blob: ffdea444e4ffe9b1efc2c0051ef0e37581b3c5a2 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/sksl/SkSLIRGenerator.h"
#include "limits.h"
#include <iterator>
#include <memory>
#include <unordered_set>
#include "include/private/SkSLLayout.h"
#include "include/private/SkTArray.h"
#include "include/sksl/DSLCore.h"
#include "src/core/SkScopeExit.h"
#include "src/sksl/SkSLAnalysis.h"
#include "src/sksl/SkSLCompiler.h"
#include "src/sksl/SkSLConstantFolder.h"
#include "src/sksl/SkSLOperators.h"
#include "src/sksl/SkSLParser.h"
#include "src/sksl/SkSLUtil.h"
#include "src/sksl/ir/SkSLBinaryExpression.h"
#include "src/sksl/ir/SkSLBreakStatement.h"
#include "src/sksl/ir/SkSLConstructor.h"
#include "src/sksl/ir/SkSLContinueStatement.h"
#include "src/sksl/ir/SkSLDiscardStatement.h"
#include "src/sksl/ir/SkSLDoStatement.h"
#include "src/sksl/ir/SkSLExpressionStatement.h"
#include "src/sksl/ir/SkSLExternalFunctionCall.h"
#include "src/sksl/ir/SkSLExternalFunctionReference.h"
#include "src/sksl/ir/SkSLField.h"
#include "src/sksl/ir/SkSLFieldAccess.h"
#include "src/sksl/ir/SkSLForStatement.h"
#include "src/sksl/ir/SkSLFunctionCall.h"
#include "src/sksl/ir/SkSLFunctionDeclaration.h"
#include "src/sksl/ir/SkSLFunctionDefinition.h"
#include "src/sksl/ir/SkSLFunctionPrototype.h"
#include "src/sksl/ir/SkSLFunctionReference.h"
#include "src/sksl/ir/SkSLIfStatement.h"
#include "src/sksl/ir/SkSLIndexExpression.h"
#include "src/sksl/ir/SkSLInterfaceBlock.h"
#include "src/sksl/ir/SkSLLiteral.h"
#include "src/sksl/ir/SkSLMethodReference.h"
#include "src/sksl/ir/SkSLNop.h"
#include "src/sksl/ir/SkSLPoison.h"
#include "src/sksl/ir/SkSLPostfixExpression.h"
#include "src/sksl/ir/SkSLPrefixExpression.h"
#include "src/sksl/ir/SkSLReturnStatement.h"
#include "src/sksl/ir/SkSLSetting.h"
#include "src/sksl/ir/SkSLStructDefinition.h"
#include "src/sksl/ir/SkSLSwitchCase.h"
#include "src/sksl/ir/SkSLSwitchStatement.h"
#include "src/sksl/ir/SkSLSwizzle.h"
#include "src/sksl/ir/SkSLTernaryExpression.h"
#include "src/sksl/ir/SkSLUnresolvedFunction.h"
#include "src/sksl/ir/SkSLVarDeclarations.h"
#include "src/sksl/ir/SkSLVariable.h"
#include "src/sksl/ir/SkSLVariableReference.h"
namespace SkSL {
class AutoSymbolTable {
public:
AutoSymbolTable(IRGenerator* ir)
: fIR(ir)
, fPrevious(fIR->fSymbolTable) {
fIR->pushSymbolTable();
}
~AutoSymbolTable() {
fIR->popSymbolTable();
SkASSERT(fPrevious == fIR->fSymbolTable);
}
IRGenerator* fIR;
std::shared_ptr<SymbolTable> fPrevious;
};
IRGenerator::IRGenerator(const Context* context)
: fContext(*context) {}
void IRGenerator::pushSymbolTable() {
auto childSymTable = std::make_shared<SymbolTable>(std::move(fSymbolTable), fIsBuiltinCode);
fSymbolTable = std::move(childSymTable);
}
void IRGenerator::popSymbolTable() {
fSymbolTable = fSymbolTable->fParent;
}
std::unique_ptr<Extension> IRGenerator::convertExtension(int offset, skstd::string_view name) {
if (this->programKind() != ProgramKind::kFragment &&
this->programKind() != ProgramKind::kVertex) {
this->errorReporter().error(offset, "extensions are not allowed in this kind of program");
return nullptr;
}
return std::make_unique<Extension>(offset, name);
}
std::unique_ptr<Statement> IRGenerator::convertStatement(const ASTNode& statement) {
switch (statement.fKind) {
case ASTNode::Kind::kBlock:
return this->convertBlock(statement);
case ASTNode::Kind::kVarDeclarations:
return this->convertVarDeclarationStatement(statement);
case ASTNode::Kind::kIf:
return this->convertIf(statement);
case ASTNode::Kind::kFor:
return this->convertFor(statement);
case ASTNode::Kind::kWhile:
return this->convertWhile(statement);
case ASTNode::Kind::kDo:
return this->convertDo(statement);
case ASTNode::Kind::kSwitch:
return this->convertSwitch(statement);
case ASTNode::Kind::kReturn:
return this->convertReturn(statement);
case ASTNode::Kind::kBreak:
return this->convertBreak(statement);
case ASTNode::Kind::kContinue:
return this->convertContinue(statement);
case ASTNode::Kind::kDiscard:
return this->convertDiscard(statement);
case ASTNode::Kind::kType:
// TODO: add IRNode for struct definition inside a function
return nullptr;
default:
// it's an expression
return this->convertExpressionStatement(statement);
}
}
std::unique_ptr<Block> IRGenerator::convertBlock(const ASTNode& block) {
SkASSERT(block.fKind == ASTNode::Kind::kBlock);
AutoSymbolTable table(this);
StatementArray statements;
for (const auto& child : block) {
std::unique_ptr<Statement> statement = this->convertStatement(child);
if (statement) {
statements.push_back(std::move(statement));
}
}
return Block::Make(block.fOffset, std::move(statements), fSymbolTable);
}
std::unique_ptr<Statement> IRGenerator::convertVarDeclarationStatement(const ASTNode& s) {
SkASSERT(s.fKind == ASTNode::Kind::kVarDeclarations);
auto decls = this->convertVarDeclarations(s, Variable::Storage::kLocal);
if (decls.empty()) {
return nullptr;
}
return Block::MakeUnscoped(s.fOffset, std::move(decls));
}
int IRGenerator::convertArraySize(const Type& type, int offset, const ASTNode& s) {
if (!s) {
this->errorReporter().error(offset, "array must have a size");
return 0;
}
auto size = this->convertExpression(s);
if (!size) {
return 0;
}
return type.convertArraySize(fContext, std::move(size));
}
void IRGenerator::checkVarDeclaration(int offset, const Modifiers& modifiers, const Type* baseType,
Variable::Storage storage) {
if (this->strictES2Mode() && baseType->isArray()) {
this->errorReporter().error(offset, "array size must appear after variable name");
}
if (baseType->componentType().isOpaque() && storage != Variable::Storage::kGlobal) {
this->errorReporter().error(
offset,
"variables of type '" + baseType->displayName() + "' must be global");
}
if ((modifiers.fFlags & Modifiers::kIn_Flag) && baseType->isMatrix()) {
this->errorReporter().error(offset, "'in' variables may not have matrix type");
