, Ring** finalRing) {
static const int kMaxNumRings = 8;
if (previousRing.numPts() < 3) {
return false;
}
Ring* currentRing = &previousRing;
int i;
for (i = 0; i < kMaxNumRings; ++i) {
Ring* nextRing = this->getNextRing(currentRing);
SkASSERT(nextRing != currentRing);
bool done = this->createInsetRing(*currentRing, nextRing, initialDepth, initialCoverage,
targetDepth, targetCoverage, i == 0);
currentRing = nextRing;
if (done) {
break;
}
currentRing->init(*this);
}
if (kMaxNumRings == i) {
// Bail if we've exceeded the amount of time we want to throw at this.
this->terminate(*currentRing);
return false;
}
bool done = currentRing->numPts() >= 3;
if (done) {
currentRing->init(*this);
}
*finalRing = currentRing;
return done;
}
// The general idea here is to, conceptually, start with the original polygon and slide
// the vertices along the bisectors until the first intersection. At that
// point two of the edges collapse and the process repeats on the new polygon.
// The polygon state is captured in the Ring class while the GrAAConvexTessellator
// controls the iteration. The CandidateVerts holds the formative points for the
// next ring.
bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) {
if (!this->extractFromPath(m, path)) {
return false;
}
SkScalar coverage = 1.0f;
SkScalar scaleFactor = 0.0f;
if (SkStrokeRec::kStrokeAndFill_Style == fStyle) {
SkASSERT(m.isSimilarity());
scaleFactor = m.getMaxScale(); // x and y scale are the same
SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
Ring outerStrokeAndAARing;
this->createOuterRing(fInitialRing,
effectiveStrokeWidth / 2 + kAntialiasingRadius, 0.0,
&outerStrokeAndAARing);
// discard all the triangles added between the originating ring and the new outer ring
fIndices.clear();
outerStrokeAndAARing.init(*this);
outerStrokeAndAARing.makeOriginalRing();
// Add the outer stroke ring's normals to the originating ring's normals
// so it can also act as an originating ring
fNorms.resize(fNorms.size() + outerStrokeAndAARing.numPts());
for (int i = 0; i < outerStrokeAndAARing.numPts(); ++i) {
SkASSERT(outerStrokeAndAARing.index(i) < fNorms.size());
fNorms[outerStrokeAndAARing.index(i)] = outerStrokeAndAARing.norm(i);
}
// the bisectors are only needed for the computation of the outer ring
fBisectors.clear();
Ring* insetAARing;
this->createInsetRings(outerStrokeAndAARing,
0.0f, 0.0f, 2*kAntialiasingRadius, 1.0f,
&insetAARing);
SkDEBUGCODE(this->validate();)
return true;
}
if (SkStrokeRec::kStroke_Style == fStyle) {
SkASSERT(fStrokeWidth >= 0.0f);
SkASSERT(m.isSimilarity());
scaleFactor = m.getMaxScale(); // x and y scale are the same
SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
Ring outerStrokeRing;
this->createOuterRing(fInitialRing, effectiveStrokeWidth / 2 - kAntialiasingRadius,
coverage, &outerStrokeRing);
outerStrokeRing.init(*this);
Ring outerAARing;
this->createOuterRing(outerStrokeRing, kAntialiasingRadius * 2, 0.0f, &outerAARing);
} else {
Ring outerAARing;
this->createOuterRing(fInitialRing, kAntialiasingRadius, 0.0f, &outerAARing);
}
// the bisectors are only needed for the computation of the outer ring
fBisectors.clear();
if (SkStrokeRec::kStroke_Style == fStyle && fInitialRing.numPts() > 2) {
SkASSERT(fStrokeWidth >= 0.0f);
SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
Ring* insetStrokeRing;
SkScalar strokeDepth = effectiveStrokeWidth / 2 - kAntialiasingRadius;
if (this->createInsetRings(fInitialRing, 0.0f, coverage, strokeDepth, coverage,
&insetStrokeRing)) {
Ring* insetAARing;
this->createInsetRings(*insetStrokeRing, strokeDepth, coverage, strokeDepth +
kAntialiasingRadius * 2, 0.0f, &insetAARing);
}
} else {
Ring* insetAARing;
this->createInsetRings(fInitialRing, 0.0f, 0.5f, kAntialiasingRadius, 1.0f, &insetAARing);
}
SkDEBUGCODE(this->validate();)
return true;
}
SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint& p) const {
SkASSERT(edgeIdx < fNorms.size());
SkPoint v = p - fPts[edgeIdx];
SkScalar depth = -fNorms[edgeIdx].dot(v);
return depth;
}
// Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies
// along the 'bisector' from the 'startIdx'-th point.
