blob: 86bf5f20c03e9f27df15913a8b20082e31f163b7 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/ganesh/vk/GrVkPipeline.h"
#include "src/core/SkTraceEvent.h"
#include "src/gpu/ganesh/GrGeometryProcessor.h"
#include "src/gpu/ganesh/GrPipeline.h"
#include "src/gpu/ganesh/GrStencilSettings.h"
#include "src/gpu/ganesh/vk/GrVkCommandBuffer.h"
#include "src/gpu/ganesh/vk/GrVkGpu.h"
#include "src/gpu/ganesh/vk/GrVkRenderTarget.h"
#include "src/gpu/ganesh/vk/GrVkUtil.h"
#if defined(SK_ENABLE_SCOPED_LSAN_SUPPRESSIONS)
#include <sanitizer/lsan_interface.h>
#endif
static inline VkFormat attrib_type_to_vkformat(GrVertexAttribType type) {
switch (type) {
case kFloat_GrVertexAttribType:
return VK_FORMAT_R32_SFLOAT;
case kFloat2_GrVertexAttribType:
return VK_FORMAT_R32G32_SFLOAT;
case kFloat3_GrVertexAttribType:
return VK_FORMAT_R32G32B32_SFLOAT;
case kFloat4_GrVertexAttribType:
return VK_FORMAT_R32G32B32A32_SFLOAT;
case kHalf_GrVertexAttribType:
return VK_FORMAT_R16_SFLOAT;
case kHalf2_GrVertexAttribType:
return VK_FORMAT_R16G16_SFLOAT;
case kHalf4_GrVertexAttribType:
return VK_FORMAT_R16G16B16A16_SFLOAT;
case kInt2_GrVertexAttribType:
return VK_FORMAT_R32G32_SINT;
case kInt3_GrVertexAttribType:
return VK_FORMAT_R32G32B32_SINT;
case kInt4_GrVertexAttribType:
return VK_FORMAT_R32G32B32A32_SINT;
case kByte_GrVertexAttribType:
return VK_FORMAT_R8_SINT;
case kByte2_GrVertexAttribType:
return VK_FORMAT_R8G8_SINT;
case kByte4_GrVertexAttribType:
return VK_FORMAT_R8G8B8A8_SINT;
case kUByte_GrVertexAttribType:
return VK_FORMAT_R8_UINT;
case kUByte2_GrVertexAttribType:
return VK_FORMAT_R8G8_UINT;
case kUByte4_GrVertexAttribType:
return VK_FORMAT_R8G8B8A8_UINT;
case kUByte_norm_GrVertexAttribType:
return VK_FORMAT_R8_UNORM;
case kUByte4_norm_GrVertexAttribType:
return VK_FORMAT_R8G8B8A8_UNORM;
case kShort2_GrVertexAttribType:
return VK_FORMAT_R16G16_SINT;
case kShort4_GrVertexAttribType:
return VK_FORMAT_R16G16B16A16_SINT;
case kUShort2_GrVertexAttribType:
return VK_FORMAT_R16G16_UINT;
case kUShort2_norm_GrVertexAttribType:
return VK_FORMAT_R16G16_UNORM;
case kInt_GrVertexAttribType:
return VK_FORMAT_R32_SINT;
case kUInt_GrVertexAttribType:
return VK_FORMAT_R32_UINT;
case kUShort_norm_GrVertexAttribType:
return VK_FORMAT_R16_UNORM;
case kUShort4_norm_GrVertexAttribType:
return VK_FORMAT_R16G16B16A16_UNORM;
}
SK_ABORT("Unknown vertex attrib type");
}
static void setup_vertex_input_state(
const GrGeometryProcessor::AttributeSet& vertexAttribs,
const GrGeometryProcessor::AttributeSet& instanceAttribs,
VkPipelineVertexInputStateCreateInfo* vertexInputInfo,
SkSTArray<2, VkVertexInputBindingDescription, true>* bindingDescs,
VkVertexInputAttributeDescription* attributeDesc) {
int vaCount = vertexAttribs.count();
int iaCount = instanceAttribs.count();
uint32_t vertexBinding = 0, instanceBinding = 0;
int nextBinding = bindingDescs->count();
if (vaCount) {
vertexBinding = nextBinding++;
}
if (iaCount) {
instanceBinding = nextBinding;
}
// setup attribute descriptions
int attribIndex = 0;