}
if ((modifiers.fFlags & Modifiers::kIn_Flag) && (modifiers.fFlags & Modifiers::kUniform_Flag)) {
this->errorReporter().error(offset, "'in uniform' variables not permitted");
}
if (this->isRuntimeEffect()) {
if (modifiers.fFlags & Modifiers::kIn_Flag) {
this->errorReporter().error(offset, "'in' variables not permitted in runtime effects");
}
}
if (baseType->isEffectChild() && !(modifiers.fFlags & Modifiers::kUniform_Flag)) {
this->errorReporter().error(
offset, "variables of type '" + baseType->displayName() + "' must be uniform");
}
if (modifiers.fLayout.fFlags & Layout::kSRGBUnpremul_Flag) {
if (!this->isRuntimeEffect()) {
this->errorReporter().error(offset,
"'srgb_unpremul' is only permitted in runtime effects");
}
if (!(modifiers.fFlags & Modifiers::kUniform_Flag)) {
this->errorReporter().error(offset,
"'srgb_unpremul' is only permitted on 'uniform' variables");
}
auto validColorXformType = [](const Type& t) {
return t.isVector() && t.componentType().isFloat() &&
(t.columns() == 3 || t.columns() == 4);
};
if (!validColorXformType(*baseType) && !(baseType->isArray() &&
validColorXformType(baseType->componentType()))) {
this->errorReporter().error(offset,
"'srgb_unpremul' is only permitted on half3, half4, "
"float3, or float4 variables");
}
}
int permitted = Modifiers::kConst_Flag | Modifiers::kHighp_Flag | Modifiers::kMediump_Flag |
Modifiers::kLowp_Flag;
if (storage == Variable::Storage::kGlobal) {
permitted |= Modifiers::kIn_Flag | Modifiers::kOut_Flag | Modifiers::kUniform_Flag |
Modifiers::kFlat_Flag | Modifiers::kNoPerspective_Flag;
}
// TODO(skbug.com/11301): Migrate above checks into building a mask of permitted layout flags
CheckModifiers(fContext, offset, modifiers, permitted, /*permittedLayoutFlags=*/~0);
}
std::unique_ptr<Variable> IRGenerator::convertVar(int offset, const Modifiers& modifiers,
const Type* baseType, skstd::string_view name,
bool isArray,
std::unique_ptr<Expression> arraySize,
Variable::Storage storage) {
if (modifiers.fLayout.fLocation == 0 && modifiers.fLayout.fIndex == 0 &&
(modifiers.fFlags & Modifiers::kOut_Flag) &&
this->programKind() == ProgramKind::kFragment && name != Compiler::FRAGCOLOR_NAME) {
this->errorReporter().error(offset,
"out location=0, index=0 is reserved for sk_FragColor");
}
const Type* type = baseType;
int arraySizeValue = 0;
if (isArray) {
SkASSERT(arraySize);
arraySizeValue = type->convertArraySize(fContext, std::move(arraySize));
if (!arraySizeValue) {
return {};
}
type = fSymbolTable->addArrayDimension(type, arraySizeValue);
}
return std::make_unique<Variable>(offset, this->modifiersPool().add(modifiers), name,
type, fIsBuiltinCode, storage);
}
std::unique_ptr<Statement> IRGenerator::convertVarDeclaration(std::unique_ptr<Variable> var,
std::unique_ptr<Expression> value,
bool addToSymbolTable) {
std::unique_ptr<Statement> varDecl = VarDeclaration::Convert(fContext, var.get(),
std::move(value));
if (!varDecl) {
return nullptr;
}
// Detect the declaration of magical variables.
if ((var->storage() == Variable::Storage::kGlobal) && var->name() == Compiler::FRAGCOLOR_NAME) {
// Silently ignore duplicate definitions of `sk_FragColor`.
const Symbol* symbol = (*fSymbolTable)[var->name()];
if (symbol) {
return nullptr;
}
} else if ((var->storage() == Variable::Storage::kGlobal ||
var->storage() == Variable::Storage::kInterfaceBlock) &&
var->name() == Compiler::RTADJUST_NAME) {
// `sk_RTAdjust` is special, and makes the IR generator emit position-fixup expressions.
if (fRTAdjust) {
this->errorReporter().error(var->fOffset, "duplicate definition of 'sk_RTAdjust'");
return nullptr;
}
if (var->type() != *fContext.fTypes.fFloat4) {
this->errorReporter().error(var->fOffset, "sk_RTAdjust must have type 'float4'");
return nullptr;
}
fRTAdjust = var.get();
}
if (addToSymbolTable) {
fSymbolTable->add(std::move(var));
} else {
fSymbolTable->takeOwnershipOfSymbol(std::move(var));
}
return varDecl;
}
std::unique_ptr<Statement> IRGenerator::convertVarDeclaration(int offset,
const Modifiers& modifiers,
const Type* baseType,
skstd::string_view name,
bool isArray,
std::unique_ptr<Expression> arraySize,
std::unique_ptr<Expression> value,
Variable::Storage storage) {
std::unique_ptr<Variable> var = this->convertVar(offset, modifiers, baseType, name, isArray,
std::move(arraySize), storage);
if (!var) {
return nullptr;
}
return this->convertVarDeclaration(std::move(var), std::move(value));
}
StatementArray IRGenerator::convertVarDeclarations(const ASTNode& decls,
Variable::Storage storage) {
SkASSERT(decls.fKind == ASTNode::Kind::kVarDeclarations);
auto declarationsIter = decls.begin();
const Modifiers& modifiers = declarationsIter++->getModifiers();
const ASTNode& rawType = *(declarationsIter++);
const Type* baseType = this->convertType(rawType);
if (!baseType) {
return {};
}
baseType = baseType->applyPrecisionQualifiers(fContext, modifiers, fSymbolTable.get(),
decls.fOffset);
if (!baseType) {
return {};
}
this->checkVarDeclaration(decls.fOffset, modifiers, baseType, storage);
StatementArray varDecls;
for (; declarationsIter != decls.end(); ++declarationsIter) {
const ASTNode& varDecl = *declarationsIter;
const ASTNode::VarData& varData = varDecl.getVarData();
std::unique_ptr<Expression> arraySize;
std::unique_ptr<Expression> value;
auto iter = varDecl.begin();
if (iter != varDecl.end() && varData.fIsArray) {
if (!*iter) {
this->errorReporter().error(decls.fOffset, "array must have a size");
continue;
}
arraySize = this->convertExpression(*iter++);
if (!arraySize) {
continue;
}
}
if (iter != varDecl.end()) {
value = this->convertExpression(*iter);
if (!value) {
continue;
}
}
std::unique_ptr<Statement> varDeclStmt = this->convertVarDeclaration(varDecl.fOffset,
modifiers,
baseType,
varData.fName,
varData.fIsArray,
std::move(arraySize),
std::move(value),
storage);