bool GrAAConvexTessellator::computePtAlongBisector(int startIdx,
const SkVector& bisector,
int edgeIdx,
SkScalar desiredDepth,
SkPoint* result) const {
const SkPoint& norm = fNorms[edgeIdx];
// First find the point where the edge and the bisector intersect
SkPoint newP;
SkScalar t;
if (!perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm, &t)) {
return false;
}
if (SkScalarNearlyEqual(t, 0.0f)) {
// the start point was one of the original ring points
SkASSERT(startIdx < fPts.size());
newP = fPts[startIdx];
} else if (t < 0.0f) {
newP = bisector;
newP.scale(t);
newP += fPts[startIdx];
} else {
return false;
}
// Then offset along the bisector from that point the correct distance
SkScalar dot = bisector.dot(norm);
t = -desiredDepth / dot;
*result = bisector;
result->scale(t);
*result += newP;
return true;
}
bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& path) {
SkASSERT(path.isConvex());
SkRect bounds = path.getBounds();
m.mapRect(&bounds);
if (!bounds.isFinite()) {
// We could do something smarter here like clip the path based on the bounds of the dst.
// We'd have to be careful about strokes to ensure we don't draw something wrong.
return false;
}
// Outer ring: 3*numPts
// Middle ring: numPts
// Presumptive inner ring: numPts
this->reservePts(5*path.countPoints());
// Outer ring: 12*numPts
// Middle ring: 0
// Presumptive inner ring: 6*numPts + 6
fIndices.reserve(18*path.countPoints() + 6);
// Reset the accumulated error for all the future lineTo() calls when iterating over the path.
fAccumLinearError = 0.f;
// TODO: is there a faster way to extract the points from the path? Perhaps
// get all the points via a new entry point, transform them all in bulk
// and then walk them to find duplicates?
SkPathEdgeIter iter(path);
while (auto e = iter.next()) {
switch (e.fEdge) {
case SkPathEdgeIter::Edge::kLine:
if (!SkPathPriv::AllPointsEq(e.fPts, 2)) {
this->lineTo(m, e.fPts[1], kSharp_CurveState);
}
break;
case SkPathEdgeIter::Edge::kQuad:
if (!SkPathPriv::AllPointsEq(e.fPts, 3)) {
this->quadTo(m, e.fPts);
}
break;
case SkPathEdgeIter::Edge::kCubic:
if (!SkPathPriv::AllPointsEq(e.fPts, 4)) {
this->cubicTo(m, e.fPts);
}
break;
case SkPathEdgeIter::Edge::kConic:
if (!SkPathPriv::AllPointsEq(e.fPts, 3)) {
this->conicTo(m, e.fPts, iter.conicWeight());
}
break;
}
}
if (this->numPts() < 2) {
return false;
}
// check if last point is a duplicate of the first point. If so, remove it.
if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) {
this->popLastPt();
}
// Remove any lingering colinear points where the path wraps around
fAccumLinearError = 0.f;
bool noRemovalsToDo = false;
while (!noRemovalsToDo && this->numPts() >= 3) {
if (points_are_colinear_and_b_is_middle(fPts[fPts.size() - 2], fPts.back(), fPts[0],
&fAccumLinearError)) {
this->popLastPt();
} else if (points_are_colinear_and_b_is_middle(fPts.back(), fPts[0], fPts[1],
&fAccumLinearError)) {
this->popFirstPtShuffle();
} else {
noRemovalsToDo = true;
}
}
// Compute the normals and bisectors.