for (auto attrib : vertexAttribs) {
VkVertexInputAttributeDescription& vkAttrib = attributeDesc[attribIndex];
vkAttrib.location = attribIndex++; // for now assume location = attribIndex
vkAttrib.binding = vertexBinding;
vkAttrib.format = attrib_type_to_vkformat(attrib.cpuType());
vkAttrib.offset = *attrib.offset();
}
for (auto attrib : instanceAttribs) {
VkVertexInputAttributeDescription& vkAttrib = attributeDesc[attribIndex];
vkAttrib.location = attribIndex++; // for now assume location = attribIndex
vkAttrib.binding = instanceBinding;
vkAttrib.format = attrib_type_to_vkformat(attrib.cpuType());
vkAttrib.offset = *attrib.offset();
}
if (vaCount) {
bindingDescs->push_back() = {
vertexBinding,
(uint32_t) vertexAttribs.stride(),
VK_VERTEX_INPUT_RATE_VERTEX
};
}
if (iaCount) {
bindingDescs->push_back() = {
instanceBinding,
(uint32_t) instanceAttribs.stride(),
VK_VERTEX_INPUT_RATE_INSTANCE
};
}
memset(vertexInputInfo, 0, sizeof(VkPipelineVertexInputStateCreateInfo));
vertexInputInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vertexInputInfo->pNext = nullptr;
vertexInputInfo->flags = 0;
vertexInputInfo->vertexBindingDescriptionCount = bindingDescs->count();
vertexInputInfo->pVertexBindingDescriptions = bindingDescs->begin();
vertexInputInfo->vertexAttributeDescriptionCount = vaCount + iaCount;
vertexInputInfo->pVertexAttributeDescriptions = attributeDesc;
}
static VkPrimitiveTopology gr_primitive_type_to_vk_topology(GrPrimitiveType primitiveType) {
switch (primitiveType) {
case GrPrimitiveType::kTriangles:
return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
case GrPrimitiveType::kTriangleStrip:
return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP;
case GrPrimitiveType::kPoints:
return VK_PRIMITIVE_TOPOLOGY_POINT_LIST;
case GrPrimitiveType::kLines:
return VK_PRIMITIVE_TOPOLOGY_LINE_LIST;
case GrPrimitiveType::kLineStrip:
return VK_PRIMITIVE_TOPOLOGY_LINE_STRIP;
}
SkUNREACHABLE;
}
static void setup_input_assembly_state(GrPrimitiveType primitiveType,
VkPipelineInputAssemblyStateCreateInfo* inputAssemblyInfo) {
memset(inputAssemblyInfo, 0, sizeof(VkPipelineInputAssemblyStateCreateInfo));
inputAssemblyInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
inputAssemblyInfo->pNext = nullptr;
inputAssemblyInfo->flags = 0;
inputAssemblyInfo->primitiveRestartEnable = false;
inputAssemblyInfo->topology = gr_primitive_type_to_vk_topology(primitiveType);
}
static VkStencilOp stencil_op_to_vk_stencil_op(GrStencilOp op) {
static const VkStencilOp gTable[] = {
VK_STENCIL_OP_KEEP, // kKeep
VK_STENCIL_OP_ZERO, // kZero
VK_STENCIL_OP_REPLACE, // kReplace
VK_STENCIL_OP_INVERT, // kInvert
VK_STENCIL_OP_INCREMENT_AND_WRAP, // kIncWrap
VK_STENCIL_OP_DECREMENT_AND_WRAP, // kDecWrap
VK_STENCIL_OP_INCREMENT_AND_CLAMP, // kIncClamp
VK_STENCIL_OP_DECREMENT_AND_CLAMP, // kDecClamp
};
static_assert(std::size(gTable) == kGrStencilOpCount);
static_assert(0 == (int)GrStencilOp::kKeep);
static_assert(1 == (int)GrStencilOp::kZero);
static_assert(2 == (int)GrStencilOp::kReplace);