if (varDeclStmt) {
varDecls.push_back(std::move(varDeclStmt));
}
}
return varDecls;
}
std::unique_ptr<ModifiersDeclaration> IRGenerator::convertModifiersDeclaration(const ASTNode& m) {
if (this->programKind() != ProgramKind::kFragment &&
this->programKind() != ProgramKind::kVertex) {
this->errorReporter().error(m.fOffset,
"layout qualifiers are not allowed in this kind of program");
return nullptr;
}
SkASSERT(m.fKind == ASTNode::Kind::kModifiers);
Modifiers modifiers = m.getModifiers();
return std::make_unique<ModifiersDeclaration>(this->modifiersPool().add(modifiers));
}
std::unique_ptr<Statement> IRGenerator::convertIf(const ASTNode& n) {
SkASSERT(n.fKind == ASTNode::Kind::kIf);
auto iter = n.begin();
std::unique_ptr<Expression> test = this->convertExpression(*(iter++));
if (!test) {
return nullptr;
}
std::unique_ptr<Statement> ifTrue = this->convertStatement(*(iter++));
if (!ifTrue) {
return nullptr;
}
std::unique_ptr<Statement> ifFalse;
if (iter != n.end()) {
ifFalse = this->convertStatement(*(iter++));
if (!ifFalse) {
return nullptr;
}
}
bool isStatic = n.getBool();
return IfStatement::Convert(fContext, n.fOffset, isStatic, std::move(test),
std::move(ifTrue), std::move(ifFalse));
}
std::unique_ptr<Statement> IRGenerator::convertFor(const ASTNode& f) {
SkASSERT(f.fKind == ASTNode::Kind::kFor);
AutoSymbolTable table(this);
std::unique_ptr<Statement> initializer;
auto iter = f.begin();
if (*iter) {
initializer = this->convertStatement(*iter);
if (!initializer) {
return nullptr;
}
}
++iter;
std::unique_ptr<Expression> test;
if (*iter) {
test = this->convertExpression(*iter);
if (!test) {
return nullptr;
}
}
++iter;
std::unique_ptr<Expression> next;
if (*iter) {
next = this->convertExpression(*iter);
if (!next) {
return nullptr;
}
}
++iter;
std::unique_ptr<Statement> statement = this->convertStatement(*iter);
if (!statement) {
return nullptr;
}
return ForStatement::Convert(fContext, f.fOffset, std::move(initializer), std::move(test),
std::move(next), std::move(statement), fSymbolTable);
}
std::unique_ptr<Statement> IRGenerator::convertWhile(const ASTNode& w) {
SkASSERT(w.fKind == ASTNode::Kind::kWhile);
auto iter = w.begin();
std::unique_ptr<Expression> test = this->convertExpression(*(iter++));
if (!test) {
return nullptr;
}
std::unique_ptr<Statement> statement = this->convertStatement(*(iter++));
if (!statement) {
return nullptr;
}
return ForStatement::ConvertWhile(fContext, w.fOffset, std::move(test), std::move(statement),
fSymbolTable);
}
std::unique_ptr<Statement> IRGenerator::convertDo(const ASTNode& d) {
SkASSERT(d.fKind == ASTNode::Kind::kDo);
auto iter = d.begin();
std::unique_ptr<Statement> statement = this->convertStatement(*(iter++));
if (!statement) {
return nullptr;
}
std::unique_ptr<Expression> test = this->convertExpression(*(iter++));
if (!test) {
return nullptr;
}
return DoStatement::Convert(fContext, std::move(statement), std::move(test));
}
std::unique_ptr<Statement> IRGenerator::convertSwitch(const ASTNode& s) {
SkASSERT(s.fKind == ASTNode::Kind::kSwitch);
auto iter = s.begin();
std::unique_ptr<Expression> value = this->convertExpression(*(iter++));
if (!value) {
return nullptr;
}
AutoSymbolTable table(this);
ExpressionArray caseValues;
StatementArray caseStatements;
for (; iter != s.end(); ++iter) {
const ASTNode& c = *iter;
SkASSERT(c.fKind == ASTNode::Kind::kSwitchCase);
std::unique_ptr<Expression>& caseValue = caseValues.emplace_back();
auto childIter = c.begin();
if (*childIter) {
caseValue = this->convertExpression(*childIter);
if (!caseValue) {
return nullptr;
}
}
++childIter;
StatementArray statements;
for (; childIter != c.end(); ++childIter) {
std::unique_ptr<Statement> converted = this->convertStatement(*childIter);
if (!converted) {
return nullptr;
}
statements.push_back(std::move(converted));
}
caseStatements.push_back(Block::MakeUnscoped(c.fOffset, std::move(statements)));
}
return SwitchStatement::Convert(fContext, s.fOffset, s.getBool(), std::move(value),
std::move(caseValues), std::move(caseStatements), fSymbolTable);
}
std::unique_ptr<Statement> IRGenerator::convertExpressionStatement(const ASTNode& s) {
std::unique_ptr<Expression> e = this->convertExpression(s);
if (!e) {
return nullptr;
}
return ExpressionStatement::Make(fContext, std::move(e));
}
std::unique_ptr<Statement> IRGenerator::convertReturn(int offset,
std::unique_ptr<Expression> result) {
return ReturnStatement::Make(offset, std::move(result));
}
std::unique_ptr<Statement> IRGenerator::convertReturn(const ASTNode& r) {
SkASSERT(r.fKind == ASTNode::Kind::kReturn);
if (r.begin() != r.end()) {
if (std::unique_ptr<Expression> value = this->convertExpression(*r.begin())) {
return this->convertReturn(r.fOffset, std::move(value));
} else {
return this->convertReturn(r.fOffset, Poison::Make(r.fOffset, fContext));
}
}
return this->convertReturn(r.fOffset, /*result=*/nullptr);
}
std::unique_ptr<Statement> IRGenerator::convertBreak(const ASTNode& b) {
SkASSERT(b.fKind == ASTNode::Kind::kBreak);
return BreakStatement::Make(b.fOffset);
}
std::unique_ptr<Statement> IRGenerator::convertContinue(const ASTNode& c) {
SkASSERT(c.fKind == ASTNode::Kind::kContinue);
return ContinueStatement::Make(c.fOffset);
}
std::unique_ptr<Statement> IRGenerator::convertDiscard(const ASTNode& d) {
SkASSERT(d.fKind == ASTNode::Kind::kDiscard);
if (this->programKind() != ProgramKind::kFragment) {
this->errorReporter().error(d.fOffset,
"discard statement is only permitted in fragment shaders");
return nullptr;
}
return DiscardStatement::Make(d.fOffset);
}
void IRGenerator::appendRTAdjustFixupToVertexMain(const FunctionDeclaration& decl, Block* body) {
using namespace SkSL::dsl;
using SkSL::dsl::Swizzle; // disambiguate from SkSL::Swizzle
using OwnerKind = SkSL::FieldAccess::OwnerKind;
// If this is a vertex program that uses RTAdjust, and this is main()...