SkASSERT(fNorms.empty());
if (this->numPts() >= 3) {
this->computeNormals();
this->computeBisectors();
} else if (this->numPts() == 2) {
// We've got two points, so we're degenerate.
if (fStyle == SkStrokeRec::kFill_Style) {
// it's a fill, so we don't need to worry about degenerate paths
return false;
}
// For stroking, we still need to process the degenerate path, so fix it up
fSide = SkPointPriv::kLeft_Side;
fNorms.append(2);
fNorms[0] = SkPointPriv::MakeOrthog(fPts[1] - fPts[0], fSide);
fNorms[0].normalize();
fNorms[1] = -fNorms[0];
SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length()));
// we won't actually use the bisectors, so just push zeroes
fBisectors.push_back(SkPoint::Make(0.0, 0.0));
fBisectors.push_back(SkPoint::Make(0.0, 0.0));
} else {
return false;
}
fCandidateVerts.setReserve(this->numPts());
fInitialRing.setReserve(this->numPts());
for (int i = 0; i < this->numPts(); ++i) {
fInitialRing.addIdx(i, i);
}
fInitialRing.init(fNorms, fBisectors);
this->validate();
return true;
}
GrAAConvexTessellator::Ring* GrAAConvexTessellator::getNextRing(Ring* lastRing) {
#if GR_AA_CONVEX_TESSELLATOR_VIZ
Ring* ring = *fRings.push() = new Ring;
ring->setReserve(fInitialRing.numPts());
ring->rewind();
return ring;
#else
// Flip flop back and forth between fRings[0] & fRings[1]
int nextRing = (lastRing == &fRings[0]) ? 1 : 0;
fRings[nextRing].setReserve(fInitialRing.numPts());
fRings[nextRing].rewind();
return &fRings[nextRing];
#endif
}
void GrAAConvexTessellator::fanRing(const Ring& ring) {
// fan out from point 0
int startIdx = ring.index(0);
for (int cur = ring.numPts() - 2; cur >= 0; --cur) {
this->addTri(startIdx, ring.index(cur), ring.index(cur + 1));
}
}
void GrAAConvexTessellator::createOuterRing(const Ring& previousRing, SkScalar outset,
SkScalar coverage, Ring* nextRing) {
const int numPts = previousRing.numPts();
if (numPts == 0) {
return;
}
int prev = numPts - 1;
int lastPerpIdx = -1, firstPerpIdx = -1;
const SkScalar outsetSq = outset * outset;
SkScalar miterLimitSq = outset * fMiterLimit;
miterLimitSq = miterLimitSq * miterLimitSq;
for (int cur = 0; cur < numPts; ++cur) {
int originalIdx = previousRing.index(cur);
// For each vertex of the original polygon we add at least two points to the
// outset polygon - one extending perpendicular to each impinging edge. Connecting these
// two points yields a bevel join. We need one additional point for a mitered join, and
// a round join requires one or more points depending upon curvature.
// The perpendicular point for the last edge
SkPoint normal1 = previousRing.norm(prev);
SkPoint perp1 = normal1;
perp1.scale(outset);
perp1 += this->point(originalIdx);
// The perpendicular point for the next edge.
SkPoint normal2 = previousRing.norm(cur);
SkPoint perp2 = normal2;
perp2.scale(outset);
perp2 += fPts[originalIdx];
CurveState curve = fCurveState[originalIdx];
// We know it isn't a duplicate of the prior point (since it and this
// one are just perpendicular offsets from the non-merged polygon points)
int perp1Idx = this->addPt(perp1, -outset, coverage, false, curve);
nextRing->addIdx(perp1Idx, originalIdx);
int perp2Idx;
// For very shallow angles all the corner points could fuse.
if (duplicate_pt(perp2, this->point(perp1Idx))) {
perp2Idx = perp1Idx;
} else {
perp2Idx = this->addPt(perp2, -outset, coverage, false, curve);
}
if (perp2Idx != perp1Idx) {
if (curve == kCurve_CurveState) {
// bevel or round depending upon curvature
SkScalar dotProd = normal1.dot(normal2);
if (dotProd < kRoundCapThreshold) {
// Currently we "round" by creating a single extra point, which produces
// good results for common cases. For thick strokes with high curvature, we will
// need to add more points; for the time being we simply fall back to software
// rendering for thick strokes.