static_assert(3 == (int)GrStencilOp::kInvert);
static_assert(4 == (int)GrStencilOp::kIncWrap);
static_assert(5 == (int)GrStencilOp::kDecWrap);
static_assert(6 == (int)GrStencilOp::kIncClamp);
static_assert(7 == (int)GrStencilOp::kDecClamp);
SkASSERT(op < (GrStencilOp)kGrStencilOpCount);
return gTable[(int)op];
}
static VkCompareOp stencil_func_to_vk_compare_op(GrStencilTest test) {
static const VkCompareOp gTable[] = {
VK_COMPARE_OP_ALWAYS, // kAlways
VK_COMPARE_OP_NEVER, // kNever
VK_COMPARE_OP_GREATER, // kGreater
VK_COMPARE_OP_GREATER_OR_EQUAL, // kGEqual
VK_COMPARE_OP_LESS, // kLess
VK_COMPARE_OP_LESS_OR_EQUAL, // kLEqual
VK_COMPARE_OP_EQUAL, // kEqual
VK_COMPARE_OP_NOT_EQUAL, // kNotEqual
};
static_assert(std::size(gTable) == kGrStencilTestCount);
static_assert(0 == (int)GrStencilTest::kAlways);
static_assert(1 == (int)GrStencilTest::kNever);
static_assert(2 == (int)GrStencilTest::kGreater);
static_assert(3 == (int)GrStencilTest::kGEqual);
static_assert(4 == (int)GrStencilTest::kLess);
static_assert(5 == (int)GrStencilTest::kLEqual);
static_assert(6 == (int)GrStencilTest::kEqual);
static_assert(7 == (int)GrStencilTest::kNotEqual);
SkASSERT(test < (GrStencilTest)kGrStencilTestCount);
return gTable[(int)test];
}
static void setup_stencil_op_state(
VkStencilOpState* opState, const GrStencilSettings::Face& stencilFace) {
opState->failOp = stencil_op_to_vk_stencil_op(stencilFace.fFailOp);
opState->passOp = stencil_op_to_vk_stencil_op(stencilFace.fPassOp);
opState->depthFailOp = opState->failOp;
opState->compareOp = stencil_func_to_vk_compare_op(stencilFace.fTest);
opState->compareMask = stencilFace.fTestMask;
opState->writeMask = stencilFace.fWriteMask;
opState->reference = stencilFace.fRef;
}
static void setup_depth_stencil_state(
const GrStencilSettings& stencilSettings,
GrSurfaceOrigin origin,
VkPipelineDepthStencilStateCreateInfo* stencilInfo) {
memset(stencilInfo, 0, sizeof(VkPipelineDepthStencilStateCreateInfo));
stencilInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
stencilInfo->pNext = nullptr;
stencilInfo->flags = 0;
// set depth testing defaults
stencilInfo->depthTestEnable = VK_FALSE;
stencilInfo->depthWriteEnable = VK_FALSE;
stencilInfo->depthCompareOp = VK_COMPARE_OP_ALWAYS;
stencilInfo->depthBoundsTestEnable = VK_FALSE;
stencilInfo->stencilTestEnable = !stencilSettings.isDisabled();
if (!stencilSettings.isDisabled()) {
if (!stencilSettings.isTwoSided()) {
setup_stencil_op_state(&stencilInfo->front, stencilSettings.singleSidedFace());
stencilInfo->back = stencilInfo->front;
} else {
setup_stencil_op_state(&stencilInfo->front, stencilSettings.postOriginCCWFace(origin));
setup_stencil_op_state(&stencilInfo->back, stencilSettings.postOriginCWFace(origin));
}
}
stencilInfo->minDepthBounds = 0.0f;
stencilInfo->maxDepthBounds = 1.0f;
}
static void setup_viewport_scissor_state(VkPipelineViewportStateCreateInfo* viewportInfo) {
memset(viewportInfo, 0, sizeof(VkPipelineViewportStateCreateInfo));
viewportInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