if ((fRTAdjust || fRTAdjustInterfaceBlock) && decl.isMain() &&
ProgramKind::kVertex == this->programKind()) {
// ... append a line to the end of the function body which fixes up sk_Position.
const Variable* skPerVertex = nullptr;
if (const ProgramElement* perVertexDecl = fIntrinsics->find(Compiler::PERVERTEX_NAME)) {
SkASSERT(perVertexDecl->is<SkSL::InterfaceBlock>());
skPerVertex = &perVertexDecl->as<SkSL::InterfaceBlock>().variable();
}
SkASSERT(skPerVertex);
auto Ref = [](const Variable* var) -> std::unique_ptr<Expression> {
return VariableReference::Make(/*offset=*/-1, var);
};
auto Field = [&](const Variable* var, int idx) -> std::unique_ptr<Expression> {
return FieldAccess::Make(fContext, Ref(var), idx, OwnerKind::kAnonymousInterfaceBlock);
};
auto Pos = [&]() -> DSLExpression {
return DSLExpression(FieldAccess::Make(fContext, Ref(skPerVertex), /*fieldIndex=*/0,
OwnerKind::kAnonymousInterfaceBlock));
};
auto Adjust = [&]() -> DSLExpression {
return DSLExpression(fRTAdjustInterfaceBlock
? Field(fRTAdjustInterfaceBlock, fRTAdjustFieldIndex)
: Ref(fRTAdjust));
};
auto fixupStmt = DSLStatement(
Pos() = Float4(Swizzle(Pos(), X, Y) * Swizzle(Adjust(), X, Z) +
Swizzle(Pos(), W, W) * Swizzle(Adjust(), Y, W),
0,
Pos().w())
);
body->children().push_back(fixupStmt.release());
}
}
void IRGenerator::CheckModifiers(const Context& context,
int offset,
const Modifiers& modifiers,
int permittedModifierFlags,
int permittedLayoutFlags) {
static constexpr struct { Modifiers::Flag flag; const char* name; } kModifierFlags[] = {
{ Modifiers::kConst_Flag, "const" },
{ Modifiers::kIn_Flag, "in" },
{ Modifiers::kOut_Flag, "out" },
{ Modifiers::kUniform_Flag, "uniform" },
{ Modifiers::kFlat_Flag, "flat" },
{ Modifiers::kNoPerspective_Flag, "noperspective" },
{ Modifiers::kHasSideEffects_Flag, "sk_has_side_effects" },
{ Modifiers::kInline_Flag, "inline" },
{ Modifiers::kNoInline_Flag, "noinline" },
{ Modifiers::kHighp_Flag, "highp" },
{ Modifiers::kMediump_Flag, "mediump" },
{ Modifiers::kLowp_Flag, "lowp" },
{ Modifiers::kES3_Flag, "$es3" },
};
int modifierFlags = modifiers.fFlags;
for (const auto& f : kModifierFlags) {
if (modifierFlags & f.flag) {
if (!(permittedModifierFlags & f.flag)) {
context.fErrors->error(offset, "'" + String(f.name) + "' is not permitted here");
}
modifierFlags &= ~f.flag;
}
}
SkASSERT(modifierFlags == 0);
static constexpr struct { Layout::Flag flag; const char* name; } kLayoutFlags[] = {
{ Layout::kOriginUpperLeft_Flag, "origin_upper_left"},
{ Layout::kPushConstant_Flag, "push_constant"},
{ Layout::kBlendSupportAllEquations_Flag, "blend_support_all_equations"},
{ Layout::kSRGBUnpremul_Flag, "srgb_unpremul"},
{ Layout::kLocation_Flag, "location"},
{ Layout::kOffset_Flag, "offset"},
{ Layout::kBinding_Flag, "binding"},
{ Layout::kIndex_Flag, "index"},
{ Layout::kSet_Flag, "set"},
{ Layout::kBuiltin_Flag, "builtin"},
{ Layout::kInputAttachmentIndex_Flag, "input_attachment_index"},
};
int layoutFlags = modifiers.fLayout.fFlags;
for (const auto& lf : kLayoutFlags) {
if (layoutFlags & lf.flag) {
if (!(permittedLayoutFlags & lf.flag)) {
context.fErrors->error(
offset, "layout qualifier '" + String(lf.name) + "' is not permitted here");
}
layoutFlags &= ~lf.flag;
}
}
SkASSERT(layoutFlags == 0);
}
void IRGenerator::convertFunction(const ASTNode& f) {
auto iter = f.begin();
const Type* returnType = this->convertType(*(iter++), /*allowVoid=*/true);
if (returnType == nullptr) {
return;
}
const ASTNode::FunctionData& funcData = f.getFunctionData();
std::vector<std::unique_ptr<Variable>> parameters;
parameters.reserve(funcData.fParameterCount);
for (size_t i = 0; i < funcData.fParameterCount; ++i) {
const ASTNode& param = *(iter++);
SkASSERT(param.fKind == ASTNode::Kind::kParameter);
const ASTNode::ParameterData& pd = param.getParameterData();
auto paramIter = param.begin();
const Type* type = this->convertType(*(paramIter++));
if (!type) {
return;
}
if (pd.fIsArray) {
int arraySize = this->convertArraySize(*type, param.fOffset, *paramIter++);
if (!arraySize) {
return;
}
type = fSymbolTable->addArrayDimension(type, arraySize);
}
parameters.push_back(std::make_unique<Variable>(param.fOffset,
this->modifiersPool().add(pd.fModifiers),
pd.fName,
type,
fIsBuiltinCode,
Variable::Storage::kParameter));
}
// Conservatively assume all user-defined functions have side effects.
Modifiers declModifiers = funcData.fModifiers;
if (!fIsBuiltinCode) {
declModifiers.fFlags |= Modifiers::kHasSideEffects_Flag;
}
if (fContext.fConfig->fSettings.fForceNoInline) {
// Apply the `noinline` modifier to every function. This allows us to test Runtime
// Effects without any inlining, even when the code is later added to a paint.
declModifiers.fFlags &= ~Modifiers::kInline_Flag;
declModifiers.fFlags |= Modifiers::kNoInline_Flag;
}
const FunctionDeclaration* decl = FunctionDeclaration::Convert(
fContext,
*fSymbolTable,
f.fOffset,
this->modifiersPool().add(declModifiers),
funcData.fName,
std::move(parameters),
returnType,
fIsBuiltinCode);
if (!decl) {
return;
}
if (iter == f.end()) {
// If there's no body, we've found a prototype.
fProgramElements->push_back(std::make_unique<FunctionPrototype>(f.fOffset, decl,
fIsBuiltinCode));
} else {
// Compile function body.