SkPoint miter = previousRing.bisector(cur);
miter.setLength(-outset);
miter += fPts[originalIdx];
// For very shallow angles all the corner points could fuse
if (!duplicate_pt(miter, this->point(perp1Idx))) {
int miterIdx;
miterIdx = this->addPt(miter, -outset, coverage, false, kSharp_CurveState);
nextRing->addIdx(miterIdx, originalIdx);
// The two triangles for the corner
this->addTri(originalIdx, perp1Idx, miterIdx);
this->addTri(originalIdx, miterIdx, perp2Idx);
}
} else {
this->addTri(originalIdx, perp1Idx, perp2Idx);
}
} else {
switch (fJoin) {
case SkPaint::Join::kMiter_Join: {
// The bisector outset point
SkPoint miter = previousRing.bisector(cur);
SkScalar dotProd = normal1.dot(normal2);
// The max is because this could go slightly negative if precision causes
// us to become slightly concave.
SkScalar sinHalfAngleSq = std::max(SkScalarHalf(SK_Scalar1 + dotProd), 0.f);
SkScalar lengthSq = sk_ieee_float_divide(outsetSq, sinHalfAngleSq);
if (lengthSq > miterLimitSq) {
// just bevel it
this->addTri(originalIdx, perp1Idx, perp2Idx);
break;
}
miter.setLength(-SkScalarSqrt(lengthSq));
miter += fPts[originalIdx];
// For very shallow angles all the corner points could fuse
if (!duplicate_pt(miter, this->point(perp1Idx))) {
int miterIdx;
miterIdx = this->addPt(miter, -outset, coverage, false,
kSharp_CurveState);
nextRing->addIdx(miterIdx, originalIdx);
// The two triangles for the corner
this->addTri(originalIdx, perp1Idx, miterIdx);
this->addTri(originalIdx, miterIdx, perp2Idx);
} else {
// ignore the miter point as it's so close to perp1/perp2 and simply
// bevel.
this->addTri(originalIdx, perp1Idx, perp2Idx);
}
break;
}
case SkPaint::Join::kBevel_Join:
this->addTri(originalIdx, perp1Idx, perp2Idx);
break;
default:
// kRound_Join is unsupported for now. AALinearizingConvexPathRenderer is
// only willing to draw mitered or beveled, so we should never get here.
SkASSERT(false);
}
}
nextRing->addIdx(perp2Idx, originalIdx);
}
if (0 == cur) {
// Store the index of the first perpendicular point to finish up
firstPerpIdx = perp1Idx;
SkASSERT(-1 == lastPerpIdx);
} else {
// The triangles for the previous edge
int prevIdx = previousRing.index(prev);
this->addTri(prevIdx, perp1Idx, originalIdx);
this->addTri(prevIdx, lastPerpIdx, perp1Idx);
}
// Track the last perpendicular outset point so we can construct the
// trailing edge triangles.
lastPerpIdx = perp2Idx;
prev = cur;
}
// pick up the final edge rect
int lastIdx = previousRing.index(numPts - 1);
this->addTri(lastIdx, firstPerpIdx, previousRing.index(0));
this->addTri(lastIdx, lastPerpIdx, firstPerpIdx);
this->validate();
}
// Something went wrong in the creation of the next ring. If we're filling the shape, just go ahead
// and fan it.