viewportInfo->pNext = nullptr;
viewportInfo->flags = 0;
viewportInfo->viewportCount = 1;
viewportInfo->pViewports = nullptr; // This is set dynamically
viewportInfo->scissorCount = 1;
viewportInfo->pScissors = nullptr; // This is set dynamically
SkASSERT(viewportInfo->viewportCount == viewportInfo->scissorCount);
}
static void setup_multisample_state(int numSamples,
const GrCaps* caps,
VkPipelineMultisampleStateCreateInfo* multisampleInfo) {
memset(multisampleInfo, 0, sizeof(VkPipelineMultisampleStateCreateInfo));
multisampleInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
multisampleInfo->pNext = nullptr;
multisampleInfo->flags = 0;
SkAssertResult(GrSampleCountToVkSampleCount(numSamples,
&multisampleInfo->rasterizationSamples));
multisampleInfo->sampleShadingEnable = VK_FALSE;
multisampleInfo->minSampleShading = 0.0f;
multisampleInfo->pSampleMask = nullptr;
multisampleInfo->alphaToCoverageEnable = VK_FALSE;
multisampleInfo->alphaToOneEnable = VK_FALSE;
}
static VkBlendFactor blend_coeff_to_vk_blend(skgpu::BlendCoeff coeff) {
switch (coeff) {
case skgpu::BlendCoeff::kZero:
return VK_BLEND_FACTOR_ZERO;
case skgpu::BlendCoeff::kOne:
return VK_BLEND_FACTOR_ONE;
case skgpu::BlendCoeff::kSC:
return VK_BLEND_FACTOR_SRC_COLOR;
case skgpu::BlendCoeff::kISC:
return VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR;
case skgpu::BlendCoeff::kDC:
return VK_BLEND_FACTOR_DST_COLOR;
case skgpu::BlendCoeff::kIDC:
return VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR;
case skgpu::BlendCoeff::kSA:
return VK_BLEND_FACTOR_SRC_ALPHA;
case skgpu::BlendCoeff::kISA:
return VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
case skgpu::BlendCoeff::kDA:
return VK_BLEND_FACTOR_DST_ALPHA;
case skgpu::BlendCoeff::kIDA:
return VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA;
case skgpu::BlendCoeff::kConstC:
return VK_BLEND_FACTOR_CONSTANT_COLOR;
case skgpu::BlendCoeff::kIConstC:
return VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR;
case skgpu::BlendCoeff::kS2C:
return VK_BLEND_FACTOR_SRC1_COLOR;
case skgpu::BlendCoeff::kIS2C:
return VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR;
case skgpu::BlendCoeff::kS2A:
return VK_BLEND_FACTOR_SRC1_ALPHA;
case skgpu::BlendCoeff::kIS2A:
return VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA;
case skgpu::BlendCoeff::kIllegal:
return VK_BLEND_FACTOR_ZERO;
}
SkUNREACHABLE;
}
static VkBlendOp blend_equation_to_vk_blend_op(skgpu::BlendEquation equation) {
static const VkBlendOp gTable[] = {
// Basic blend ops
VK_BLEND_OP_ADD,
VK_BLEND_OP_SUBTRACT,
VK_BLEND_OP_REVERSE_SUBTRACT,
// Advanced blend ops
VK_BLEND_OP_SCREEN_EXT,
VK_BLEND_OP_OVERLAY_EXT,
VK_BLEND_OP_DARKEN_EXT,
VK_BLEND_OP_LIGHTEN_EXT,
VK_BLEND_OP_COLORDODGE_EXT,
VK_BLEND_OP_COLORBURN_EXT,
VK_BLEND_OP_HARDLIGHT_EXT,
VK_BLEND_OP_SOFTLIGHT_EXT,
VK_BLEND_OP_DIFFERENCE_EXT,
VK_BLEND_OP_EXCLUSION_EXT,
VK_BLEND_OP_MULTIPLY_EXT,
VK_BLEND_OP_HSL_HUE_EXT,
VK_BLEND_OP_HSL_SATURATION_EXT,
VK_BLEND_OP_HSL_COLOR_EXT,
VK_BLEND_OP_HSL_LUMINOSITY_EXT,
// Illegal.