AutoSymbolTable table(this);
for (const Variable* param : decl->parameters()) {
fSymbolTable->addWithoutOwnership(param);
}
std::unique_ptr<Block> body = this->convertBlock(*iter);
if (!body) {
return;
}
this->appendRTAdjustFixupToVertexMain(*decl, body.get());
std::unique_ptr<FunctionDefinition> result = FunctionDefinition::Convert(
fContext, f.fOffset, *decl, std::move(body), fIsBuiltinCode);
decl->setDefinition(result.get());
result->setSource(&f);
fProgramElements->push_back(std::move(result));
}
}
std::unique_ptr<StructDefinition> IRGenerator::convertStructDefinition(const ASTNode& node) {
SkASSERT(node.fKind == ASTNode::Kind::kType);
const Type* type = this->convertType(node);
if (!type) {
return nullptr;
}
if (!type->isStruct()) {
this->errorReporter().error(node.fOffset,
"expected a struct here, found '" + type->name() + "'");
return nullptr;
}
SkDEBUGCODE(auto [iter, wasInserted] =) fDefinedStructs.insert(type);
SkASSERT(wasInserted);
return std::make_unique<StructDefinition>(node.fOffset, *type);
}
void IRGenerator::scanInterfaceBlock(SkSL::InterfaceBlock& intf) {
const std::vector<Type::Field>& fields = intf.variable().type().componentType().fields();
for (size_t i = 0; i < fields.size(); ++i) {
const Type::Field& f = fields[i];
if (f.fName == Compiler::RTADJUST_NAME) {
if (*f.fType == *fContext.fTypes.fFloat4) {
fRTAdjustInterfaceBlock = &intf.variable();
fRTAdjustFieldIndex = i;
} else {
this->errorReporter().error(intf.fOffset, "sk_RTAdjust must have type 'float4'");
}
}
}
}
std::unique_ptr<SkSL::InterfaceBlock> IRGenerator::convertInterfaceBlock(const ASTNode& intf) {
if (this->programKind() != ProgramKind::kFragment &&
this->programKind() != ProgramKind::kVertex) {
this->errorReporter().error(intf.fOffset,
"interface blocks are not allowed in this kind of program");
return nullptr;
}
SkASSERT(intf.fKind == ASTNode::Kind::kInterfaceBlock);
const ASTNode::InterfaceBlockData& id = intf.getInterfaceBlockData();
std::shared_ptr<SymbolTable> old = fSymbolTable;
std::shared_ptr<SymbolTable> symbols;
std::vector<Type::Field> fields;
auto iter = intf.begin();
{
AutoSymbolTable table(this);
symbols = fSymbolTable;
for (size_t i = 0; i < id.fDeclarationCount; ++i) {
StatementArray decls = this->convertVarDeclarations(*(iter++),
Variable::Storage::kInterfaceBlock);
if (decls.empty()) {
return nullptr;
}
for (const auto& decl : decls) {
const VarDeclaration& vd = decl->as<VarDeclaration>();
fields.push_back(Type::Field(vd.var().modifiers(), vd.var().name(),
&vd.var().type()));
}
}
}
const Type* type = old->takeOwnershipOfSymbol(Type::MakeStructType(intf.fOffset,
id.fTypeName,
fields));
int arraySize = 0;
if (id.fIsArray) {
const ASTNode& size = *(iter++);
arraySize = this->convertArraySize(*type, size.fOffset, size);
if (!arraySize) {
return nullptr;
}
type = symbols->addArrayDimension(type, arraySize);
}
const Variable* var = old->takeOwnershipOfSymbol(
std::make_unique<Variable>(intf.fOffset,
this->modifiersPool().add(id.fModifiers),
id.fInstanceName.length() ? id.fInstanceName : id.fTypeName,
type,
fIsBuiltinCode,
Variable::Storage::kGlobal));
if (id.fInstanceName.length()) {
old->addWithoutOwnership(var);
} else {
for (size_t i = 0; i < fields.size(); i++) {
old->add(std::make_unique<Field>(intf.fOffset, var, (int)i));
}
}
std::unique_ptr<SkSL::InterfaceBlock> result = std::make_unique<SkSL::InterfaceBlock>(
intf.fOffset, var, id.fTypeName, id.fInstanceName, arraySize, symbols);
this->scanInterfaceBlock(*result);
return result;
}
void IRGenerator::convertGlobalVarDeclarations(const ASTNode& decl) {
StatementArray decls = this->convertVarDeclarations(decl, Variable::Storage::kGlobal);
for (std::unique_ptr<Statement>& stmt : decls) {
const Type* type = &stmt->as<VarDeclaration>().baseType();
if (type->isStruct()) {
auto [iter, wasInserted] = fDefinedStructs.insert(type);
if (wasInserted) {
fProgramElements->push_back(
std::make_unique<StructDefinition>(decl.fOffset, *type));
}
}
fProgramElements->push_back(std::make_unique<GlobalVarDeclaration>(std::move(stmt)));
}
}
const Type* IRGenerator::convertType(const ASTNode& type, bool allowVoid) {
skstd::string_view name = type.getStringView();
const Symbol* symbol = (*fSymbolTable)[name];
if (!symbol || !symbol->is<Type>()) {
this->errorReporter().error(type.fOffset, "unknown type '" + name + "'");
return nullptr;
}
const Type* result = &symbol->as<Type>();
const bool isArray = (type.begin() != type.end());
if (result->isVoid() && !allowVoid) {
this->errorReporter().error(type.fOffset,
"type '" + name + "' not allowed in this context");
return nullptr;
}
if (!fIsBuiltinCode) {
if (result->containsPrivateFields()) {
this->errorReporter().error(type.fOffset, "type '" + name + "' is private");
return nullptr;
}
if (this->strictES2Mode() && !result->allowedInES2()) {
this->errorReporter().error(type.fOffset, "type '" + name + "' is not supported");
return nullptr;
}
}
if (isArray) {
auto iter = type.begin();
int arraySize = this->convertArraySize(*result, type.fOffset, *iter);
if (!arraySize) {
return nullptr;
}
result = fSymbolTable->addArrayDimension(result, arraySize);
}
return result;
}
std::unique_ptr<Expression> IRGenerator::convertExpression(const ASTNode& expr) {
switch (expr.fKind) {
case ASTNode::Kind::kBinary:
return this->convertBinaryExpression(expr);
case ASTNode::Kind::kBool:
return Literal::MakeBool(fContext, expr.fOffset, expr.getBool());
case ASTNode::Kind::kCall:
return this->convertCallExpression(expr);
case ASTNode::Kind::kField:
