blob: c732901765325cd859f4a22dcbbc6d5b12a5eec6 [file] [log] [blame]
/*
* Copyright 2012 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkImageFilter.h"
#include "SkCanvas.h"
#include "SkFuzzLogging.h"
#include "SkImageFilterCache.h"
#include "SkLocalMatrixImageFilter.h"
#include "SkMatrixImageFilter.h"
#include "SkReadBuffer.h"
#include "SkRect.h"
#include "SkSpecialImage.h"
#include "SkSpecialSurface.h"
#include "SkValidationUtils.h"
#include "SkWriteBuffer.h"
#if SK_SUPPORT_GPU
#include "GrColorSpaceXform.h"
#include "GrContext.h"
#include "GrFixedClip.h"
#include "GrRenderTargetContext.h"
#include "GrTextureProxy.h"
#include "SkGr.h"
#endif
void SkImageFilter::CropRect::toString(SkString* str) const {
if (!fFlags) {
return;
}
str->appendf("cropRect (");
if (fFlags & CropRect::kHasLeft_CropEdge) {
str->appendf("%.2f, ", fRect.fLeft);
} else {
str->appendf("X, ");
}
if (fFlags & CropRect::kHasTop_CropEdge) {
str->appendf("%.2f, ", fRect.fTop);
} else {
str->appendf("X, ");
}
if (fFlags & CropRect::kHasWidth_CropEdge) {
str->appendf("%.2f, ", fRect.width());
} else {
str->appendf("X, ");
}
if (fFlags & CropRect::kHasHeight_CropEdge) {
str->appendf("%.2f", fRect.height());
} else {
str->appendf("X");
}
str->appendf(") ");
}
void SkImageFilter::CropRect::applyTo(const SkIRect& imageBounds,
const SkMatrix& ctm,
bool embiggen,
SkIRect* cropped) const {
*cropped = imageBounds;
if (fFlags) {
SkRect devCropR;
ctm.mapRect(&devCropR, fRect);
SkIRect devICropR = devCropR.roundOut();
// Compute the left/top first, in case we need to modify the right/bottom for a missing edge
if (fFlags & kHasLeft_CropEdge) {
if (embiggen || devICropR.fLeft > cropped->fLeft) {
cropped->fLeft = devICropR.fLeft;
}
} else {
devICropR.fRight = cropped->fLeft + devICropR.width();
}
if (fFlags & kHasTop_CropEdge) {
if (embiggen || devICropR.fTop > cropped->fTop) {
cropped->fTop = devICropR.fTop;
}
} else {
devICropR.fBottom = cropped->fTop + devICropR.height();
}
if (fFlags & kHasWidth_CropEdge) {
if (embiggen || devICropR.fRight < cropped->fRight) {
cropped->fRight = devICropR.fRight;
}
}
if (fFlags & kHasHeight_CropEdge) {
if (embiggen || devICropR.fBottom < cropped->fBottom) {
cropped->fBottom = devICropR.fBottom;
}
}
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
static int32_t next_image_filter_unique_id() {
static int32_t gImageFilterUniqueID;
// Never return 0.
int32_t id;
do {
id = sk_atomic_inc(&gImageFilterUniqueID) + 1;
} while (0 == id);
return id;
}
void SkImageFilter::Common::allocInputs(int count) {
fInputs.reset(count);
}
bool SkImageFilter::Common::unflatten(SkReadBuffer& buffer, int expectedCount) {
const int count = buffer.readInt();
if (!buffer.validate(count >= 0)) {
return false;
}
if (!buffer.validate(expectedCount < 0 || count == expectedCount)) {
return false;
}
this->allocInputs(count);
for (int i = 0; i < count; i++) {
if (buffer.readBool()) {
fInputs[i] = sk_sp<SkImageFilter>(buffer.readImageFilter());
}
if (!buffer.isValid()) {
return false;
}
}
SkRect rect;
buffer.readRect(&rect);
if (!buffer.isValid() || !buffer.validate(SkIsValidRect(rect))) {
return false;
}
uint32_t flags = buffer.readUInt();
fCropRect = CropRect(rect, flags);
return buffer.isValid();
}
///////////////////////////////////////////////////////////////////////////////////////////////////
void SkImageFilter::init(sk_sp<SkImageFilter> const* inputs,
int inputCount,
const CropRect* cropRect) {
fCropRect = cropRect ? *cropRect : CropRect(SkRect(), 0x0);
fInputs.reset(inputCount);
for (int i = 0; i < inputCount; ++i) {
if (!inputs[i] || inputs[i]->usesSrcInput()) {
fUsesSrcInput = true;
}
fInputs[i] = inputs[i];
}
}
SkImageFilter::SkImageFilter(sk_sp<SkImageFilter> const* inputs,
int inputCount,
const CropRect* cropRect)
: fUsesSrcInput(false)
, fUniqueID(next_image_filter_unique_id()) {
this->init(inputs, inputCount, cropRect);
}
SkImageFilter::~SkImageFilter() {
SkAutoMutexAcquire lock(fMutex);
SkImageFilterCache::Get()->purgeByKeys(fCacheKeys.begin(), fCacheKeys.count());
