blob: 05f197a89563dccbfd65693141ec4e48b647931a [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/ganesh/GrTestUtils.h"
#include "include/core/SkColorSpace.h"
#include "include/core/SkMatrix.h"
#include "include/core/SkPathBuilder.h"
#include "include/core/SkRRect.h"
#include "src/core/SkRectPriv.h"
#include "src/gpu/ganesh/GrColorInfo.h"
#include "src/gpu/ganesh/GrProcessorUnitTest.h"
#include "src/gpu/ganesh/GrStyle.h"
#include "src/utils/SkDashPathPriv.h"
#if GR_TEST_UTILS
static const SkMatrix& test_matrix(SkRandom* random,
bool includeNonPerspective,
bool includePerspective) {
static SkMatrix gMatrices[5];
static const int kPerspectiveCount = 1;
static bool gOnce;
if (!gOnce) {
gOnce = true;
gMatrices[0].reset();
gMatrices[1].setTranslate(SkIntToScalar(-100), SkIntToScalar(100));
gMatrices[2].setRotate(SkIntToScalar(17));
gMatrices[3].setRotate(SkIntToScalar(185));
gMatrices[3].postTranslate(SkIntToScalar(66), SkIntToScalar(-33));
gMatrices[3].postScale(SkIntToScalar(2), SK_ScalarHalf);
// Perspective matrices
gMatrices[4].setRotate(SkIntToScalar(215));
gMatrices[4].set(SkMatrix::kMPersp0, 0.00013f);
gMatrices[4].set(SkMatrix::kMPersp1, -0.000039f);
}
uint32_t count = static_cast<uint32_t>(std::size(gMatrices));
if (includeNonPerspective && includePerspective) {
return gMatrices[random->nextULessThan(count)];
} else if (!includeNonPerspective) {
return gMatrices[count - 1 - random->nextULessThan(kPerspectiveCount)];
} else {
SkASSERT(includeNonPerspective && !includePerspective);
return gMatrices[random->nextULessThan(count - kPerspectiveCount)];
}
}
namespace GrTest {
const SkMatrix& TestMatrix(SkRandom* random) { return test_matrix(random, true, true); }
const SkMatrix& TestMatrixPreservesRightAngles(SkRandom* random) {
static SkMatrix gMatrices[5];
static bool gOnce;
if (!gOnce) {
gOnce = true;
// identity
gMatrices[0].reset();
// translation
gMatrices[1].setTranslate(SkIntToScalar(-100), SkIntToScalar(100));
// scale
gMatrices[2].setScale(SkIntToScalar(17), SkIntToScalar(17));
// scale + translation
gMatrices[3].setScale(SkIntToScalar(-17), SkIntToScalar(-17));
gMatrices[3].postTranslate(SkIntToScalar(66), SkIntToScalar(-33));
// orthogonal basis vectors
gMatrices[4].reset();
gMatrices[4].setScale(SkIntToScalar(-1), SkIntToScalar(-1));
gMatrices[4].setRotate(47);
for (size_t i = 0; i < std::size(gMatrices); i++) {
SkASSERT(gMatrices[i].preservesRightAngles());
}
}
return gMatrices[random->nextULessThan(static_cast<uint32_t>(std::size(gMatrices)))];
}
const SkMatrix& TestMatrixRectStaysRect(SkRandom* random) {
static SkMatrix gMatrices[6];
static bool gOnce;
if (!gOnce) {
gOnce = true;
// identity
gMatrices[0].reset();
// translation
gMatrices[1].setTranslate(SkIntToScalar(-100), SkIntToScalar(100));
// scale
gMatrices[2].setScale(SkIntToScalar(17), SkIntToScalar(17));
// scale + translation
gMatrices[3].setScale(SkIntToScalar(-17), SkIntToScalar(-17));
gMatrices[3].postTranslate(SkIntToScalar(66), SkIntToScalar(-33));
// reflection
gMatrices[4].setScale(SkIntToScalar(-1), SkIntToScalar(-1));