return this->convertFieldExpression(expr);
case ASTNode::Kind::kFloat:
return Literal::MakeFloat(fContext, expr.fOffset, expr.getFloat());
case ASTNode::Kind::kIdentifier:
return this->convertIdentifier(expr);
case ASTNode::Kind::kIndex:
return this->convertIndexExpression(expr);
case ASTNode::Kind::kInt:
return Literal::MakeInt(fContext, expr.fOffset, expr.getInt());
case ASTNode::Kind::kPostfix:
return this->convertPostfixExpression(expr);
case ASTNode::Kind::kPrefix:
return this->convertPrefixExpression(expr);
case ASTNode::Kind::kTernary:
return this->convertTernaryExpression(expr);
default:
SkDEBUGFAIL("unsupported expression");
return nullptr;
}
}
std::unique_ptr<Expression> IRGenerator::convertIdentifier(int offset, skstd::string_view name) {
const Symbol* result = (*fSymbolTable)[name];
if (!result) {
this->errorReporter().error(offset, "unknown identifier '" + name + "'");
return nullptr;
}
switch (result->kind()) {
case Symbol::Kind::kFunctionDeclaration: {
std::vector<const FunctionDeclaration*> f = {
&result->as<FunctionDeclaration>()
};
return std::make_unique<FunctionReference>(fContext, offset, f);
}
case Symbol::Kind::kUnresolvedFunction: {
const UnresolvedFunction* f = &result->as<UnresolvedFunction>();
return std::make_unique<FunctionReference>(fContext, offset, f->functions());
}
case Symbol::Kind::kVariable: {
const Variable* var = &result->as<Variable>();
const Modifiers& modifiers = var->modifiers();
switch (modifiers.fLayout.fBuiltin) {
case SK_FRAGCOORD_BUILTIN:
if (caps().canUseFragCoord()) {
fInputs.fUseFlipRTUniform = true;
}
break;
case SK_CLOCKWISE_BUILTIN:
fInputs.fUseFlipRTUniform = true;
break;
}
// default to kRead_RefKind; this will be corrected later if the variable is written to
return VariableReference::Make(offset, var, VariableReference::RefKind::kRead);
}
case Symbol::Kind::kField: {
const Field* field = &result->as<Field>();
auto base = VariableReference::Make(offset, &field->owner(),
VariableReference::RefKind::kRead);
return FieldAccess::Make(fContext, std::move(base), field->fieldIndex(),
FieldAccess::OwnerKind::kAnonymousInterfaceBlock);
}
case Symbol::Kind::kType: {
const Type* t = &result->as<Type>();
return std::make_unique<TypeReference>(fContext, offset, t);
}
case Symbol::Kind::kExternal: {
const ExternalFunction* r = &result->as<ExternalFunction>();
return std::make_unique<ExternalFunctionReference>(offset, r);
}
default:
SK_ABORT("unsupported symbol type %d\n", (int) result->kind());
}
}
std::unique_ptr<Expression> IRGenerator::convertIdentifier(const ASTNode& identifier) {
return this->convertIdentifier(identifier.fOffset, identifier.getStringView());
}
std::unique_ptr<Expression> IRGenerator::coerce(std::unique_ptr<Expression> expr,
const Type& type) {
return type.coerceExpression(std::move(expr), fContext);
}
std::unique_ptr<Expression> IRGenerator::convertBinaryExpression(const ASTNode& expression) {
SkASSERT(expression.fKind == ASTNode::Kind::kBinary);
auto iter = expression.begin();
std::unique_ptr<Expression> left = this->convertExpression(*(iter++));
if (!left) {
return nullptr;
}
std::unique_ptr<Expression> right = this->convertExpression(*(iter++));
if (!right) {
return nullptr;
}
return BinaryExpression::Convert(fContext, std::move(left), expression.getOperator(),
std::move(right));
}
std::unique_ptr<Expression> IRGenerator::convertTernaryExpression(const ASTNode& node) {
SkASSERT(node.fKind == ASTNode::Kind::kTernary);
auto iter = node.begin();
std::unique_ptr<Expression> test = this->convertExpression(*(iter++));
if (!test) {
return nullptr;
}
std::unique_ptr<Expression> ifTrue = this->convertExpression(*(iter++));
if (!ifTrue) {
return nullptr;
}
std::unique_ptr<Expression> ifFalse = this->convertExpression(*(iter++));
if (!ifFalse) {
return nullptr;
}
return TernaryExpression::Convert(fContext, std::move(test),
std::move(ifTrue), std::move(ifFalse));
}
void IRGenerator::copyIntrinsicIfNeeded(const FunctionDeclaration& function) {
if (const ProgramElement* found = fIntrinsics->findAndInclude(function.description())) {
const FunctionDefinition& original = found->as<FunctionDefinition>();
// Sort the referenced intrinsics into a consistent order; otherwise our output will become
// non-deterministic.
std::vector<const FunctionDeclaration*> intrinsics(original.referencedIntrinsics().begin(),
original.referencedIntrinsics().end());
std::sort(intrinsics.begin(), intrinsics.end(),
[](const FunctionDeclaration* a, const FunctionDeclaration* b) {
if (a->isBuiltin() != b->isBuiltin()) {
return a->isBuiltin() < b->isBuiltin();
}
if (a->fOffset != b->fOffset) {
return a->fOffset < b->fOffset;
}
if (a->name() != b->name()) {
return a->name() < b->name();
}
return a->description() < b->description();
});
for (const FunctionDeclaration* f : intrinsics) {
this->copyIntrinsicIfNeeded(*f);
}
fSharedElements->push_back(found);
}
}
std::unique_ptr<Expression> IRGenerator::call(int offset,
const FunctionDeclaration& function,
ExpressionArray arguments) {
if (function.isBuiltin()) {
if (function.intrinsicKind() == k_dFdy_IntrinsicKind) {
fInputs.fUseFlipRTUniform = true;
}
if (!fIsBuiltinCode && fIntrinsics) {
this->copyIntrinsicIfNeeded(function);
}
}
return FunctionCall::Convert(fContext, offset, function, std::move(arguments));
}
/**
* Determines the cost of coercing the arguments of a function to the required types. Cost has no
* particular meaning other than "lower costs are preferred". Returns CoercionCost::Impossible() if
* the call is not valid.