}
SkImageFilter::SkImageFilter(int inputCount, SkReadBuffer& buffer)
: fUsesSrcInput(false)
, fCropRect(SkRect(), 0x0)
, fUniqueID(next_image_filter_unique_id()) {
Common common;
if (common.unflatten(buffer, inputCount)) {
this->init(common.inputs(), common.inputCount(), &common.cropRect());
}
}
void SkImageFilter::flatten(SkWriteBuffer& buffer) const {
buffer.writeInt(fInputs.count());
for (int i = 0; i < fInputs.count(); i++) {
SkImageFilter* input = this->getInput(i);
buffer.writeBool(input != nullptr);
if (input != nullptr) {
buffer.writeFlattenable(input);
}
}
buffer.writeRect(fCropRect.rect());
buffer.writeUInt(fCropRect.flags());
}
sk_sp<SkSpecialImage> SkImageFilter::filterImage(SkSpecialImage* src, const Context& context,
SkIPoint* offset) const {
SkASSERT(src && offset);
if (!context.isValid()) {
return nullptr;
}
uint32_t srcGenID = fUsesSrcInput ? src->uniqueID() : 0;
const SkIRect srcSubset = fUsesSrcInput ? src->subset() : SkIRect::MakeWH(0, 0);
SkImageFilterCacheKey key(fUniqueID, context.ctm(), context.clipBounds(), srcGenID, srcSubset);
if (context.cache()) {
sk_sp<SkSpecialImage> result = context.cache()->get(key, offset);
if (result) {
return result;
}
}
sk_sp<SkSpecialImage> result(this->onFilterImage(src, context, offset));
#if SK_SUPPORT_GPU
if (src->isTextureBacked() && result && !result->isTextureBacked()) {
// Keep the result on the GPU - this is still required for some
// image filters that don't support GPU in all cases
GrContext* context = src->getContext();
result = result->makeTextureImage(context);
}
#endif
if (result && context.cache()) {
context.cache()->set(key, result.get(), *offset, this);
SkAutoMutexAcquire mutex(fMutex);
fCacheKeys.push_back(key);
}
return result;
}
void SkImageFilter::removeKey(const SkImageFilterCacheKey& key) const {
SkAutoMutexAcquire mutex(fMutex);
for (int i = 0; i < fCacheKeys.count(); i++) {
if (fCacheKeys[i] == key) {
fCacheKeys.removeShuffle(i);
break;
}
}
#ifdef SK_DEBUG
for (int i = 0; i < fCacheKeys.count(); i++) {
if (fCacheKeys[i] == key) {
SkASSERT(false);
}
}
#endif
}
SkIRect SkImageFilter::filterBounds(const SkIRect& src, const SkMatrix& ctm,
MapDirection direction) const {
if (kReverse_MapDirection == direction) {
SkIRect bounds = this->onFilterNodeBounds(src, ctm, direction);
return this->onFilterBounds(bounds, ctm, direction);
} else {
SkIRect bounds = this->onFilterBounds(src, ctm, direction);
bounds = this->onFilterNodeBounds(bounds, ctm, direction);
SkIRect dst;
this->getCropRect().applyTo(bounds, ctm, this->affectsTransparentBlack(), &dst);
return dst;
}
}
SkRect SkImageFilter::computeFastBounds(const SkRect& src) const {
if (0 == this->countInputs()) {
return src;
}
SkRect combinedBounds = this->getInput(0) ? this->getInput(0)->computeFastBounds(src) : src;
for (int i = 1; i < this->countInputs(); i++) {
SkImageFilter* input = this->getInput(i);
if (input) {
combinedBounds.join(input->computeFastBounds(src));
} else {
combinedBounds.join(src);
}
}
return combinedBounds;
}
bool SkImageFilter::canComputeFastBounds() const {
if (this->affectsTransparentBlack()) {
return false;
}
for (int i = 0; i < this->countInputs(); i++) {
SkImageFilter* input = this->getInput(i);
if (input && !input->canComputeFastBounds()) {
return false;
}
}
return true;
}
#if SK_SUPPORT_GPU
sk_sp<SkSpecialImage> SkImageFilter::DrawWithFP(GrContext* context,
std::unique_ptr<GrFragmentProcessor> fp,
const SkIRect& bounds,
const OutputProperties& outputProperties) {
GrPaint paint;
paint.addColorFragmentProcessor(std::move(fp));
paint.setPorterDuffXPFactory(SkBlendMode::kSrc);
sk_sp<SkColorSpace> colorSpace = sk_ref_sp(outputProperties.colorSpace());
GrPixelConfig config = GrRenderableConfigForColorSpace(colorSpace.get());
sk_sp<GrRenderTargetContext> renderTargetContext(
context->contextPriv().makeDeferredRenderTargetContext(
SkBackingFit::kApprox, bounds.width(), bounds.height(),
config, std::move(colorSpace)));
if (!renderTargetContext) {
return nullptr;
