blob: 005d6cd56cc1af2054ef1a3d90f93f4a7a72dd6b [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/ganesh/vk/GrVkGpu.h"
#include "include/gpu/GrBackendSemaphore.h"
#include "include/gpu/GrBackendSurface.h"
#include "include/gpu/GrContextOptions.h"
#include "include/gpu/GrDirectContext.h"
#include "include/private/SkTo.h"
#include "src/core/SkCompressedDataUtils.h"
#include "src/core/SkConvertPixels.h"
#include "src/core/SkMipmap.h"
#include "src/core/SkTraceEvent.h"
#include "src/gpu/ganesh/GrBackendUtils.h"
#include "src/gpu/ganesh/GrDataUtils.h"
#include "src/gpu/ganesh/GrDirectContextPriv.h"
#include "src/gpu/ganesh/GrGeometryProcessor.h"
#include "src/gpu/ganesh/GrGpuResourceCacheAccess.h"
#include "src/gpu/ganesh/GrNativeRect.h"
#include "src/gpu/ganesh/GrPipeline.h"
#include "src/gpu/ganesh/GrRenderTarget.h"
#include "src/gpu/ganesh/GrResourceProvider.h"
#include "src/gpu/ganesh/GrTexture.h"
#include "src/gpu/ganesh/GrThreadSafePipelineBuilder.h"
#include "src/gpu/ganesh/SkGr.h"
#include "src/gpu/ganesh/vk/GrVkBuffer.h"
#include "src/gpu/ganesh/vk/GrVkCommandBuffer.h"
#include "src/gpu/ganesh/vk/GrVkCommandPool.h"
#include "src/gpu/ganesh/vk/GrVkFramebuffer.h"
#include "src/gpu/ganesh/vk/GrVkImage.h"
#include "src/gpu/ganesh/vk/GrVkMemory.h"
#include "src/gpu/ganesh/vk/GrVkOpsRenderPass.h"
#include "src/gpu/ganesh/vk/GrVkPipeline.h"
#include "src/gpu/ganesh/vk/GrVkPipelineState.h"
#include "src/gpu/ganesh/vk/GrVkRenderPass.h"
#include "src/gpu/ganesh/vk/GrVkResourceProvider.h"
#include "src/gpu/ganesh/vk/GrVkSemaphore.h"
#include "src/gpu/ganesh/vk/GrVkTexture.h"
#include "src/gpu/ganesh/vk/GrVkTextureRenderTarget.h"
#include "src/gpu/vk/VulkanAMDMemoryAllocator.h"
#include "src/gpu/vk/VulkanInterface.h"
#include "src/image/SkImage_Gpu.h"
#include "src/image/SkSurface_Gpu.h"
#include "include/gpu/vk/GrVkTypes.h"
#include "include/gpu/vk/VulkanExtensions.h"
#include <utility>
#define VK_CALL(X) GR_VK_CALL(this->vkInterface(), X)
#define VK_CALL_RET(RET, X) GR_VK_CALL_RESULT(this, RET, X)
sk_sp<GrGpu> GrVkGpu::Make(const GrVkBackendContext& backendContext,
const GrContextOptions& options, GrDirectContext* direct) {
if (backendContext.fInstance == VK_NULL_HANDLE ||
backendContext.fPhysicalDevice == VK_NULL_HANDLE ||
backendContext.fDevice == VK_NULL_HANDLE ||
backendContext.fQueue == VK_NULL_HANDLE) {
return nullptr;
}
if (!backendContext.fGetProc) {
return nullptr;
}
PFN_vkEnumerateInstanceVersion localEnumerateInstanceVersion =
reinterpret_cast<PFN_vkEnumerateInstanceVersion>(
backendContext.fGetProc("vkEnumerateInstanceVersion",
VK_NULL_HANDLE, VK_NULL_HANDLE));
uint32_t instanceVersion = 0;
if (!localEnumerateInstanceVersion) {
instanceVersion = VK_MAKE_VERSION(1, 0, 0);
} else {
VkResult err = localEnumerateInstanceVersion(&instanceVersion);
if (err) {
SkDebugf("Failed to enumerate instance version. Err: %d\n", err);
return nullptr;
}
}
PFN_vkGetPhysicalDeviceProperties localGetPhysicalDeviceProperties =
reinterpret_cast<PFN_vkGetPhysicalDeviceProperties>(
backendContext.fGetProc("vkGetPhysicalDeviceProperties",
backendContext.fInstance,
VK_NULL_HANDLE));
if (!localGetPhysicalDeviceProperties) {
return nullptr;
}
VkPhysicalDeviceProperties physDeviceProperties;
localGetPhysicalDeviceProperties(backendContext.fPhysicalDevice, &physDeviceProperties);
uint32_t physDevVersion = physDeviceProperties.apiVersion;
uint32_t apiVersion = backendContext.fMaxAPIVersion ? backendContext.fMaxAPIVersion
: instanceVersion;
instanceVersion = std::min(instanceVersion, apiVersion);
physDevVersion = std::min(physDevVersion, apiVersion);
sk_sp<const skgpu::VulkanInterface> interface;
if (backendContext.fVkExtensions) {
interface.reset(new skgpu::VulkanInterface(backendContext.fGetProc,
backendContext.fInstance,
backendContext.fDevice,
instanceVersion,
physDevVersion,
backendContext.fVkExtensions));
if (!interface->validate(instanceVersion, physDevVersion, backendContext.fVkExtensions)) {
return nullptr;
}
} else {
skgpu::VulkanExtensions extensions;
// The only extension flag that may effect the vulkan backend is the swapchain extension. We
// need to know if this is enabled to know if we can transition to a present layout when
// flushing a surface.