VK_BLEND_OP_ADD,
};
static_assert(0 == (int)skgpu::BlendEquation::kAdd);
static_assert(1 == (int)skgpu::BlendEquation::kSubtract);
static_assert(2 == (int)skgpu::BlendEquation::kReverseSubtract);
static_assert(3 == (int)skgpu::BlendEquation::kScreen);
static_assert(4 == (int)skgpu::BlendEquation::kOverlay);
static_assert(5 == (int)skgpu::BlendEquation::kDarken);
static_assert(6 == (int)skgpu::BlendEquation::kLighten);
static_assert(7 == (int)skgpu::BlendEquation::kColorDodge);
static_assert(8 == (int)skgpu::BlendEquation::kColorBurn);
static_assert(9 == (int)skgpu::BlendEquation::kHardLight);
static_assert(10 == (int)skgpu::BlendEquation::kSoftLight);
static_assert(11 == (int)skgpu::BlendEquation::kDifference);
static_assert(12 == (int)skgpu::BlendEquation::kExclusion);
static_assert(13 == (int)skgpu::BlendEquation::kMultiply);
static_assert(14 == (int)skgpu::BlendEquation::kHSLHue);
static_assert(15 == (int)skgpu::BlendEquation::kHSLSaturation);
static_assert(16 == (int)skgpu::BlendEquation::kHSLColor);
static_assert(17 == (int)skgpu::BlendEquation::kHSLLuminosity);
static_assert(std::size(gTable) == skgpu::kBlendEquationCnt);
SkASSERT((unsigned)equation < skgpu::kBlendEquationCnt);
return gTable[(int)equation];
}
static void setup_color_blend_state(const skgpu::BlendInfo& blendInfo,
VkPipelineColorBlendStateCreateInfo* colorBlendInfo,
VkPipelineColorBlendAttachmentState* attachmentState) {
skgpu::BlendEquation equation = blendInfo.fEquation;
skgpu::BlendCoeff srcCoeff = blendInfo.fSrcBlend;
skgpu::BlendCoeff dstCoeff = blendInfo.fDstBlend;
bool blendOff = skgpu::BlendShouldDisable(equation, srcCoeff, dstCoeff);
memset(attachmentState, 0, sizeof(VkPipelineColorBlendAttachmentState));
attachmentState->blendEnable = !blendOff;
if (!blendOff) {
attachmentState->srcColorBlendFactor = blend_coeff_to_vk_blend(srcCoeff);
attachmentState->dstColorBlendFactor = blend_coeff_to_vk_blend(dstCoeff);
attachmentState->colorBlendOp = blend_equation_to_vk_blend_op(equation);
attachmentState->srcAlphaBlendFactor = blend_coeff_to_vk_blend(srcCoeff);
attachmentState->dstAlphaBlendFactor = blend_coeff_to_vk_blend(dstCoeff);
attachmentState->alphaBlendOp = blend_equation_to_vk_blend_op(equation);
}
if (!blendInfo.fWritesColor) {
attachmentState->colorWriteMask = 0;
} else {
attachmentState->colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT |
VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
}
memset(colorBlendInfo, 0, sizeof(VkPipelineColorBlendStateCreateInfo));
colorBlendInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
colorBlendInfo->pNext = nullptr;
colorBlendInfo->flags = 0;
colorBlendInfo->logicOpEnable = VK_FALSE;
colorBlendInfo->attachmentCount = 1;
colorBlendInfo->pAttachments = attachmentState;
// colorBlendInfo->blendConstants is set dynamically
}
static void setup_raster_state(bool isWireframe,
const GrCaps* caps,
VkPipelineRasterizationStateCreateInfo* rasterInfo) {
memset(rasterInfo, 0, sizeof(VkPipelineRasterizationStateCreateInfo));
rasterInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rasterInfo->pNext = nullptr;
rasterInfo->flags = 0;
rasterInfo->depthClampEnable = VK_FALSE;
rasterInfo->rasterizerDiscardEnable = VK_FALSE;
rasterInfo->polygonMode = (caps->wireframeMode() || isWireframe) ?