}
paint.setGammaCorrect(renderTargetContext->colorSpaceInfo().isGammaCorrect());
SkIRect dstIRect = SkIRect::MakeWH(bounds.width(), bounds.height());
SkRect srcRect = SkRect::Make(bounds);
SkRect dstRect = SkRect::MakeWH(srcRect.width(), srcRect.height());
GrFixedClip clip(dstIRect);
renderTargetContext->fillRectToRect(clip, std::move(paint), GrAA::kNo, SkMatrix::I(), dstRect,
srcRect);
return SkSpecialImage::MakeDeferredFromGpu(
context, dstIRect, kNeedNewImageUniqueID_SpecialImage,
renderTargetContext->asTextureProxyRef(),
renderTargetContext->colorSpaceInfo().refColorSpace());
}
#endif
bool SkImageFilter::asAColorFilter(SkColorFilter** filterPtr) const {
SkASSERT(nullptr != filterPtr);
if (!this->isColorFilterNode(filterPtr)) {
return false;
}
if (nullptr != this->getInput(0) || (*filterPtr)->affectsTransparentBlack()) {
(*filterPtr)->unref();
return false;
}
return true;
}
bool SkImageFilter::canHandleComplexCTM() const {
if (!this->onCanHandleComplexCTM()) {
return false;
}
const int count = this->countInputs();
for (int i = 0; i < count; ++i) {
SkImageFilter* input = this->getInput(i);
if (input && !input->canHandleComplexCTM()) {
return false;
}
}
return true;
}
bool SkImageFilter::applyCropRect(const Context& ctx, const SkIRect& srcBounds,
SkIRect* dstBounds) const {
SkIRect temp = this->onFilterNodeBounds(srcBounds, ctx.ctm(), kForward_MapDirection);
fCropRect.applyTo(temp, ctx.ctm(), this->affectsTransparentBlack(), dstBounds);
// Intersect against the clip bounds, in case the crop rect has
// grown the bounds beyond the original clip. This can happen for
// example in tiling, where the clip is much smaller than the filtered
// primitive. If we didn't do this, we would be processing the filter
// at the full crop rect size in every tile.
return dstBounds->intersect(ctx.clipBounds());
}
#if SK_SUPPORT_GPU
sk_sp<SkSpecialImage> SkImageFilter::ImageToColorSpace(SkSpecialImage* src,
const OutputProperties& outProps) {
// There are several conditions that determine if we actually need to convert the source to the
// destination's color space. Rather than duplicate that logic here, just try to make an xform
// object. If that produces something, then both are tagged, and the source is in a different
// gamut than the dest. There is some overhead to making the xform, but those are cached, and
// if we get one back, that means we're about to use it during the conversion anyway.
//
// TODO: Fix this check, to handle wider support of transfer functions, config mismatch, etc.
// For now, continue to just check if gamut is different, which may not be sufficient.
auto colorSpaceXform = GrColorSpaceXform::MakeGamutXform(src->getColorSpace(),
outProps.colorSpace());
if (!colorSpaceXform) {
// No xform needed, just return the original image
return sk_ref_sp(src);
}
sk_sp<SkSpecialSurface> surf(src->makeSurface(outProps,
SkISize::Make(src->width(), src->height())));
if (!surf) {
return sk_ref_sp(src);
}
SkCanvas* canvas = surf->getCanvas();
SkASSERT(canvas);
SkPaint p;
p.setBlendMode(SkBlendMode::kSrc);
src->draw(canvas, 0, 0, &p);
return surf->makeImageSnapshot();
}
#endif
// Return a larger (newWidth x newHeight) copy of 'src' with black padding
// around it.
static sk_sp<SkSpecialImage> pad_image(SkSpecialImage* src,
const SkImageFilter::OutputProperties& outProps,
int newWidth, int newHeight, int offX, int offY) {
// We would like to operate in the source's color space (so that we return an "identical"
// image, other than the padding. To achieve that, we'd create new output properties:
//
// SkImageFilter::OutputProperties outProps(src->getColorSpace());
//
// That fails in at least two ways. For formats that are texturable but not renderable (like
// F16 on some ES implementations), we can't create a surface to do the work. For sRGB, images
// may be tagged with an sRGB color space (which leads to an sRGB config in makeSurface). But
// the actual config of that sRGB image on a device with no sRGB support is non-sRGB.