if (backendContext.fExtensions & kKHR_swapchain_GrVkExtensionFlag) {
const char* swapChainExtName = VK_KHR_SWAPCHAIN_EXTENSION_NAME;
extensions.init(backendContext.fGetProc, backendContext.fInstance,
backendContext.fPhysicalDevice, 0, nullptr, 1, &swapChainExtName);
}
interface.reset(new skgpu::VulkanInterface(backendContext.fGetProc,
backendContext.fInstance,
backendContext.fDevice,
instanceVersion,
physDevVersion,
&extensions));
if (!interface->validate(instanceVersion, physDevVersion, &extensions)) {
return nullptr;
}
}
sk_sp<GrVkCaps> caps;
if (backendContext.fDeviceFeatures2) {
caps.reset(new GrVkCaps(options, interface.get(), backendContext.fPhysicalDevice,
*backendContext.fDeviceFeatures2, instanceVersion, physDevVersion,
*backendContext.fVkExtensions, backendContext.fProtectedContext));
} else if (backendContext.fDeviceFeatures) {
VkPhysicalDeviceFeatures2 features2;
features2.pNext = nullptr;
features2.features = *backendContext.fDeviceFeatures;
caps.reset(new GrVkCaps(options, interface.get(), backendContext.fPhysicalDevice,
features2, instanceVersion, physDevVersion,
*backendContext.fVkExtensions, backendContext.fProtectedContext));
} else {
VkPhysicalDeviceFeatures2 features;
memset(&features, 0, sizeof(VkPhysicalDeviceFeatures2));
features.pNext = nullptr;
if (backendContext.fFeatures & kGeometryShader_GrVkFeatureFlag) {
features.features.geometryShader = true;
}
if (backendContext.fFeatures & kDualSrcBlend_GrVkFeatureFlag) {
features.features.dualSrcBlend = true;
}
if (backendContext.fFeatures & kSampleRateShading_GrVkFeatureFlag) {
features.features.sampleRateShading = true;
}
skgpu::VulkanExtensions extensions;
// The only extension flag that may effect the vulkan backend is the swapchain extension. We
// need to know if this is enabled to know if we can transition to a present layout when
// flushing a surface.
if (backendContext.fExtensions & kKHR_swapchain_GrVkExtensionFlag) {
const char* swapChainExtName = VK_KHR_SWAPCHAIN_EXTENSION_NAME;
extensions.init(backendContext.fGetProc, backendContext.fInstance,
backendContext.fPhysicalDevice, 0, nullptr, 1, &swapChainExtName);
}
caps.reset(new GrVkCaps(options, interface.get(), backendContext.fPhysicalDevice,
features, instanceVersion, physDevVersion, extensions,
backendContext.fProtectedContext));
}
if (!caps) {
return nullptr;
}
sk_sp<skgpu::VulkanMemoryAllocator> memoryAllocator = backendContext.fMemoryAllocator;
if (!memoryAllocator) {
// We were not given a memory allocator at creation
bool mustUseCoherentHostVisibleMemory = caps->mustUseCoherentHostVisibleMemory();
memoryAllocator = skgpu::VulkanAMDMemoryAllocator::Make(backendContext.fInstance,
backendContext.fPhysicalDevice,
backendContext.fDevice,
physDevVersion,
backendContext.fVkExtensions,
interface,
mustUseCoherentHostVisibleMemory,
/*=threadSafe=*/false);
}
if (!memoryAllocator) {
SkDEBUGFAIL("No supplied vulkan memory allocator and unable to create one internally.");
return nullptr;
}
sk_sp<GrVkGpu> vkGpu(new GrVkGpu(direct, backendContext, std::move(caps), interface,
instanceVersion, physDevVersion,
std::move(memoryAllocator)));
if (backendContext.fProtectedContext == GrProtected::kYes &&
!vkGpu->vkCaps().supportsProtectedMemory()) {
return nullptr;
}
return std::move(vkGpu);
}
////////////////////////////////////////////////////////////////////////////////
GrVkGpu::GrVkGpu(GrDirectContext* direct,
const GrVkBackendContext& backendContext,
sk_sp<GrVkCaps> caps,
sk_sp<const skgpu::VulkanInterface> interface,
uint32_t instanceVersion,
uint32_t physicalDeviceVersion,
sk_sp<skgpu::VulkanMemoryAllocator> memoryAllocator)
: INHERITED(direct)
, fInterface(std::move(interface))
, fMemoryAllocator(std::move(memoryAllocator))
, fVkCaps(std::move(caps))
, fPhysicalDevice(backendContext.fPhysicalDevice)
, fDevice(backendContext.fDevice)
, fQueue(backendContext.fQueue)
, fQueueIndex(backendContext.fGraphicsQueueIndex)
, fResourceProvider(this)
, fStagingBufferManager(this)
, fDisconnected(false)
, fProtectedContext(backendContext.fProtectedContext) {
SkASSERT(!backendContext.fOwnsInstanceAndDevice);
SkASSERT(fMemoryAllocator);
this->initCapsAndCompiler(fVkCaps);
VK_CALL(GetPhysicalDeviceProperties(backendContext.fPhysicalDevice, &fPhysDevProps));
VK_CALL(GetPhysicalDeviceMemoryProperties(backendContext.fPhysicalDevice, &fPhysDevMemProps));
fResourceProvider.init();
fMainCmdPool = fResourceProvider.findOrCreateCommandPool();
if (fMainCmdPool) {
fMainCmdBuffer = fMainCmdPool->getPrimaryCommandBuffer();
SkASSERT(this->currentCommandBuffer());
this->currentCommandBuffer()->begin(this);
}
}
void GrVkGpu::destroyResources() {
if (fMainCmdPool) {
fMainCmdPool->getPrimaryCommandBuffer()->end(this, /*abandoningBuffer=*/true);
fMainCmdPool->close();
}
// wait for all commands to finish
this->finishOutstandingGpuWork();
if (fMainCmdPool) {
fMainCmdPool->unref();
fMainCmdPool = nullptr;
}
for (int i = 0; i < fSemaphoresToWaitOn.count(); ++i) {
fSemaphoresToWaitOn[i]->unref();
}
fSemaphoresToWaitOn.reset();
for (int i = 0; i < fSemaphoresToSignal.count(); ++i) {
fSemaphoresToSignal[i]->unref();
}
fSemaphoresToSignal.reset();
fStagingBufferManager.reset();
fMSAALoadManager.destroyResources(this);
// must call this just before we destroy the command pool and VkDevice
fResourceProvider.destroyResources();
}
GrVkGpu::~GrVkGpu() {
if (!fDisconnected) {
this->destroyResources();
}
// We don't delete the memory allocator until the very end of the GrVkGpu lifetime so that
// clients can continue to delete backend textures even after a context has been abandoned.
fMemoryAllocator.reset();
}
void GrVkGpu::disconnect(DisconnectType type) {
INHERITED::disconnect(type);
if (!fDisconnected) {
this->destroyResources();
fSemaphoresToWaitOn.reset();
fSemaphoresToSignal.reset();
fMainCmdBuffer = nullptr;
fDisconnected = true;
}
}
GrThreadSafePipelineBuilder* GrVkGpu::pipelineBuilder() {
return fResourceProvider.pipelineStateCache();
}
sk_sp<GrThreadSafePipelineBuilder> GrVkGpu::refPipelineBuilder() {
return fResourceProvider.refPipelineStateCache();
}
///////////////////////////////////////////////////////////////////////////////
GrOpsRenderPass* GrVkGpu::onGetOpsRenderPass(
GrRenderTarget* rt,
bool useMSAASurface,
GrAttachment* stencil,
GrSurfaceOrigin origin,
const SkIRect& bounds,
const GrOpsRenderPass::LoadAndStoreInfo& colorInfo,
const GrOpsRenderPass::StencilLoadAndStoreInfo& stencilInfo,
const SkTArray<GrSurfaceProxy*, true>& sampledProxies,
GrXferBarrierFlags renderPassXferBarriers) {
if (!fCachedOpsRenderPass) {
fCachedOpsRenderPass = std::make_unique<GrVkOpsRenderPass>(this);
}
// For the given render target and requested render pass features we need to find a compatible
// framebuffer to use for the render pass. Technically it is the underlying VkRenderPass that
// is compatible, but that is part of the framebuffer that we get here.
GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(rt);
SkASSERT(!useMSAASurface ||
rt->numSamples() > 1 ||
(this->vkCaps().supportsDiscardableMSAAForDMSAA() &&
vkRT->resolveAttachment() &&
vkRT->resolveAttachment()->supportsInputAttachmentUsage()));
// Covert the GrXferBarrierFlags into render pass self dependency flags
GrVkRenderPass::SelfDependencyFlags selfDepFlags = GrVkRenderPass::SelfDependencyFlags::kNone;
if (renderPassXferBarriers & GrXferBarrierFlags::kBlend) {
selfDepFlags |= GrVkRenderPass::SelfDependencyFlags::kForNonCoherentAdvBlend;
}
if (renderPassXferBarriers & GrXferBarrierFlags::kTexture) {
selfDepFlags |= GrVkRenderPass::SelfDependencyFlags::kForInputAttachment;
}
// Figure out if we need a resolve attachment for this render pass. A resolve attachment is
// needed if we are using msaa to draw with a discardable msaa attachment. If we are in this
// case we also need to update the color load/store ops since we don't want to ever load or
// store the msaa color attachment, but may need to for the resolve attachment.
GrOpsRenderPass::LoadAndStoreInfo localColorInfo = colorInfo;
bool withResolve = false;
GrVkRenderPass::LoadFromResolve loadFromResolve = GrVkRenderPass::LoadFromResolve::kNo;
GrOpsRenderPass::LoadAndStoreInfo resolveInfo{GrLoadOp::kLoad, GrStoreOp::kStore, {}};
if (useMSAASurface && this->vkCaps().renderTargetSupportsDiscardableMSAA(vkRT)) {
withResolve = true;
localColorInfo.fStoreOp = GrStoreOp::kDiscard;
if (colorInfo.fLoadOp == GrLoadOp::kLoad) {
loadFromResolve = GrVkRenderPass::LoadFromResolve::kLoad;
localColorInfo.fLoadOp = GrLoadOp::kDiscard;
} else {
resolveInfo.fLoadOp = GrLoadOp::kDiscard;
}
}
// Get the framebuffer to use for the render pass
sk_sp<GrVkFramebuffer> framebuffer;
if (vkRT->wrapsSecondaryCommandBuffer()) {
framebuffer = vkRT->externalFramebuffer();
} else {
auto fb = vkRT->getFramebuffer(withResolve, SkToBool(stencil), selfDepFlags,
loadFromResolve);
framebuffer = sk_ref_sp(fb);
}
if (!framebuffer) {
return nullptr;
}
if (!fCachedOpsRenderPass->set(rt, std::move(framebuffer), origin, bounds, localColorInfo,
stencilInfo, resolveInfo, selfDepFlags, loadFromResolve,
sampledProxies)) {
return nullptr;
}
return fCachedOpsRenderPass.get();
}
bool GrVkGpu::submitCommandBuffer(SyncQueue sync) {
TRACE_EVENT0("skia.gpu", TRACE_FUNC);
if (!this->currentCommandBuffer()) {
return false;
}
SkASSERT(!fCachedOpsRenderPass || !fCachedOpsRenderPass->isActive());
if (!this->currentCommandBuffer()->hasWork() && kForce_SyncQueue != sync &&
!fSemaphoresToSignal.count() && !fSemaphoresToWaitOn.count()) {
// We may have added finished procs during the flush call. Since there is no actual work
// we are not submitting the command buffer and may never come back around to submit it.
// Thus we call all current finished procs manually, since the work has technically
// finished.
this->currentCommandBuffer()->callFinishedProcs();
SkASSERT(fDrawables.empty());
fResourceProvider.checkCommandBuffers();
return true;
}
fMainCmdBuffer->end(this);
SkASSERT(fMainCmdPool);
fMainCmdPool->close();
bool didSubmit = fMainCmdBuffer->submitToQueue(this, fQueue, fSemaphoresToSignal,
fSemaphoresToWaitOn);
if (didSubmit && sync == kForce_SyncQueue) {
fMainCmdBuffer->forceSync(this);
}
// We must delete any drawables that had to wait until submit to destroy.
fDrawables.reset();
// If we didn't submit the command buffer then we did not wait on any semaphores. We will
// continue to hold onto these semaphores and wait on them during the next command buffer
// submission.
if (didSubmit) {
for (int i = 0; i < fSemaphoresToWaitOn.count(); ++i) {
fSemaphoresToWaitOn[i]->unref();
}
fSemaphoresToWaitOn.reset();
}
// Even if we did not submit the command buffer, we drop all the signal semaphores since we will
// not try to recover the work that wasn't submitted and instead just drop it all. The client
// will be notified that the semaphores were not submit so that they will not try to wait on
// them.
for (int i = 0; i < fSemaphoresToSignal.count(); ++i) {
fSemaphoresToSignal[i]->unref();
}
fSemaphoresToSignal.reset();
// Release old command pool and create a new one
fMainCmdPool->unref();
fMainCmdPool = fResourceProvider.findOrCreateCommandPool();
if (fMainCmdPool) {
fMainCmdBuffer = fMainCmdPool->getPrimaryCommandBuffer();
SkASSERT(fMainCmdBuffer);
fMainCmdBuffer->begin(this);
} else {
fMainCmdBuffer = nullptr;
}
// We must wait to call checkCommandBuffers until after we get a new command buffer. The
// checkCommandBuffers may trigger a releaseProc which may cause us to insert a barrier for a
// released GrVkImage. That barrier needs to be put into a new command buffer and not the old
// one that was just submitted.