VK_POLYGON_MODE_LINE : VK_POLYGON_MODE_FILL;
rasterInfo->cullMode = VK_CULL_MODE_NONE;
rasterInfo->frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
rasterInfo->depthBiasEnable = VK_FALSE;
rasterInfo->depthBiasConstantFactor = 0.0f;
rasterInfo->depthBiasClamp = 0.0f;
rasterInfo->depthBiasSlopeFactor = 0.0f;
rasterInfo->lineWidth = 1.0f;
}
static void setup_conservative_raster_info(
VkPipelineRasterizationConservativeStateCreateInfoEXT* conservativeRasterInfo) {
memset(conservativeRasterInfo, 0,
sizeof(VkPipelineRasterizationConservativeStateCreateInfoEXT));
conservativeRasterInfo->sType =
VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_CONSERVATIVE_STATE_CREATE_INFO_EXT;
conservativeRasterInfo->pNext = nullptr;
conservativeRasterInfo->flags = 0;
conservativeRasterInfo->conservativeRasterizationMode =
VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT;
conservativeRasterInfo->extraPrimitiveOverestimationSize = 0;
}
static void setup_dynamic_state(VkPipelineDynamicStateCreateInfo* dynamicInfo,
VkDynamicState* dynamicStates) {
memset(dynamicInfo, 0, sizeof(VkPipelineDynamicStateCreateInfo));
dynamicInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dynamicInfo->pNext = VK_NULL_HANDLE;
dynamicInfo->flags = 0;
dynamicStates[0] = VK_DYNAMIC_STATE_VIEWPORT;
dynamicStates[1] = VK_DYNAMIC_STATE_SCISSOR;
dynamicStates[2] = VK_DYNAMIC_STATE_BLEND_CONSTANTS;
dynamicInfo->dynamicStateCount = 3;
dynamicInfo->pDynamicStates = dynamicStates;
}
sk_sp<GrVkPipeline> GrVkPipeline::Make(GrVkGpu* gpu,
const GrGeometryProcessor::AttributeSet& vertexAttribs,
const GrGeometryProcessor::AttributeSet& instanceAttribs,
GrPrimitiveType primitiveType,
GrSurfaceOrigin origin,
const GrStencilSettings& stencilSettings,
int numSamples,
bool isHWAntialiasState,
const skgpu::BlendInfo& blendInfo,
bool isWireframe,
bool useConservativeRaster,
uint32_t subpass,
VkPipelineShaderStageCreateInfo* shaderStageInfo,
int shaderStageCount,
VkRenderPass compatibleRenderPass,
VkPipelineLayout layout,
bool ownsLayout,
VkPipelineCache cache) {
VkPipelineVertexInputStateCreateInfo vertexInputInfo;
SkSTArray<2, VkVertexInputBindingDescription, true> bindingDescs;
SkSTArray<16, VkVertexInputAttributeDescription> attributeDesc;
int totalAttributeCnt = vertexAttribs.count() + instanceAttribs.count();
SkASSERT(totalAttributeCnt <= gpu->vkCaps().maxVertexAttributes());
VkVertexInputAttributeDescription* pAttribs = attributeDesc.push_back_n(totalAttributeCnt);
setup_vertex_input_state(vertexAttribs, instanceAttribs, &vertexInputInfo, &bindingDescs,
pAttribs);
VkPipelineInputAssemblyStateCreateInfo inputAssemblyInfo;
setup_input_assembly_state(primitiveType, &inputAssemblyInfo);
VkPipelineDepthStencilStateCreateInfo depthStencilInfo;
setup_depth_stencil_state(stencilSettings, origin, &depthStencilInfo);
VkPipelineViewportStateCreateInfo viewportInfo;
setup_viewport_scissor_state(&viewportInfo);
VkPipelineMultisampleStateCreateInfo multisampleInfo;
setup_multisample_state(numSamples, gpu->caps(), &multisampleInfo);
// We will only have one color attachment per pipeline.