void GrAAConvexTessellator::terminate(const Ring& ring) {
if (fStyle != SkStrokeRec::kStroke_Style && ring.numPts() > 0) {
this->fanRing(ring);
}
}
static SkScalar compute_coverage(SkScalar depth, SkScalar initialDepth, SkScalar initialCoverage,
SkScalar targetDepth, SkScalar targetCoverage) {
if (SkScalarNearlyEqual(initialDepth, targetDepth)) {
return targetCoverage;
}
SkScalar result = (depth - initialDepth) / (targetDepth - initialDepth) *
(targetCoverage - initialCoverage) + initialCoverage;
return SkTPin(result, 0.0f, 1.0f);
}
// return true when processing is complete
bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing,
SkScalar initialDepth, SkScalar initialCoverage,
SkScalar targetDepth, SkScalar targetCoverage,
bool forceNew) {
bool done = false;
fCandidateVerts.rewind();
// Loop through all the points in the ring and find the intersection with the smallest depth
SkScalar minDist = SK_ScalarMax, minT = 0.0f;
int minEdgeIdx = -1;
for (int cur = 0; cur < lastRing.numPts(); ++cur) {
int next = (cur + 1) % lastRing.numPts();
SkScalar t;
bool result = intersect(this->point(lastRing.index(cur)), lastRing.bisector(cur),
this->point(lastRing.index(next)), lastRing.bisector(next),
&t);
// The bisectors may be parallel (!result) or the previous ring may have become slightly
// concave due to accumulated error (t <= 0).
if (!result || t <= 0) {
continue;
}
SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur));
if (minDist > dist) {
minDist = dist;
minT = t;
minEdgeIdx = cur;
}
}
if (minEdgeIdx == -1) {
return false;
}
SkPoint newPt = lastRing.bisector(minEdgeIdx);
newPt.scale(minT);
newPt += this->point(lastRing.index(minEdgeIdx));
SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx), newPt);
if (depth >= targetDepth) {
// None of the bisectors intersect before reaching the desired depth.
// Just step them all to the desired depth
depth = targetDepth;
done = true;
}
// 'dst' stores where each point in the last ring maps to/transforms into
// in the next ring.
SkTDArray<int> dst;
dst.resize(lastRing.numPts());
// Create the first point (who compares with no one)
if (!this->computePtAlongBisector(lastRing.index(0),
lastRing.bisector(0),
lastRing.origEdgeID(0),
depth, &newPt)) {
this->terminate(lastRing);
return true;
}
dst[0] = fCandidateVerts.addNewPt(newPt,
lastRing.index(0), lastRing.origEdgeID(0),
!this->movable(lastRing.index(0)));
// Handle the middle points (who only compare with the prior point)
for (int cur = 1; cur < lastRing.numPts()-1; ++cur) {
if (!this->computePtAlongBisector(lastRing.index(cur),
lastRing.bisector(cur),
lastRing.origEdgeID(cur),
depth, &newPt)) {
this->terminate(lastRing);
return true;
}
if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) {
dst[cur] = fCandidateVerts.addNewPt(newPt,
lastRing.index(cur), lastRing.origEdgeID(cur),
!this->movable(lastRing.index(cur)));
} else {
dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
}
}
// Check on the last point (handling the wrap around)
int cur = lastRing.numPts()-1;
if (!this->computePtAlongBisector(lastRing.index(cur),
lastRing.bisector(cur),
lastRing.origEdgeID(cur),
depth, &newPt)) {
this->terminate(lastRing);
return true;
}
bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint());
bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint());
if (!dupPrev && !dupNext) {
dst[cur] = fCandidateVerts.addNewPt(newPt,
lastRing.index(cur), lastRing.origEdgeID(cur),
!this->movable(lastRing.index(cur)));
} else if (dupPrev && !dupNext) {
dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
} else if (!dupPrev && dupNext) {
dst[cur] = fCandidateVerts.fuseWithNext();
} else {
bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandidateVerts.lastPoint());
if (!dupPrevVsNext) {
dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
} else {
const int fused = fCandidateVerts.fuseWithBoth();
dst[cur] = fused;
const int targetIdx = dst[cur - 1];
for (int i = cur - 1; i >= 0 && dst[i] == targetIdx; i--) {
dst[i] = fused;
}
}
}
// Fold the new ring's points into the global pool
for (int i = 0; i < fCandidateVerts.numPts(); ++i) {
int newIdx;
if (fCandidateVerts.needsToBeNew(i) || forceNew) {
// if the originating index is still valid then this point wasn't
// fused (and is thus movable)
SkScalar coverage = compute_coverage(depth, initialDepth, initialCoverage,
targetDepth, targetCoverage);
newIdx = this->addPt(fCandidateVerts.point(i), depth, coverage,
fCandidateVerts.originatingIdx(i) != -1, kSharp_CurveState);
} else {
SkASSERT(fCandidateVerts.originatingIdx(i) != -1);
this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth,
targetCoverage);
newIdx = fCandidateVerts.originatingIdx(i);
}
nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i));
}
// 'dst' currently has indices into the ring. Remap these to be indices
// into the global pool since the triangulation operates in that space.