fResourceProvider.checkCommandBuffers();
return didSubmit;
}
///////////////////////////////////////////////////////////////////////////////
sk_sp<GrGpuBuffer> GrVkGpu::onCreateBuffer(size_t size,
GrGpuBufferType type,
GrAccessPattern accessPattern) {
#ifdef SK_DEBUG
switch (type) {
case GrGpuBufferType::kVertex:
case GrGpuBufferType::kIndex:
case GrGpuBufferType::kDrawIndirect:
SkASSERT(accessPattern == kDynamic_GrAccessPattern ||
accessPattern == kStatic_GrAccessPattern);
break;
case GrGpuBufferType::kXferCpuToGpu:
SkASSERT(accessPattern == kDynamic_GrAccessPattern);
break;
case GrGpuBufferType::kXferGpuToCpu:
SkASSERT(accessPattern == kDynamic_GrAccessPattern ||
accessPattern == kStream_GrAccessPattern);
break;
case GrGpuBufferType::kUniform:
SkASSERT(accessPattern == kDynamic_GrAccessPattern);
break;
}
#endif
return GrVkBuffer::Make(this, size, type, accessPattern);
}
bool GrVkGpu::onWritePixels(GrSurface* surface,
SkIRect rect,
GrColorType surfaceColorType,
GrColorType srcColorType,
const GrMipLevel texels[],
int mipLevelCount,
bool prepForTexSampling) {
GrVkTexture* texture = static_cast<GrVkTexture*>(surface->asTexture());
if (!texture) {
return false;
}
GrVkImage* texImage = texture->textureImage();
// Make sure we have at least the base level
if (!mipLevelCount || !texels[0].fPixels) {
return false;
}
SkASSERT(!GrVkFormatIsCompressed(texImage->imageFormat()));
bool success = false;
bool linearTiling = texImage->isLinearTiled();
if (linearTiling) {
if (mipLevelCount > 1) {
SkDebugf("Can't upload mipmap data to linear tiled texture");
return false;
}
if (VK_IMAGE_LAYOUT_PREINITIALIZED != texImage->currentLayout()) {
// Need to change the layout to general in order to perform a host write
texImage->setImageLayout(this,
VK_IMAGE_LAYOUT_GENERAL,
VK_ACCESS_HOST_WRITE_BIT,
VK_PIPELINE_STAGE_HOST_BIT,
false);
if (!this->submitCommandBuffer(kForce_SyncQueue)) {
return false;
}
}
success = this->uploadTexDataLinear(texImage,
rect,
srcColorType,
texels[0].fPixels,
texels[0].fRowBytes);
} else {
SkASSERT(mipLevelCount <= (int)texImage->mipLevels());
success = this->uploadTexDataOptimal(texImage,
rect,
srcColorType,
texels,
mipLevelCount);
if (1 == mipLevelCount) {
texture->markMipmapsDirty();
}
}
if (prepForTexSampling) {
texImage->setImageLayout(this,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_ACCESS_SHADER_READ_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
false);
}
return success;
}
// When we update vertex/index buffers via transfers we assume that they may have been used
// previously in draws and will be used again in draws afterwards. So we put a barrier before and
// after. If we had a mechanism for gathering the buffers that will be used in a GrVkOpsRenderPass
// *before* we begin a subpass we could do this lazily and non-redundantly by tracking the "last
// usage" on the GrVkBuffer. Then Pass 1 draw, xfer, xfer, xfer, Pass 2 draw would insert just two
// barriers: one before the first xfer and one before Pass 2. Currently, we'd use six barriers.
// Pass false as "after" before the transfer and true after the transfer.
static void add_transfer_dst_buffer_mem_barrier(GrVkGpu* gpu,
GrVkBuffer* dst,
size_t offset,
size_t size,
bool after) {
if (dst->intendedType() != GrGpuBufferType::kIndex &&
dst->intendedType() != GrGpuBufferType::kVertex) {
return;
}
VkAccessFlags srcAccessMask = dst->intendedType() == GrGpuBufferType::kIndex
? VK_ACCESS_INDEX_READ_BIT
: VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT;
VkAccessFlags dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
VkPipelineStageFlagBits srcPipelineStageFlags = VK_PIPELINE_STAGE_VERTEX_INPUT_BIT;
VkPipelineStageFlagBits dstPipelineStageFlags = VK_PIPELINE_STAGE_TRANSFER_BIT;
if (after) {
using std::swap;
swap(srcAccessMask, dstAccessMask );
swap(srcPipelineStageFlags, dstPipelineStageFlags);
}
VkBufferMemoryBarrier bufferMemoryBarrier = {
VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER, // sType
nullptr, // pNext
srcAccessMask, // srcAccessMask
dstAccessMask, // dstAccessMask
VK_QUEUE_FAMILY_IGNORED, // srcQueueFamilyIndex
VK_QUEUE_FAMILY_IGNORED, // dstQueueFamilyIndex
dst->vkBuffer(), // buffer
offset, // offset
size, // size
};
gpu->addBufferMemoryBarrier(srcPipelineStageFlags,
dstPipelineStageFlags,
/*byRegion=*/false,
&bufferMemoryBarrier);
}
bool GrVkGpu::onTransferFromBufferToBuffer(sk_sp<GrGpuBuffer> src,
size_t srcOffset,
sk_sp<GrGpuBuffer> dst,
size_t dstOffset,
size_t size) {
if (!this->currentCommandBuffer()) {
return false;
}
VkBufferCopy copyRegion;
copyRegion.srcOffset = srcOffset;
copyRegion.dstOffset = dstOffset;
copyRegion.size = size;
add_transfer_dst_buffer_mem_barrier(this,
static_cast<GrVkBuffer*>(dst.get()),
dstOffset,
size,
/*after=*/false);
this->currentCommandBuffer()->copyBuffer(this, std::move(src), dst, 1, &copyRegion);
add_transfer_dst_buffer_mem_barrier(this,
static_cast<GrVkBuffer*>(dst.get()),
dstOffset,
size,
/*after=*/true);
return true;
}
bool GrVkGpu::onTransferPixelsTo(GrTexture* texture,
SkIRect rect,
GrColorType surfaceColorType,
GrColorType bufferColorType,
sk_sp<GrGpuBuffer> transferBuffer,
size_t bufferOffset,
size_t rowBytes) {
if (!this->currentCommandBuffer()) {
return false;
}
size_t bpp = GrColorTypeBytesPerPixel(bufferColorType);
if (GrBackendFormatBytesPerPixel(texture->backendFormat()) != bpp) {
return false;
}
// Vulkan only supports offsets that are both 4-byte aligned and aligned to a pixel.