*/
CoercionCost IRGenerator::callCost(const FunctionDeclaration& function,
const ExpressionArray& arguments) const {
if (this->strictES2Mode() && (function.modifiers().fFlags & Modifiers::kES3_Flag)) {
return CoercionCost::Impossible();
}
if (function.parameters().size() != arguments.size()) {
return CoercionCost::Impossible();
}
FunctionDeclaration::ParamTypes types;
const Type* ignored;
if (!function.determineFinalTypes(arguments, &types, &ignored)) {
return CoercionCost::Impossible();
}
CoercionCost total = CoercionCost::Free();
for (size_t i = 0; i < arguments.size(); i++) {
total = total + arguments[i]->coercionCost(*types[i]);
}
return total;
}
const FunctionDeclaration* IRGenerator::findBestFunctionForCall(
const std::vector<const FunctionDeclaration*>& functions,
const ExpressionArray& arguments) const {
if (functions.size() == 1) {
return functions.front();
}
CoercionCost bestCost = CoercionCost::Impossible();
const FunctionDeclaration* best = nullptr;
for (const auto& f : functions) {
CoercionCost cost = this->callCost(*f, arguments);
if (cost < bestCost) {
bestCost = cost;
best = f;
}
}
return best;
}
std::unique_ptr<Expression> IRGenerator::call(int offset,
std::unique_ptr<Expression> functionValue,
ExpressionArray arguments) {
switch (functionValue->kind()) {
case Expression::Kind::kTypeReference:
return Constructor::Convert(fContext,
offset,
functionValue->as<TypeReference>().value(),
std::move(arguments));
case Expression::Kind::kExternalFunctionReference: {
const ExternalFunction& f = functionValue->as<ExternalFunctionReference>().function();
int count = f.callParameterCount();
if (count != (int) arguments.size()) {
this->errorReporter().error(offset, "external function expected " +
to_string(count) + " arguments, but found " +
to_string((int)arguments.size()));
return nullptr;
}
static constexpr int PARAMETER_MAX = 16;
SkASSERT(count < PARAMETER_MAX);
const Type* types[PARAMETER_MAX];
f.getCallParameterTypes(types);
for (int i = 0; i < count; ++i) {
arguments[i] = this->coerce(std::move(arguments[i]), *types[i]);
if (!arguments[i]) {
return nullptr;
}
}
return std::make_unique<ExternalFunctionCall>(offset, &f, std::move(arguments));
}
case Expression::Kind::kFunctionReference: {
const FunctionReference& ref = functionValue->as<FunctionReference>();
const std::vector<const FunctionDeclaration*>& functions = ref.functions();
const FunctionDeclaration* best = this->findBestFunctionForCall(functions, arguments);
if (best) {
return this->call(offset, *best, std::move(arguments));
}
String msg = "no match for " + functions[0]->name() + "(";
String separator;
for (size_t i = 0; i < arguments.size(); i++) {
msg += separator;
separator = ", ";
msg += arguments[i]->type().displayName();
}
msg += ")";
this->errorReporter().error(offset, msg);
return nullptr;
}
case Expression::Kind::kMethodReference: {
MethodReference& ref = functionValue->as<MethodReference>();
arguments.push_back(std::move(ref.self()));
const std::vector<const FunctionDeclaration*>& functions = ref.functions();
const FunctionDeclaration* best = this->findBestFunctionForCall(functions, arguments);
if (best) {
return this->call(offset, *best, std::move(arguments));
}
String msg = "no match for " + arguments.back()->type().displayName() +
"::" + functions[0]->name().substr(1) + "(";
String separator;
for (size_t i = 0; i < arguments.size() - 1; i++) {
msg += separator;
separator = ", ";
msg += arguments[i]->type().displayName();
}
msg += ")";
this->errorReporter().error(offset, msg);
return nullptr;
}
case Expression::Kind::kPoison:
return functionValue;
default:
this->errorReporter().error(offset, "not a function");
return nullptr;
}
}
std::unique_ptr<Expression> IRGenerator::convertPrefixExpression(const ASTNode& expression) {
SkASSERT(expression.fKind == ASTNode::Kind::kPrefix);
std::unique_ptr<Expression> base = this->convertExpression(*expression.begin());
if (!base) {
return nullptr;
}
return PrefixExpression::Convert(fContext, expression.getOperator(), std::move(base));
}
std::unique_ptr<Expression> IRGenerator::convertSwizzle(std::unique_ptr<Expression> base,
skstd::string_view fields) {
return Swizzle::Convert(fContext, std::move(base), fields);
}
std::unique_ptr<Expression> IRGenerator::convertIndexExpression(const ASTNode& index) {
SkASSERT(index.fKind == ASTNode::Kind::kIndex);
auto iter = index.begin();
std::unique_ptr<Expression> base = this->convertExpression(*(iter++));
if (!base) {
return nullptr;
}
if (iter == index.end()) {
if (base->is<TypeReference>()) {
this->errorReporter().error(index.fOffset, "array must have a size");
} else {
this->errorReporter().error(base->fOffset, "missing index in '[]'");
}
return nullptr;
}
std::unique_ptr<Expression> converted = this->convertExpression(*(iter++));
if (!converted) {
return nullptr;
}
return IndexExpression::Convert(fContext, *fSymbolTable, std::move(base), std::move(converted));
}
std::unique_ptr<Expression> IRGenerator::convertCallExpression(const ASTNode& callNode) {
SkASSERT(callNode.fKind == ASTNode::Kind::kCall);
auto iter = callNode.begin();
std::unique_ptr<Expression> base = this->convertExpression(*(iter++));
if (!base) {
return nullptr;
}
ExpressionArray arguments;
for (; iter != callNode.end(); ++iter) {
std::unique_ptr<Expression> converted = this->convertExpression(*iter);
if (!converted) {
return nullptr;
}
arguments.push_back(std::move(converted));
}
return this->call(callNode.fOffset, std::move(base), std::move(arguments));
}
std::unique_ptr<Expression> IRGenerator::convertFieldExpression(const ASTNode& fieldNode) {
std::unique_ptr<Expression> base = this->convertExpression(*fieldNode.begin());
if (!base) {
return nullptr;
}
const skstd::string_view& field = fieldNode.getStringView();
const Type& baseType = base->type();
if (baseType == *fContext.fTypes.fSkCaps || baseType.isStruct() || baseType.isEffectChild()) {
return FieldAccess::Convert(fContext, *fSymbolTable, std::move(base), field);
}
return this->convertSwizzle(std::move(base), field);
}
std::unique_ptr<Expression> IRGenerator::convertPostfixExpression(const ASTNode& expression) {
SkASSERT(expression.fKind == ASTNode::Kind::kPostfix);
std::unique_ptr<Expression> base = this->convertExpression(*expression.begin());
if (!base) {
return nullptr;
}
return PostfixExpression::Convert(fContext, std::move(base), expression.getOperator());
}
void IRGenerator::findAndDeclareBuiltinVariables() {
class BuiltinVariableScanner : public ProgramVisitor {
public:
BuiltinVariableScanner(IRGenerator* generator) : fGenerator(generator) {}
void addDeclaringElement(const String& name) {
// If this is the *first* time we've seen this builtin, findAndInclude will return
// the corresponding ProgramElement.
if (const ProgramElement* decl = fGenerator->fIntrinsics->findAndInclude(name)) {
SkASSERT(decl->is<GlobalVarDeclaration>() || decl->is<SkSL::InterfaceBlock>());
fNewElements.push_back(decl);
}
}
bool visitProgramElement(const ProgramElement& pe) override {
if (pe.is<FunctionDefinition>()) {
const FunctionDefinition& funcDef = pe.as<FunctionDefinition>();
// We synthesize writes to sk_FragColor if main() returns a color, even if it's
// otherwise unreferenced. Check main's return type to see if it's half4.
if (funcDef.declaration().isMain() &&
funcDef.declaration().returnType() == *fGenerator->fContext.fTypes.fHalf4) {
fPreserveFragColor = true;
}
}
return INHERITED::visitProgramElement(pe);
}
bool visitExpression(const Expression& e) override {
if (e.is<VariableReference>() && e.as<VariableReference>().variable()->isBuiltin()) {
this->addDeclaringElement(String(e.as<VariableReference>().variable()->name()));
}
return INHERITED::visitExpression(e);
}
IRGenerator* fGenerator;
std::vector<const ProgramElement*> fNewElements;
bool fPreserveFragColor = false;
using INHERITED = ProgramVisitor;
using INHERITED::visitProgramElement;
};
BuiltinVariableScanner scanner(this);
SkASSERT(fProgramElements);
for (auto& e : *fProgramElements) {
scanner.visitProgramElement(*e);
}
if (scanner.fPreserveFragColor) {
// main() returns a half4, so make sure we don't dead-strip sk_FragColor.