VkPipelineColorBlendAttachmentState attachmentStates[1];
VkPipelineColorBlendStateCreateInfo colorBlendInfo;
setup_color_blend_state(blendInfo, &colorBlendInfo, attachmentStates);
VkPipelineRasterizationStateCreateInfo rasterInfo;
setup_raster_state(isWireframe, gpu->caps(), &rasterInfo);
VkPipelineRasterizationConservativeStateCreateInfoEXT conservativeRasterInfo;
if (useConservativeRaster) {
SkASSERT(gpu->caps()->conservativeRasterSupport());
setup_conservative_raster_info(&conservativeRasterInfo);
conservativeRasterInfo.pNext = rasterInfo.pNext;
rasterInfo.pNext = &conservativeRasterInfo;
}
VkDynamicState dynamicStates[3];
VkPipelineDynamicStateCreateInfo dynamicInfo;
setup_dynamic_state(&dynamicInfo, dynamicStates);
VkGraphicsPipelineCreateInfo pipelineCreateInfo;
memset(&pipelineCreateInfo, 0, sizeof(VkGraphicsPipelineCreateInfo));
pipelineCreateInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pipelineCreateInfo.pNext = nullptr;
pipelineCreateInfo.flags = 0;
pipelineCreateInfo.stageCount = shaderStageCount;
pipelineCreateInfo.pStages = shaderStageInfo;
pipelineCreateInfo.pVertexInputState = &vertexInputInfo;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyInfo;
pipelineCreateInfo.pTessellationState = nullptr;
pipelineCreateInfo.pViewportState = &viewportInfo;
pipelineCreateInfo.pRasterizationState = &rasterInfo;
pipelineCreateInfo.pMultisampleState = &multisampleInfo;
pipelineCreateInfo.pDepthStencilState = &depthStencilInfo;
pipelineCreateInfo.pColorBlendState = &colorBlendInfo;
pipelineCreateInfo.pDynamicState = &dynamicInfo;
pipelineCreateInfo.layout = layout;
pipelineCreateInfo.renderPass = compatibleRenderPass;
pipelineCreateInfo.subpass = subpass;
pipelineCreateInfo.basePipelineHandle = VK_NULL_HANDLE;
pipelineCreateInfo.basePipelineIndex = -1;
VkPipeline vkPipeline;
VkResult err;
{
TRACE_EVENT0_ALWAYS("skia.shaders", "CreateGraphicsPipeline");
#if defined(SK_ENABLE_SCOPED_LSAN_SUPPRESSIONS)
// skia:8712
__lsan::ScopedDisabler lsanDisabler;
#endif
GR_VK_CALL_RESULT(gpu, err, CreateGraphicsPipelines(gpu->device(), cache, 1,
&pipelineCreateInfo, nullptr,
&vkPipeline));
}
if (err) {
SkDebugf("Failed to create pipeline. Error: %d\n", err);
return nullptr;
}
if (!ownsLayout) {
layout = VK_NULL_HANDLE;
}
return sk_sp<GrVkPipeline>(new GrVkPipeline(gpu, vkPipeline, layout));
}
sk_sp<GrVkPipeline> GrVkPipeline::Make(GrVkGpu* gpu,
const GrProgramInfo& programInfo,
VkPipelineShaderStageCreateInfo* shaderStageInfo,
int shaderStageCount,
VkRenderPass compatibleRenderPass,
VkPipelineLayout layout,
VkPipelineCache cache,
uint32_t subpass) {
const GrGeometryProcessor& geomProc = programInfo.geomProc();
const GrPipeline& pipeline = programInfo.pipeline();