if ((bufferOffset & 0x3) || (bufferOffset % bpp)) {
return false;
}
GrVkTexture* tex = static_cast<GrVkTexture*>(texture);
if (!tex) {
return false;
}
GrVkImage* vkImage = tex->textureImage();
VkFormat format = vkImage->imageFormat();
// Can't transfer compressed data
SkASSERT(!GrVkFormatIsCompressed(format));
if (!transferBuffer) {
return false;
}
if (bufferColorType != this->vkCaps().transferColorType(format, surfaceColorType)) {
return false;
}
SkASSERT(GrVkFormatBytesPerBlock(format) == GrColorTypeBytesPerPixel(bufferColorType));
SkASSERT(SkIRect::MakeSize(texture->dimensions()).contains(rect));
// Set up copy region
VkBufferImageCopy region;
memset(&region, 0, sizeof(VkBufferImageCopy));
region.bufferOffset = bufferOffset;
region.bufferRowLength = (uint32_t)(rowBytes/bpp);
region.bufferImageHeight = 0;
region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
region.imageOffset = { rect.left(), rect.top(), 0 };
region.imageExtent = { (uint32_t)rect.width(), (uint32_t)rect.height(), 1 };
// Change layout of our target so it can be copied to
vkImage->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
const GrVkBuffer* vkBuffer = static_cast<GrVkBuffer*>(transferBuffer.get());
// Copy the buffer to the image.
this->currentCommandBuffer()->copyBufferToImage(this,
vkBuffer->vkBuffer(),
vkImage,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&region);
this->currentCommandBuffer()->addGrBuffer(std::move(transferBuffer));
tex->markMipmapsDirty();
return true;
}
bool GrVkGpu::onTransferPixelsFrom(GrSurface* surface,
SkIRect rect,
GrColorType surfaceColorType,
GrColorType bufferColorType,
sk_sp<GrGpuBuffer> transferBuffer,
size_t offset) {
if (!this->currentCommandBuffer()) {
return false;
}
SkASSERT(surface);
SkASSERT(transferBuffer);
if (fProtectedContext == GrProtected::kYes) {
return false;
}
GrVkImage* srcImage;
if (GrVkRenderTarget* rt = static_cast<GrVkRenderTarget*>(surface->asRenderTarget())) {
// Reading from render targets that wrap a secondary command buffer is not allowed since
// it would require us to know the VkImage, which we don't have, as well as need us to
// stop and start the VkRenderPass which we don't have access to.
if (rt->wrapsSecondaryCommandBuffer()) {
return false;
}
if (!rt->nonMSAAAttachment()) {
return false;
}
srcImage = rt->nonMSAAAttachment();
} else {
SkASSERT(surface->asTexture());
srcImage = static_cast<GrVkTexture*>(surface->asTexture())->textureImage();
}
VkFormat format = srcImage->imageFormat();
if (bufferColorType != this->vkCaps().transferColorType(format, surfaceColorType)) {
return false;
}
SkASSERT(GrVkFormatBytesPerBlock(format) == GrColorTypeBytesPerPixel(bufferColorType));
// Set up copy region
VkBufferImageCopy region;
memset(&region, 0, sizeof(VkBufferImageCopy));
region.bufferOffset = offset;
region.bufferRowLength = rect.width();
region.bufferImageHeight = 0;
region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
region.imageOffset = {rect.left(), rect.top(), 0};
region.imageExtent = {(uint32_t)rect.width(), (uint32_t)rect.height(), 1};
srcImage->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_ACCESS_TRANSFER_READ_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
this->currentCommandBuffer()->copyImageToBuffer(this, srcImage,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
transferBuffer, 1, &region);
GrVkBuffer* vkBuffer = static_cast<GrVkBuffer*>(transferBuffer.get());
// Make sure the copy to buffer has finished.
vkBuffer->addMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT,
VK_ACCESS_HOST_READ_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_HOST_BIT,
false);
return true;
}
void GrVkGpu::resolveImage(GrSurface* dst, GrVkRenderTarget* src, const SkIRect& srcRect,
const SkIPoint& dstPoint) {
if (!this->currentCommandBuffer()) {
return;
}
SkASSERT(dst);
SkASSERT(src && src->colorAttachment() && src->colorAttachment()->numSamples() > 1);
VkImageResolve resolveInfo;
resolveInfo.srcSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
resolveInfo.srcOffset = {srcRect.fLeft, srcRect.fTop, 0};
resolveInfo.dstSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
resolveInfo.dstOffset = {dstPoint.fX, dstPoint.fY, 0};
resolveInfo.extent = {(uint32_t)srcRect.width(), (uint32_t)srcRect.height(), 1};
GrVkImage* dstImage;
GrRenderTarget* dstRT = dst->asRenderTarget();
GrTexture* dstTex = dst->asTexture();
if (dstTex) {
dstImage = static_cast<GrVkTexture*>(dstTex)->textureImage();
} else {
SkASSERT(dst->asRenderTarget());
dstImage = static_cast<GrVkRenderTarget*>(dstRT)->nonMSAAAttachment();
}
SkASSERT(dstImage);
dstImage->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
src->colorAttachment()->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_ACCESS_TRANSFER_READ_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
this->currentCommandBuffer()->addGrSurface(sk_ref_sp<const GrSurface>(src->colorAttachment()));
this->currentCommandBuffer()->addGrSurface(sk_ref_sp<const GrSurface>(dst));
this->currentCommandBuffer()->resolveImage(this, *src->colorAttachment(), *dstImage, 1,
&resolveInfo);
}
void GrVkGpu::onResolveRenderTarget(GrRenderTarget* target, const SkIRect& resolveRect) {
SkASSERT(target->numSamples() > 1);
GrVkRenderTarget* rt = static_cast<GrVkRenderTarget*>(target);
SkASSERT(rt->colorAttachmentView() && rt->resolveAttachmentView());
if (this->vkCaps().renderTargetSupportsDiscardableMSAA(rt)) {
// We would have resolved the RT during the render pass;
return;
}
this->resolveImage(target, rt, resolveRect,
SkIPoint::Make(resolveRect.x(), resolveRect.y()));
}
bool GrVkGpu::uploadTexDataLinear(GrVkImage* texImage,
SkIRect rect,
GrColorType dataColorType,
const void* data,
size_t rowBytes) {
SkASSERT(data);
SkASSERT(texImage->isLinearTiled());
SkASSERT(SkIRect::MakeSize(texImage->dimensions()).contains(rect));
size_t bpp = GrColorTypeBytesPerPixel(dataColorType);
size_t trimRowBytes = rect.width() * bpp;
SkASSERT(VK_IMAGE_LAYOUT_PREINITIALIZED == texImage->currentLayout() ||
VK_IMAGE_LAYOUT_GENERAL == texImage->currentLayout());
const VkImageSubresource subres = {
VK_IMAGE_ASPECT_COLOR_BIT,
0, // mipLevel
0, // arraySlice
};
VkSubresourceLayout layout;
const skgpu::VulkanInterface* interface = this->vkInterface();
GR_VK_CALL(interface, GetImageSubresourceLayout(fDevice,
texImage->image(),
&subres,
&layout));
const skgpu::VulkanAlloc& alloc = texImage->alloc();
if (VK_NULL_HANDLE == alloc.fMemory) {
return false;
}
VkDeviceSize offset = rect.top()*layout.rowPitch + rect.left()*bpp;
VkDeviceSize size = rect.height()*layout.rowPitch;
SkASSERT(size + offset <= alloc.fSize);
void* mapPtr = GrVkMemory::MapAlloc(this, alloc);
if (!mapPtr) {
return false;
}
mapPtr = reinterpret_cast<char*>(mapPtr) + offset;
SkRectMemcpy(mapPtr,
static_cast<size_t>(layout.rowPitch),
data,
rowBytes,
trimRowBytes,
rect.height());
GrVkMemory::FlushMappedAlloc(this, alloc, offset, size);
GrVkMemory::UnmapAlloc(this, alloc);
return true;
}
// This fills in the 'regions' vector in preparation for copying a buffer to an image.