for (int i = 0; i < dst.size(); ++i) {
dst[i] = nextRing->index(dst[i]);
}
for (int i = 0; i < lastRing.numPts(); ++i) {
int next = (i + 1) % lastRing.numPts();
this->addTri(lastRing.index(i), lastRing.index(next), dst[next]);
this->addTri(lastRing.index(i), dst[next], dst[i]);
}
if (done && fStyle != SkStrokeRec::kStroke_Style) {
// fill or stroke-and-fill
this->fanRing(*nextRing);
}
if (nextRing->numPts() < 3) {
done = true;
}
return done;
}
void GrAAConvexTessellator::validate() const {
SkASSERT(fPts.size() == fMovable.size());
SkASSERT(fPts.size() == fCoverages.size());
SkASSERT(fPts.size() == fCurveState.size());
SkASSERT(0 == (fIndices.size() % 3));
SkASSERT(fBisectors.empty() || fBisectors.size() == fNorms.size());
}
//////////////////////////////////////////////////////////////////////////////
void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) {
this->computeNormals(tess);
this->computeBisectors(tess);
}
void GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms,
const SkTDArray<SkVector>& bisectors) {
for (int i = 0; i < fPts.size(); ++i) {
fPts[i].fNorm = norms[i];
fPts[i].fBisector = bisectors[i];
}
}
// Compute the outward facing normal at each vertex.
void GrAAConvexTessellator::Ring::computeNormals(const GrAAConvexTessellator& tess) {
for (int cur = 0; cur < fPts.size(); ++cur) {
int next = (cur + 1) % fPts.size();
fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].fIndex);
SkPoint::Normalize(&fPts[cur].fNorm);
fPts[cur].fNorm = SkPointPriv::MakeOrthog(fPts[cur].fNorm, tess.side());
}
}
void GrAAConvexTessellator::Ring::computeBisectors(const GrAAConvexTessellator& tess) {
int prev = fPts.size() - 1;
for (int cur = 0; cur < fPts.size(); prev = cur, ++cur) {
fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm;
if (!fPts[cur].fBisector.normalize()) {
fPts[cur].fBisector =
SkPointPriv::MakeOrthog(fPts[cur].fNorm, (SkPointPriv::Side)-tess.side()) +
SkPointPriv::MakeOrthog(fPts[prev].fNorm, tess.side());
SkAssertResult(fPts[cur].fBisector.normalize());
} else {
fPts[cur].fBisector.negate(); // make the bisector face in
}
}
}
//////////////////////////////////////////////////////////////////////////////
#ifdef SK_DEBUG
// Is this ring convex?
bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) const {
if (fPts.size() < 3) {
return true;
}
SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.back().fIndex);
SkPoint cur = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex);
SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX;
SkScalar maxDot = minDot;
prev = cur;
for (int i = 1; i < fPts.size(); ++i) {
int next = (i + 1) % fPts.size();
cur = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex);
SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX;
minDot = std::min(minDot, dot);
maxDot = std::max(maxDot, dot);
prev = cur;
}
if (SkScalarNearlyEqual(maxDot, 0.0f, 0.005f)) {
maxDot = 0;
}
if (SkScalarNearlyEqual(minDot, 0.0f, 0.005f)) {
minDot = 0;
}
return (maxDot >= 0.0f) == (minDot >= 0.0f);
}
#endif
void GrAAConvexTessellator::lineTo(const SkPoint& p, CurveState curve) {
if (this->numPts() > 0 && duplicate_pt(p, this->lastPoint())) {
return;
}
if (this->numPts() >= 2 &&
points_are_colinear_and_b_is_middle(fPts[fPts.size() - 2], fPts.back(), p,
&fAccumLinearError)) {
// The old last point is on the line from the second to last to the new point
this->popLastPt();
// double-check that the new last point is not a duplicate of the new point. In an ideal
// world this wouldn't be necessary (since it's only possible for non-convex paths), but
// floating point precision issues mean it can actually happen on paths that were
// determined to be convex.
if (duplicate_pt(p, this->lastPoint())) {
return;
}
} else {
fAccumLinearError = 0.f;
}
SkScalar initialRingCoverage = (SkStrokeRec::kFill_Style == fStyle) ? 0.5f : 1.0f;
this->addPt(p, 0.0f, initialRingCoverage, false, curve);
}
void GrAAConvexTessellator::lineTo(const SkMatrix& m, const SkPoint& p, CurveState curve) {
this->lineTo(m.mapXY(p.fX, p.fY), curve);
}
void GrAAConvexTessellator::quadTo(const SkPoint pts[3]) {
int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance);
fPointBuffer.resize(maxCount);
SkPoint* target = fPointBuffer.begin();
int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2],
kQuadToleranceSqd, &target, maxCount);
fPointBuffer.resize(count);
for (int i = 0; i < count - 1; i++) {
this->lineTo(fPointBuffer[i], kCurve_CurveState);
}
this->lineTo(fPointBuffer[count - 1],
count == 1 ? kSharp_CurveState : kIndeterminate_CurveState);
}
void GrAAConvexTessellator::quadTo(const SkMatrix& m, const SkPoint srcPts[3]) {
SkPoint pts[3];
m.mapPoints(pts, srcPts, 3);
this->quadTo(pts);
}
void GrAAConvexTessellator::cubicTo(const SkMatrix& m, const SkPoint srcPts[4]) {
SkPoint pts[4];
m.mapPoints(pts, srcPts, 4);
int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance);
fPointBuffer.resize(maxCount);
SkPoint* target = fPointBuffer.begin();
int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3],
kCubicToleranceSqd, &target, maxCount);
fPointBuffer.resize(count);
for (int i = 0; i < count - 1; i++) {
this->lineTo(fPointBuffer[i], kCurve_CurveState);
}
this->lineTo(fPointBuffer[count - 1],
count == 1 ? kSharp_CurveState : kIndeterminate_CurveState);
}
// include down here to avoid compilation errors caused by "-" overload in SkGeometry.h
#include "src/core/SkGeometry.h"
void GrAAConvexTessellator::conicTo(const SkMatrix& m, const SkPoint srcPts[3], SkScalar w) {
SkPoint pts[3];
m.mapPoints(pts, srcPts, 3);
SkAutoConicToQuads quadder;
const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance);
SkPoint lastPoint = *(quads++);