return Make(gpu,
geomProc.vertexAttributes(),
geomProc.instanceAttributes(),
programInfo.primitiveType(),
programInfo.origin(),
programInfo.nonGLStencilSettings(),
programInfo.numSamples(),
programInfo.numSamples() > 1,
pipeline.getXferProcessor().getBlendInfo(),
pipeline.isWireframe(),
pipeline.usesConservativeRaster(),
subpass,
shaderStageInfo,
shaderStageCount,
compatibleRenderPass,
layout,
/*ownsLayout=*/true,
cache);
}
void GrVkPipeline::freeGPUData() const {
GR_VK_CALL(fGpu->vkInterface(), DestroyPipeline(fGpu->device(), fPipeline, nullptr));
if (fPipelineLayout != VK_NULL_HANDLE) {
GR_VK_CALL(fGpu->vkInterface(),
DestroyPipelineLayout(fGpu->device(), fPipelineLayout, nullptr));
}
}
void GrVkPipeline::SetDynamicScissorRectState(GrVkGpu* gpu,
GrVkCommandBuffer* cmdBuffer,
SkISize colorAttachmentDimensions,
GrSurfaceOrigin rtOrigin,
const SkIRect& scissorRect) {
SkASSERT(scissorRect.isEmpty() ||
SkIRect::MakeSize(colorAttachmentDimensions).contains(scissorRect));
VkRect2D scissor;
scissor.offset.x = scissorRect.fLeft;
scissor.extent.width = scissorRect.width();
if (kTopLeft_GrSurfaceOrigin == rtOrigin) {
scissor.offset.y = scissorRect.fTop;
} else {
SkASSERT(kBottomLeft_GrSurfaceOrigin == rtOrigin);
scissor.offset.y = colorAttachmentDimensions.height() - scissorRect.fBottom;
}
scissor.extent.height = scissorRect.height();
SkASSERT(scissor.offset.x >= 0);
SkASSERT(scissor.offset.y >= 0);
cmdBuffer->setScissor(gpu, 0, 1, &scissor);
}
void GrVkPipeline::SetDynamicViewportState(GrVkGpu* gpu,
GrVkCommandBuffer* cmdBuffer,
SkISize colorAttachmentDimensions) {
// We always use one viewport the size of the RT
VkViewport viewport;
viewport.x = 0.0f;
viewport.y = 0.0f;
viewport.width = SkIntToScalar(colorAttachmentDimensions.width());
viewport.height = SkIntToScalar(colorAttachmentDimensions.height());
viewport.minDepth = 0.0f;
viewport.maxDepth = 1.0f;
cmdBuffer->setViewport(gpu, 0, 1, &viewport);
}
void GrVkPipeline::SetDynamicBlendConstantState(GrVkGpu* gpu,
GrVkCommandBuffer* cmdBuffer,
const skgpu::Swizzle& swizzle,
const GrXferProcessor& xferProcessor) {
const skgpu::BlendInfo& blendInfo = xferProcessor.getBlendInfo();
skgpu::BlendCoeff srcCoeff = blendInfo.fSrcBlend;
skgpu::BlendCoeff dstCoeff = blendInfo.fDstBlend;
float floatColors[4];
if (skgpu::BlendCoeffRefsConstant(srcCoeff) || skgpu::BlendCoeffRefsConstant(dstCoeff)) {
// Swizzle the blend to match what the shader will output.
SkPMColor4f blendConst = swizzle.applyTo(blendInfo.fBlendConstant);
floatColors[0] = blendConst.fR;
floatColors[1] = blendConst.fG;
floatColors[2] = blendConst.fB;
floatColors[3] = blendConst.fA;
cmdBuffer->setBlendConstants(gpu, floatColors);
}
}