// 'individualMipOffsets' is filled in as a side-effect.
static size_t fill_in_compressed_regions(GrStagingBufferManager* stagingBufferManager,
SkTArray<VkBufferImageCopy>* regions,
SkTArray<size_t>* individualMipOffsets,
GrStagingBufferManager::Slice* slice,
SkImage::CompressionType compression,
VkFormat vkFormat,
SkISize dimensions,
GrMipmapped mipmapped) {
SkASSERT(compression != SkImage::CompressionType::kNone);
int numMipLevels = 1;
if (mipmapped == GrMipmapped::kYes) {
numMipLevels = SkMipmap::ComputeLevelCount(dimensions.width(), dimensions.height()) + 1;
}
regions->reserve_back(numMipLevels);
individualMipOffsets->reserve_back(numMipLevels);
size_t bytesPerBlock = GrVkFormatBytesPerBlock(vkFormat);
size_t bufferSize = SkCompressedDataSize(compression,
dimensions,
individualMipOffsets,
mipmapped == GrMipmapped::kYes);
SkASSERT(individualMipOffsets->count() == numMipLevels);
// Get a staging buffer slice to hold our mip data.
// Vulkan requires offsets in the buffer to be aligned to multiple of the texel size and 4
size_t alignment = bytesPerBlock;
switch (alignment & 0b11) {
case 0: break; // alignment is already a multiple of 4.
case 2: alignment *= 2; break; // alignment is a multiple of 2 but not 4.
default: alignment *= 4; break; // alignment is not a multiple of 2.
}
*slice = stagingBufferManager->allocateStagingBufferSlice(bufferSize, alignment);
if (!slice->fBuffer) {
return 0;
}
for (int i = 0; i < numMipLevels; ++i) {
VkBufferImageCopy& region = regions->push_back();
memset(&region, 0, sizeof(VkBufferImageCopy));
region.bufferOffset = slice->fOffset + (*individualMipOffsets)[i];
SkISize revisedDimensions = GrCompressedDimensions(compression, dimensions);
region.bufferRowLength = revisedDimensions.width();
region.bufferImageHeight = revisedDimensions.height();
region.imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, SkToU32(i), 0, 1};
region.imageOffset = {0, 0, 0};
region.imageExtent = {SkToU32(dimensions.width()),
SkToU32(dimensions.height()), 1};
dimensions = {std::max(1, dimensions.width() /2),
std::max(1, dimensions.height()/2)};
}
return bufferSize;
}
bool GrVkGpu::uploadTexDataOptimal(GrVkImage* texImage,
SkIRect rect,
GrColorType dataColorType,
const GrMipLevel texels[],
int mipLevelCount) {
if (!this->currentCommandBuffer()) {
return false;
}
SkASSERT(!texImage->isLinearTiled());
// The assumption is either that we have no mipmaps, or that our rect is the entire texture
SkASSERT(mipLevelCount == 1 || rect == SkIRect::MakeSize(texImage->dimensions()));
// We assume that if the texture has mip levels, we either upload to all the levels or just the
// first.
SkASSERT(mipLevelCount == 1 || mipLevelCount == (int)texImage->mipLevels());
SkASSERT(!rect.isEmpty());
SkASSERT(this->vkCaps().surfaceSupportsWritePixels(texImage));
SkASSERT(this->vkCaps().isVkFormatTexturable(texImage->imageFormat()));
size_t bpp = GrColorTypeBytesPerPixel(dataColorType);
// texels is const.
// But we may need to adjust the fPixels ptr based on the copyRect, or fRowBytes.
// Because of this we need to make a non-const shallow copy of texels.
SkAutoTArray<GrMipLevel> texelsShallowCopy(mipLevelCount);
std::copy_n(texels, mipLevelCount, texelsShallowCopy.get());
SkTArray<size_t> individualMipOffsets;
size_t combinedBufferSize;
if (mipLevelCount > 1) {
combinedBufferSize = GrComputeTightCombinedBufferSize(bpp,
rect.size(),
&individualMipOffsets,
mipLevelCount);
} else {
SkASSERT(texelsShallowCopy[0].fPixels && texelsShallowCopy[0].fRowBytes);
combinedBufferSize = rect.width()*rect.height()*bpp;
individualMipOffsets.push_back(0);
}
SkASSERT(combinedBufferSize);
// Get a staging buffer slice to hold our mip data.
// Vulkan requires offsets in the buffer to be aligned to multiple of the texel size and 4
size_t alignment = bpp;
switch (alignment & 0b11) {
case 0: break; // alignment is already a multiple of 4.
case 2: alignment *= 2; break; // alignment is a multiple of 2 but not 4.
default: alignment *= 4; break; // alignment is not a multiple of 2.