// 90 degress rotation
gMatrices[5].setRotate(90);
for (size_t i = 0; i < std::size(gMatrices); i++) {
SkASSERT(gMatrices[i].rectStaysRect());
}
}
return gMatrices[random->nextULessThan(static_cast<uint32_t>(std::size(gMatrices)))];
}
const SkMatrix& TestMatrixInvertible(SkRandom* random) { return test_matrix(random, true, false); }
const SkMatrix& TestMatrixPerspective(SkRandom* random) { return test_matrix(random, false, true); }
void TestWrapModes(SkRandom* random, GrSamplerState::WrapMode wrapModes[2]) {
static const GrSamplerState::WrapMode kWrapModes[] = {
GrSamplerState::WrapMode::kClamp,
GrSamplerState::WrapMode::kRepeat,
GrSamplerState::WrapMode::kMirrorRepeat,
};
wrapModes[0] = kWrapModes[random->nextULessThan(std::size(kWrapModes))];
wrapModes[1] = kWrapModes[random->nextULessThan(std::size(kWrapModes))];
}
const SkRect& TestRect(SkRandom* random) {
static SkRect gRects[7];
static bool gOnce;
if (!gOnce) {
gOnce = true;
gRects[0] = SkRect::MakeWH(1.f, 1.f);
gRects[1] = SkRect::MakeWH(1.0f, 256.0f);
gRects[2] = SkRect::MakeWH(256.0f, 1.0f);
gRects[3] = SkRectPriv::MakeLargest();
gRects[4] = SkRect::MakeLTRB(-65535.0f, -65535.0f, 65535.0f, 65535.0f);
gRects[5] = SkRect::MakeLTRB(-10.0f, -10.0f, 10.0f, 10.0f);
}
return gRects[random->nextULessThan(static_cast<uint32_t>(std::size(gRects)))];
}
// Just some simple rects for code which expects its input very sanitized
const SkRect& TestSquare(SkRandom* random) {
static SkRect gRects[2];
static bool gOnce;
if (!gOnce) {
gOnce = true;
gRects[0] = SkRect::MakeWH(128.f, 128.f);
gRects[1] = SkRect::MakeWH(256.0f, 256.0f);
}
return gRects[random->nextULessThan(static_cast<uint32_t>(std::size(gRects)))];
}
const SkRRect& TestRRectSimple(SkRandom* random) {
static SkRRect gRRect[2];
static bool gOnce;
if (!gOnce) {
gOnce = true;
SkRect rectangle = SkRect::MakeWH(10.f, 20.f);
// true round rect with circular corners
gRRect[0].setRectXY(rectangle, 1.f, 1.f);
// true round rect with elliptical corners
gRRect[1].setRectXY(rectangle, 2.0f, 1.0f);
for (size_t i = 0; i < std::size(gRRect); i++) {
SkASSERT(gRRect[i].isSimple());
}
}
return gRRect[random->nextULessThan(static_cast<uint32_t>(std::size(gRRect)))];
}
const SkPath& TestPath(SkRandom* random) {
static SkPath gPath[7];
static bool gOnce;
if (!gOnce) {
gOnce = true;
// line
gPath[0] = SkPathBuilder().moveTo(0.f, 0.f)
.lineTo(10.f, 10.f)
.detach();
// quad
gPath[1] = SkPathBuilder().moveTo(0.f, 0.f)
.quadTo(10.f, 10.f, 20.f, 20.f)
.detach();
// conic
gPath[2] = SkPathBuilder().moveTo(0.f, 0.f)
.conicTo(10.f, 10.f, 20.f, 20.f, 1.f)
.detach();
// cubic
gPath[3] = SkPathBuilder().moveTo(0.f, 0.f)
.cubicTo(10.f, 10.f, 20.f, 20.f, 30.f, 30.f)
.detach();
// all three
gPath[4] = SkPathBuilder().moveTo(0.f, 0.f)
.lineTo(10.f, 10.f)
.quadTo(10.f, 10.f, 20.f, 20.f)
.conicTo(10.f, 10.f, 20.f, 20.f, 1.f)
.cubicTo(10.f, 10.f, 20.f, 20.f, 30.f, 30.f)
.detach();
// convex
gPath[5] = SkPathBuilder().moveTo(0.0f, 0.0f)
.lineTo(10.0f, 0.0f)
.lineTo(10.0f, 10.0f)
.lineTo(0.0f, 10.0f)
.close()
.detach();
// concave