scanner.addDeclaringElement(Compiler::FRAGCOLOR_NAME);
}
switch (this->programKind()) {
case ProgramKind::kFragment:
// Vulkan requires certain builtin variables be present, even if they're unused. At one
// time, validation errors would result if sk_Clockwise was missing. Now, it's just
// (Adreno) driver bugs that drop or corrupt draws if they're missing.
scanner.addDeclaringElement("sk_Clockwise");
break;
default:
break;
}
fSharedElements->insert(
fSharedElements->begin(), scanner.fNewElements.begin(), scanner.fNewElements.end());
}
void IRGenerator::start(const ParsedModule& base,
bool isBuiltinCode,
std::vector<std::unique_ptr<ProgramElement>>* elements,
std::vector<const ProgramElement*>* sharedElements) {
fProgramElements = elements;
fSharedElements = sharedElements;
fSymbolTable = base.fSymbols;
fIntrinsics = base.fIntrinsics.get();
if (fIntrinsics) {
fIntrinsics->resetAlreadyIncluded();
}
fIsBuiltinCode = isBuiltinCode;
fInputs = {};
fRTAdjust = nullptr;
fRTAdjustInterfaceBlock = nullptr;
fDefinedStructs.clear();
this->pushSymbolTable();
if (this->settings().fExternalFunctions) {
// Add any external values to the new symbol table, so they're only visible to this Program.
for (const std::unique_ptr<ExternalFunction>& ef : *this->settings().fExternalFunctions) {
fSymbolTable->addWithoutOwnership(ef.get());
}
}
if (this->isRuntimeEffect() && !fContext.fConfig->fSettings.fEnforceES2Restrictions) {
// We're compiling a runtime effect, but we're not enforcing ES2 restrictions. Add various
// non-ES2 types to our symbol table to allow them to be tested.
fSymbolTable->addAlias("mat2x2", fContext.fTypes.fFloat2x2.get());
fSymbolTable->addAlias("mat2x3", fContext.fTypes.fFloat2x3.get());
fSymbolTable->addAlias("mat2x4", fContext.fTypes.fFloat2x4.get());
fSymbolTable->addAlias("mat3x2", fContext.fTypes.fFloat3x2.get());
fSymbolTable->addAlias("mat3x3", fContext.fTypes.fFloat3x3.get());
fSymbolTable->addAlias("mat3x4", fContext.fTypes.fFloat3x4.get());
fSymbolTable->addAlias("mat4x2", fContext.fTypes.fFloat4x2.get());
fSymbolTable->addAlias("mat4x3", fContext.fTypes.fFloat4x3.get());
fSymbolTable->addAlias("mat4x4", fContext.fTypes.fFloat4x4.get());
fSymbolTable->addAlias("float2x3", fContext.fTypes.fFloat2x3.get());
fSymbolTable->addAlias("float2x4", fContext.fTypes.fFloat2x4.get());
fSymbolTable->addAlias("float3x2", fContext.fTypes.fFloat3x2.get());
fSymbolTable->addAlias("float3x4", fContext.fTypes.fFloat3x4.get());
fSymbolTable->addAlias("float4x2", fContext.fTypes.fFloat4x2.get());
fSymbolTable->addAlias("float4x3", fContext.fTypes.fFloat4x3.get());
fSymbolTable->addAlias("half2x3", fContext.fTypes.fHalf2x3.get());
fSymbolTable->addAlias("half2x4", fContext.fTypes.fHalf2x4.get());
fSymbolTable->addAlias("half3x2", fContext.fTypes.fHalf3x2.get());
fSymbolTable->addAlias("half3x4", fContext.fTypes.fHalf3x4.get());
fSymbolTable->addAlias("half4x2", fContext.fTypes.fHalf4x2.get());
fSymbolTable->addAlias("half4x3", fContext.fTypes.fHalf4x3.get());
fSymbolTable->addAlias("uint", fContext.fTypes.fUInt.get());
fSymbolTable->addAlias("uint2", fContext.fTypes.fUInt2.get());
fSymbolTable->addAlias("uint3", fContext.fTypes.fUInt3.get());
fSymbolTable->addAlias("uint4", fContext.fTypes.fUInt4.get());
fSymbolTable->addAlias("short", fContext.fTypes.fShort.get());
fSymbolTable->addAlias("short2", fContext.fTypes.fShort2.get());
fSymbolTable->addAlias("short3", fContext.fTypes.fShort3.get());
fSymbolTable->addAlias("short4", fContext.fTypes.fShort4.get());
fSymbolTable->addAlias("ushort", fContext.fTypes.fUShort.get());
fSymbolTable->addAlias("ushort2", fContext.fTypes.fUShort2.get());
fSymbolTable->addAlias("ushort3", fContext.fTypes.fUShort3.get());
fSymbolTable->addAlias("ushort4", fContext.fTypes.fUShort4.get());
}
}
IRGenerator::IRBundle IRGenerator::finish() {
// Variables defined in the pre-includes need their declaring elements added to the program
if (!fIsBuiltinCode && fIntrinsics) {
this->findAndDeclareBuiltinVariables();
}
return IRBundle{std::move(*fProgramElements),
std::move(*fSharedElements),
std::move(fSymbolTable),
fInputs};
}
IRGenerator::IRBundle IRGenerator::convertProgram(
const ParsedModule& base,
bool isBuiltinCode,
skstd::string_view text) {
Parser parser(text, *fSymbolTable, this->errorReporter());
fFile = parser.compilationUnit();
if (this->errorReporter().errorCount() == 0) {
SkASSERT(fFile);
for (const auto& decl : fFile->root()) {
switch (decl.fKind) {
case ASTNode::Kind::kVarDeclarations:
this->convertGlobalVarDeclarations(decl);
break;
case ASTNode::Kind::kFunction:
this->convertFunction(decl);
break;
case ASTNode::Kind::kModifiers: {
std::unique_ptr<ModifiersDeclaration> f =
this->convertModifiersDeclaration(decl);
if (f) {
fProgramElements->push_back(std::move(f));
}
break;
}
case ASTNode::Kind::kInterfaceBlock: {
std::unique_ptr<SkSL::InterfaceBlock> i = this->convertInterfaceBlock(decl);
if (i) {
fProgramElements->push_back(std::move(i));
}
break;
}
case ASTNode::Kind::kExtension: {
std::unique_ptr<Extension> e = this->convertExtension(decl.fOffset,
decl.getStringView());
if (e) {
fProgramElements->push_back(std::move(e));
}
break;
}
case ASTNode::Kind::kType: {
std::unique_ptr<StructDefinition> s = this->convertStructDefinition(decl);
if (s) {
fProgramElements->push_back(std::move(s));
}
break;
}
default:
SkDEBUGFAIL("unsupported declaration");
break;
}
}
}
return this->finish();
}
} // namespace SkSL