}
GrStagingBufferManager::Slice slice =
fStagingBufferManager.allocateStagingBufferSlice(combinedBufferSize, alignment);
if (!slice.fBuffer) {
return false;
}
int uploadLeft = rect.left();
int uploadTop = rect.top();
char* buffer = (char*) slice.fOffsetMapPtr;
SkTArray<VkBufferImageCopy> regions(mipLevelCount);
int currentWidth = rect.width();
int currentHeight = rect.height();
for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) {
if (texelsShallowCopy[currentMipLevel].fPixels) {
const size_t trimRowBytes = currentWidth * bpp;
const size_t rowBytes = texelsShallowCopy[currentMipLevel].fRowBytes;
// copy data into the buffer, skipping the trailing bytes
char* dst = buffer + individualMipOffsets[currentMipLevel];
const char* src = (const char*)texelsShallowCopy[currentMipLevel].fPixels;
SkRectMemcpy(dst, trimRowBytes, src, rowBytes, trimRowBytes, currentHeight);
VkBufferImageCopy& region = regions.push_back();
memset(&region, 0, sizeof(VkBufferImageCopy));
region.bufferOffset = slice.fOffset + individualMipOffsets[currentMipLevel];
region.bufferRowLength = currentWidth;
region.bufferImageHeight = currentHeight;
region.imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, SkToU32(currentMipLevel), 0, 1};
region.imageOffset = {uploadLeft, uploadTop, 0};
region.imageExtent = {(uint32_t)currentWidth, (uint32_t)currentHeight, 1};
}
currentWidth = std::max(1, currentWidth/2);
currentHeight = std::max(1, currentHeight/2);
}
// Change layout of our target so it can be copied to
texImage->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
// Copy the buffer to the image. This call takes the raw VkBuffer instead of a GrGpuBuffer
// because we don't need the command buffer to ref the buffer here. The reason being is that
// the buffer is coming from the staging manager and the staging manager will make sure the
// command buffer has a ref on the buffer. This avoids having to add and remove a ref for ever
// upload in the frame.
GrVkBuffer* vkBuffer = static_cast<GrVkBuffer*>(slice.fBuffer);
this->currentCommandBuffer()->copyBufferToImage(this,
vkBuffer->vkBuffer(),
texImage,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
regions.count(),
regions.begin());
return true;
}
// It's probably possible to roll this into uploadTexDataOptimal,
// but for now it's easier to maintain as a separate entity.
bool GrVkGpu::uploadTexDataCompressed(GrVkImage* uploadTexture,
SkImage::CompressionType compression, VkFormat vkFormat,
SkISize dimensions, GrMipmapped mipmapped,
const void* data, size_t dataSize) {
if (!this->currentCommandBuffer()) {
return false;
}
SkASSERT(data);
SkASSERT(!uploadTexture->isLinearTiled());
// For now the assumption is that our rect is the entire texture.
// Compressed textures are read-only so this should be a reasonable assumption.
SkASSERT(dimensions.fWidth == uploadTexture->width() &&
dimensions.fHeight == uploadTexture->height());
if (dimensions.fWidth == 0 || dimensions.fHeight == 0) {
return false;
}
SkASSERT(uploadTexture->imageFormat() == vkFormat);
SkASSERT(this->vkCaps().isVkFormatTexturable(vkFormat));
GrStagingBufferManager::Slice slice;
SkTArray<VkBufferImageCopy> regions;
SkTArray<size_t> individualMipOffsets;
SkDEBUGCODE(size_t combinedBufferSize =) fill_in_compressed_regions(&fStagingBufferManager,
&regions,
&individualMipOffsets,
&slice,
compression,
vkFormat,
dimensions,
mipmapped);
if (!slice.fBuffer) {
return false;
}
SkASSERT(dataSize == combinedBufferSize);
{
char* buffer = (char*)slice.fOffsetMapPtr;
memcpy(buffer, data, dataSize);
}
// Change layout of our target so it can be copied to
uploadTexture->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
// Copy the buffer to the image. This call takes the raw VkBuffer instead of a GrGpuBuffer
// because we don't need the command buffer to ref the buffer here. The reason being is that
// the buffer is coming from the staging manager and the staging manager will make sure the
// command buffer has a ref on the buffer. This avoids having to add and remove a ref for ever
// upload in the frame.
GrVkBuffer* vkBuffer = static_cast<GrVkBuffer*>(slice.fBuffer);
this->currentCommandBuffer()->copyBufferToImage(this,
vkBuffer->vkBuffer(),
uploadTexture,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
regions.count(),
regions.begin());
return true;
}
////////////////////////////////////////////////////////////////////////////////
// TODO: make this take a GrMipmapped
sk_sp<GrTexture> GrVkGpu::onCreateTexture(SkISize dimensions,
const GrBackendFormat& format,
GrRenderable renderable,
int renderTargetSampleCnt,
SkBudgeted budgeted,
GrProtected isProtected,
int mipLevelCount,
uint32_t levelClearMask,
std::string_view label) {
VkFormat pixelFormat;
SkAssertResult(format.asVkFormat(&pixelFormat));
SkASSERT(!GrVkFormatIsCompressed(pixelFormat));
SkASSERT(mipLevelCount > 0);
GrMipmapStatus mipmapStatus =
mipLevelCount > 1 ? GrMipmapStatus::kDirty : GrMipmapStatus::kNotAllocated;
sk_sp<GrVkTexture> tex;
if (renderable == GrRenderable::kYes) {
tex = GrVkTextureRenderTarget::MakeNewTextureRenderTarget(
this, budgeted, dimensions, pixelFormat, mipLevelCount, renderTargetSampleCnt,
mipmapStatus, isProtected, label);
} else {
tex = GrVkTexture::MakeNewTexture(this, budgeted, dimensions, pixelFormat,
mipLevelCount, isProtected, mipmapStatus, label);
}
if (!tex) {
return nullptr;
}
if (levelClearMask) {
if (!this->currentCommandBuffer()) {
return nullptr;
}
SkSTArray<1, VkImageSubresourceRange> ranges;
bool inRange = false;
GrVkImage* texImage = tex->textureImage();
for (uint32_t i = 0; i < texImage->mipLevels(); ++i) {
if (levelClearMask & (1U << i)) {
if (inRange) {
ranges.back().levelCount++;
} else {
auto& range = ranges.push_back();
range.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
range.baseArrayLayer = 0;
range.baseMipLevel = i;
range.layerCount = 1;
range.levelCount = 1;