gPath[6] = SkPathBuilder().moveTo(0.0f, 0.0f)
.lineTo(5.0f, 5.0f)
.lineTo(10.0f, 0.0f)
.lineTo(10.0f, 10.0f)
.lineTo(0.0f, 10.0f)
.close()
.detach();
}
return gPath[random->nextULessThan(static_cast<uint32_t>(std::size(gPath)))];
}
const SkPath& TestPathConvex(SkRandom* random) {
static SkPath gPath[3];
static bool gOnce;
if (!gOnce) {
gOnce = true;
// narrow rect
gPath[0] = SkPath::Polygon({{-1.5f, -50.0f},
{-1.5f, -50.0f},
{ 1.5f, -50.0f},
{ 1.5f, 50.0f},
{-1.5f, 50.0f}}, false);
// degenerate
gPath[1] = SkPath::Polygon({{-0.025f, -0.025f},
{-0.025f, -0.025f},
{ 0.025f, -0.025f},
{ 0.025f, 0.025f},
{-0.025f, 0.025f}}, false);
// clipped triangle
gPath[2] = SkPath::Polygon({{-10.0f, -50.0f},
{-10.0f, -50.0f},
{ 10.0f, -50.0f},
{ 50.0f, 31.0f},
{ 40.0f, 50.0f},
{-40.0f, 50.0f},
{-50.0f, 31.0f}}, false);
for (size_t i = 0; i < std::size(gPath); i++) {
SkASSERT(gPath[i].isConvex());
}
}
return gPath[random->nextULessThan(static_cast<uint32_t>(std::size(gPath)))];
}
static void randomize_stroke_rec(SkStrokeRec* rec, SkRandom* random) {
bool strokeAndFill = random->nextBool();
SkScalar strokeWidth = random->nextBool() ? 0.f : 1.f;
rec->setStrokeStyle(strokeWidth, strokeAndFill);
SkPaint::Cap cap = SkPaint::Cap(random->nextULessThan(SkPaint::kCapCount));
SkPaint::Join join = SkPaint::Join(random->nextULessThan(SkPaint::kJoinCount));
SkScalar miterLimit = random->nextRangeScalar(1.f, 5.f);
rec->setStrokeParams(cap, join, miterLimit);
}
SkStrokeRec TestStrokeRec(SkRandom* random) {
SkStrokeRec::InitStyle style =
SkStrokeRec::InitStyle(random->nextULessThan(SkStrokeRec::kFill_InitStyle + 1));
SkStrokeRec rec(style);
randomize_stroke_rec(&rec, random);
return rec;
}
void TestStyle(SkRandom* random, GrStyle* style) {
SkStrokeRec::InitStyle initStyle =
SkStrokeRec::InitStyle(random->nextULessThan(SkStrokeRec::kFill_InitStyle + 1));
SkStrokeRec stroke(initStyle);
randomize_stroke_rec(&stroke, random);
sk_sp<SkPathEffect> pe;
if (random->nextBool()) {
int cnt = random->nextRangeU(1, 50) * 2;
std::unique_ptr<SkScalar[]> intervals(new SkScalar[cnt]);
SkScalar sum = 0;
for (int i = 0; i < cnt; i++) {
intervals[i] = random->nextRangeScalar(SkDoubleToScalar(0.01),
SkDoubleToScalar(10.0));
sum += intervals[i];
}
SkScalar phase = random->nextRangeScalar(0, sum);
pe = TestDashPathEffect::Make(intervals.get(), cnt, phase);
}
*style = GrStyle(stroke, std::move(pe));
}
TestDashPathEffect::TestDashPathEffect(const SkScalar* intervals, int count, SkScalar phase) {
fCount = count;
fIntervals.reset(count);
memcpy(fIntervals.get(), intervals, count * sizeof(SkScalar));
SkDashPath::CalcDashParameters(phase, intervals, count, &fInitialDashLength,
&fInitialDashIndex, &fIntervalLength, &fPhase);
}
bool TestDashPathEffect::onFilterPath(SkPath* dst, const SkPath& src, SkStrokeRec* rec,
const SkRect* cullRect, const SkMatrix&) const {
return SkDashPath::InternalFilter(dst, src, rec, cullRect, fIntervals.get(), fCount,
fInitialDashLength, fInitialDashIndex, fIntervalLength,
fPhase);
}
SkPathEffect::DashType TestDashPathEffect::onAsADash(DashInfo* info) const {