int count = quadder.countQuads();
for (int i = 0; i < count; ++i) {
SkPoint quadPts[3];
quadPts[0] = lastPoint;
quadPts[1] = quads[0];
quadPts[2] = i == count - 1 ? pts[2] : quads[1];
this->quadTo(quadPts);
lastPoint = quadPts[2];
quads += 2;
}
}
//////////////////////////////////////////////////////////////////////////////
#if GR_AA_CONVEX_TESSELLATOR_VIZ
static const SkScalar kPointRadius = 0.02f;
static const SkScalar kArrowStrokeWidth = 0.0f;
static const SkScalar kArrowLength = 0.2f;
static const SkScalar kEdgeTextSize = 0.1f;
static const SkScalar kPointTextSize = 0.02f;
static void draw_point(SkCanvas* canvas, const SkPoint& p, SkScalar paramValue, bool stroke) {
SkPaint paint;
SkASSERT(paramValue <= 1.0f);
int gs = int(255*paramValue);
paint.setARGB(255, gs, gs, gs);
canvas->drawCircle(p.fX, p.fY, kPointRadius, paint);
if (stroke) {
SkPaint stroke;
stroke.setColor(SK_ColorYELLOW);
stroke.setStyle(SkPaint::kStroke_Style);
stroke.setStrokeWidth(kPointRadius/3.0f);
canvas->drawCircle(p.fX, p.fY, kPointRadius, stroke);
}
}
static void draw_line(SkCanvas* canvas, const SkPoint& p0, const SkPoint& p1, SkColor color) {
SkPaint p;
p.setColor(color);
canvas->drawLine(p0.fX, p0.fY, p1.fX, p1.fY, p);
}
static void draw_arrow(SkCanvas*canvas, const SkPoint& p, const SkPoint &n,
SkScalar len, SkColor color) {
SkPaint paint;
paint.setColor(color);
paint.setStrokeWidth(kArrowStrokeWidth);
paint.setStyle(SkPaint::kStroke_Style);
canvas->drawLine(p.fX, p.fY,
p.fX + len * n.fX, p.fY + len * n.fY,
paint);
}
void GrAAConvexTessellator::Ring::draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const {
SkPaint paint;
paint.setTextSize(kEdgeTextSize);
for (int cur = 0; cur < fPts.count(); ++cur) {
int next = (cur + 1) % fPts.count();
draw_line(canvas,
tess.point(fPts[cur].fIndex),
tess.point(fPts[next].fIndex),
SK_ColorGREEN);
SkPoint mid = tess.point(fPts[cur].fIndex) + tess.point(fPts[next].fIndex);
mid.scale(0.5f);
if (fPts.count()) {
draw_arrow(canvas, mid, fPts[cur].fNorm, kArrowLength, SK_ColorRED);
mid.fX += (kArrowLength/2) * fPts[cur].fNorm.fX;
mid.fY += (kArrowLength/2) * fPts[cur].fNorm.fY;
}
SkString num;
num.printf("%d", this->origEdgeID(cur));
canvas->drawString(num, mid.fX, mid.fY, paint);
if (fPts.count()) {
draw_arrow(canvas, tess.point(fPts[cur].fIndex), fPts[cur].fBisector,
kArrowLength, SK_ColorBLUE);
}
}
}
void GrAAConvexTessellator::draw(SkCanvas* canvas) const {
for (int i = 0; i < fIndices.count(); i += 3) {
SkASSERT(fIndices[i] < this->numPts()) ;
SkASSERT(fIndices[i+1] < this->numPts()) ;
SkASSERT(fIndices[i+2] < this->numPts()) ;
draw_line(canvas,
this->point(this->fIndices[i]), this->point(this->fIndices[i+1]),
SK_ColorBLACK);
draw_line(canvas,
this->point(this->fIndices[i+1]), this->point(this->fIndices[i+2]),
SK_ColorBLACK);
draw_line(canvas,
this->point(this->fIndices[i+2]), this->point(this->fIndices[i]),
SK_ColorBLACK);
}
fInitialRing.draw(canvas, *this);
for (int i = 0; i < fRings.count(); ++i) {
fRings[i]->draw(canvas, *this);
}
for (int i = 0; i < this->numPts(); ++i) {
draw_point(canvas,
this->point(i), 0.5f + (this->depth(i)/(2 * kAntialiasingRadius)),
!this->movable(i));
SkPaint paint;
paint.setTextSize(kPointTextSize);
if (this->depth(i) <= -kAntialiasingRadius) {
paint.setColor(SK_ColorWHITE);
}
SkString num;
num.printf("%d", i);
canvas->drawString(num,
this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f),
paint);
}
}
#endif