//
// Rather than try to special case these situations, we execute the image padding in the
// destination color space. This should not affect the output of the DAG in (almost) any case,
// because the result of this call is going to be used as an input, where it would have been
// switched to the destination space anyway. The one exception would be a filter that expected
// to consume unclamped F16 data, but the padded version of the image is pre-clamped to 8888.
// We can revisit this logic if that ever becomes an actual problem.
sk_sp<SkSpecialSurface> surf(src->makeSurface(outProps, SkISize::Make(newWidth, newHeight)));
if (!surf) {
return nullptr;
}
SkCanvas* canvas = surf->getCanvas();
SkASSERT(canvas);
canvas->clear(0x0);
src->draw(canvas, offX, offY, nullptr);
return surf->makeImageSnapshot();
}
sk_sp<SkSpecialImage> SkImageFilter::applyCropRect(const Context& ctx,
SkSpecialImage* src,
SkIPoint* srcOffset,
SkIRect* bounds) const {
const SkIRect srcBounds = SkIRect::MakeXYWH(srcOffset->x(), srcOffset->y(),
src->width(), src->height());
SkIRect dstBounds = this->onFilterNodeBounds(srcBounds, ctx.ctm(), kForward_MapDirection);
fCropRect.applyTo(dstBounds, ctx.ctm(), this->affectsTransparentBlack(), bounds);
if (!bounds->intersect(ctx.clipBounds())) {
return nullptr;
}
if (srcBounds.contains(*bounds)) {
return sk_sp<SkSpecialImage>(SkRef(src));
} else {
sk_sp<SkSpecialImage> img(pad_image(src, ctx.outputProperties(),
bounds->width(), bounds->height(),
srcOffset->x() - bounds->x(),
srcOffset->y() - bounds->y()));
*srcOffset = SkIPoint::Make(bounds->x(), bounds->y());
return img;
}
}
SkIRect SkImageFilter::onFilterBounds(const SkIRect& src, const SkMatrix& ctm,
MapDirection direction) const {
if (this->countInputs() < 1) {
return src;
}
SkIRect totalBounds;
for (int i = 0; i < this->countInputs(); ++i) {
SkImageFilter* filter = this->getInput(i);
SkIRect rect = filter ? filter->filterBounds(src, ctm, direction) : src;
if (0 == i) {
totalBounds = rect;
} else {
totalBounds.join(rect);
}
}
return totalBounds;
}
SkIRect SkImageFilter::onFilterNodeBounds(const SkIRect& src, const SkMatrix&, MapDirection) const {
return src;
}
SkImageFilter::Context SkImageFilter::mapContext(const Context& ctx) const {
SkIRect clipBounds = this->onFilterNodeBounds(ctx.clipBounds(), ctx.ctm(),
MapDirection::kReverse_MapDirection);
return Context(ctx.ctm(), clipBounds, ctx.cache(), ctx.outputProperties());
}
sk_sp<SkImageFilter> SkImageFilter::MakeMatrixFilter(const SkMatrix& matrix,
SkFilterQuality filterQuality,
sk_sp<SkImageFilter> input) {
return SkMatrixImageFilter::Make(matrix, filterQuality, std::move(input));
}
sk_sp<SkImageFilter> SkImageFilter::makeWithLocalMatrix(const SkMatrix& matrix) const {
// SkLocalMatrixImageFilter takes SkImage* in its factory, but logically that parameter
// is *always* treated as a const ptr. Hence the const-cast here.
//
SkImageFilter* nonConstThis = const_cast<SkImageFilter*>(this);
return SkLocalMatrixImageFilter::Make(matrix, sk_ref_sp<SkImageFilter>(nonConstThis));
}
sk_sp<SkSpecialImage> SkImageFilter::filterInput(int index,
SkSpecialImage* src,
const Context& ctx,
SkIPoint* offset) const {
SkImageFilter* input = this->getInput(index);
if (!input) {
return sk_sp<SkSpecialImage>(SkRef(src));
}
sk_sp<SkSpecialImage> result(input->filterImage(src, this->mapContext(ctx), offset));
SkASSERT(!result || src->isTextureBacked() == result->isTextureBacked());
return result;
}
void SkImageFilter::PurgeCache() {
SkImageFilterCache::Get()->purge();
}