if (info) {
if (info->fCount >= fCount && info->fIntervals) {
memcpy(info->fIntervals, fIntervals.get(), fCount * sizeof(SkScalar));
}
info->fCount = fCount;
info->fPhase = fPhase;
}
return kDash_DashType;
}
sk_sp<SkColorSpace> TestColorSpace(SkRandom* random) {
static sk_sp<SkColorSpace> gColorSpaces[3];
static bool gOnce;
if (!gOnce) {
gOnce = true;
// No color space (legacy mode)
gColorSpaces[0] = nullptr;
// sRGB or color-spin sRGB
gColorSpaces[1] = SkColorSpace::MakeSRGB();
gColorSpaces[2] = SkColorSpace::MakeSRGB()->makeColorSpin();
}
return gColorSpaces[random->nextULessThan(static_cast<uint32_t>(std::size(gColorSpaces)))];
}
sk_sp<GrColorSpaceXform> TestColorXform(SkRandom* random) {
// TODO: Add many more kinds of xforms here
static sk_sp<GrColorSpaceXform> gXforms[3];
static bool gOnce;
if (!gOnce) {
gOnce = true;
sk_sp<SkColorSpace> srgb = SkColorSpace::MakeSRGB();
sk_sp<SkColorSpace> spin = SkColorSpace::MakeSRGB()->makeColorSpin();
// No gamut change
gXforms[0] = nullptr;
gXforms[1] = GrColorSpaceXform::Make(srgb.get(), kPremul_SkAlphaType,
spin.get(), kPremul_SkAlphaType);
gXforms[2] = GrColorSpaceXform::Make(spin.get(), kPremul_SkAlphaType,
srgb.get(), kPremul_SkAlphaType);
}
return gXforms[random->nextULessThan(static_cast<uint32_t>(std::size(gXforms)))];
}
TestAsFPArgs::TestAsFPArgs(GrProcessorTestData* d)
: fMatrixProvider(TestMatrix(d->fRandom))
, fColorInfoStorage(std::make_unique<GrColorInfo>(
GrColorType::kRGBA_8888, kPremul_SkAlphaType, TestColorSpace(d->fRandom)))
, fArgs(d->context(),
fMatrixProvider,
fColorInfoStorage.get(),
fSurfaceProps) {}
TestAsFPArgs::~TestAsFPArgs() {}
GrColor RandomColor(SkRandom* random) {
// There are only a few cases of random colors which interest us
enum ColorMode {
kAllOnes_ColorMode,
kAllZeros_ColorMode,
kAlphaOne_ColorMode,
kRandom_ColorMode,
kLast_ColorMode = kRandom_ColorMode
};
ColorMode colorMode = ColorMode(random->nextULessThan(kLast_ColorMode + 1));
GrColor color SK_INIT_TO_AVOID_WARNING;
switch (colorMode) {
case kAllOnes_ColorMode:
color = GrColorPackRGBA(0xFF, 0xFF, 0xFF, 0xFF);
break;
case kAllZeros_ColorMode:
color = GrColorPackRGBA(0, 0, 0, 0);
break;
case kAlphaOne_ColorMode:
color = GrColorPackRGBA(random->nextULessThan(256),
random->nextULessThan(256),
random->nextULessThan(256),
0xFF);
break;
case kRandom_ColorMode: {
uint8_t alpha = random->nextULessThan(256);
color = GrColorPackRGBA(random->nextRangeU(0, alpha),
random->nextRangeU(0, alpha),
random->nextRangeU(0, alpha),
alpha);
break;
}
}
return color;
}
uint8_t RandomCoverage(SkRandom* random) {
enum CoverageMode {
kZero_CoverageMode,
kAllOnes_CoverageMode,
kRandom_CoverageMode,
kLast_CoverageMode = kRandom_CoverageMode
};
CoverageMode colorMode = CoverageMode(random->nextULessThan(kLast_CoverageMode + 1));
uint8_t coverage SK_INIT_TO_AVOID_WARNING;
switch (colorMode) {
case kZero_CoverageMode:
coverage = 0;
break;
case kAllOnes_CoverageMode:
coverage = 0xff;
break;
case kRandom_CoverageMode:
coverage = random->nextULessThan(256);
break;
}
return coverage;
}
} // namespace GrTest
#endif