inRange = true;
}
} else if (inRange) {
inRange = false;
}
}
SkASSERT(!ranges.empty());
static constexpr VkClearColorValue kZeroClearColor = {};
texImage->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false);
this->currentCommandBuffer()->clearColorImage(this, texImage, &kZeroClearColor,
ranges.count(), ranges.begin());
}
return std::move(tex);
}
sk_sp<GrTexture> GrVkGpu::onCreateCompressedTexture(SkISize dimensions,
const GrBackendFormat& format,
SkBudgeted budgeted,
GrMipmapped mipmapped,
GrProtected isProtected,
const void* data, size_t dataSize) {
VkFormat pixelFormat;
SkAssertResult(format.asVkFormat(&pixelFormat));
SkASSERT(GrVkFormatIsCompressed(pixelFormat));
int numMipLevels = 1;
if (mipmapped == GrMipmapped::kYes) {
numMipLevels = SkMipmap::ComputeLevelCount(dimensions.width(), dimensions.height())+1;
}
GrMipmapStatus mipmapStatus = (mipmapped == GrMipmapped::kYes) ? GrMipmapStatus::kValid
: GrMipmapStatus::kNotAllocated;
auto tex = GrVkTexture::MakeNewTexture(this,
budgeted,
dimensions,
pixelFormat,
numMipLevels,
isProtected,
mipmapStatus,
/*label=*/"VkGpu_CreateCompressedTexture");
if (!tex) {
return nullptr;
}
SkImage::CompressionType compression = GrBackendFormatToCompressionType(format);
if (!this->uploadTexDataCompressed(tex->textureImage(), compression, pixelFormat,
dimensions, mipmapped, data, dataSize)) {
return nullptr;
}
return std::move(tex);
}
////////////////////////////////////////////////////////////////////////////////
bool GrVkGpu::updateBuffer(sk_sp<GrVkBuffer> buffer, const void* src,
VkDeviceSize offset, VkDeviceSize size) {
if (!this->currentCommandBuffer()) {
return false;
}
add_transfer_dst_buffer_mem_barrier(this,
static_cast<GrVkBuffer*>(buffer.get()),
offset,
size,
/*after=*/false);
this->currentCommandBuffer()->updateBuffer(this, buffer, offset, size, src);
add_transfer_dst_buffer_mem_barrier(this,
static_cast<GrVkBuffer*>(buffer.get()),
offset,
size,
/*after=*/true);
return true;
}
bool GrVkGpu::zeroBuffer(sk_sp<GrGpuBuffer> buffer) {
if (!this->currentCommandBuffer()) {
return false;
}
add_transfer_dst_buffer_mem_barrier(this,
static_cast<GrVkBuffer*>(buffer.get()),
/*offset=*/0,
buffer->size(),
/*after=*/false);
this->currentCommandBuffer()->fillBuffer(this,
buffer,
/*offset=*/0,
buffer->size(),
/*data=*/0);
add_transfer_dst_buffer_mem_barrier(this,
static_cast<GrVkBuffer*>(buffer.get()),
/*offset=*/0,
buffer->size(),
/*after=*/true);
return true;
}
////////////////////////////////////////////////////////////////////////////////
static bool check_image_info(const GrVkCaps& caps,
const GrVkImageInfo& info,
bool needsAllocation,
uint32_t graphicsQueueIndex) {
if (VK_NULL_HANDLE == info.fImage) {
return false;
}
if (VK_NULL_HANDLE == info.fAlloc.fMemory && needsAllocation) {
return false;
}
if (info.fImageLayout == VK_IMAGE_LAYOUT_PRESENT_SRC_KHR && !caps.supportsSwapchain()) {
return false;
}
if (info.fCurrentQueueFamily != VK_QUEUE_FAMILY_IGNORED &&
info.fCurrentQueueFamily != VK_QUEUE_FAMILY_EXTERNAL &&
info.fCurrentQueueFamily != VK_QUEUE_FAMILY_FOREIGN_EXT) {
if (info.fSharingMode == VK_SHARING_MODE_EXCLUSIVE) {
if (info.fCurrentQueueFamily != graphicsQueueIndex) {
return false;
}
} else {
return false;
}
}
if (info.fYcbcrConversionInfo.isValid()) {
if (!caps.supportsYcbcrConversion()) {
return false;
}
if (info.fYcbcrConversionInfo.fExternalFormat != 0) {
return true;
}
}
// We currently require everything to be made with transfer bits set
if (!SkToBool(info.fImageUsageFlags & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) ||
!SkToBool(info.fImageUsageFlags & VK_IMAGE_USAGE_TRANSFER_DST_BIT)) {
return false;
}
return true;
}
static bool check_tex_image_info(const GrVkCaps& caps, const GrVkImageInfo& info) {
// We don't support directly importing multisampled textures for sampling from shaders.
if (info.fSampleCount != 1) {
return false;
}
if (info.fYcbcrConversionInfo.isValid() && info.fYcbcrConversionInfo.fExternalFormat != 0) {
return true;
}
if (info.fImageTiling == VK_IMAGE_TILING_OPTIMAL) {
if (!caps.isVkFormatTexturable(info.fFormat)) {
return false;
}
} else if (info.fImageTiling == VK_IMAGE_TILING_LINEAR) {
if (!caps.isVkFormatTexturableLinearly(info.fFormat)) {
return false;
}
} else if (info.fImageTiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) {
if (!caps.supportsDRMFormatModifiers()) {
return false;
}
// To be technically correct we should query the vulkan support for VkFormat and
// drmFormatModifier pairs to confirm the required feature support is there. However, we
// currently don't have our caps and format tables set up to do this effeciently. So
// instead we just rely on the client's passed in VkImageUsageFlags and assume they we set
// up using valid features (checked below). In practice this should all be safe because
// currently we are setting all drm format modifier textures to have a
// GrTextureType::kExternal so we just really need to be able to read these video VkImage in
// a shader. The video decoder isn't going to give us VkImages that don't support being
// sampled.
} else {
SkUNREACHABLE;
}
// We currently require all textures to be made with sample support
if (!SkToBool(info.fImageUsageFlags & VK_IMAGE_USAGE_SAMPLED_BIT)) {
return false;
}
return true;
}
static bool check_rt_image_info(const GrVkCaps& caps, const GrVkImageInfo& info, bool resolveOnly) {
if (!caps.isFormatRenderable(info.fFormat, info.fSampleCount)) {
return false;
}
if (!resolveOnly && !SkToBool(info.fImageUsageFlags & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)) {
return false;
}
return true;
}
sk_sp<GrTexture> GrVkGpu::onWrapBackendTexture(const GrBackendTexture& backendTex,
GrWrapOwnership ownership,
GrWrapCacheable cacheable,
GrIOType ioType) {
GrVkImageInfo imageInfo;
if (!backendTex.getVkImageInfo(&imageInfo)) {
return nullptr;
}
if (!check_image_info(this->vkCaps(), imageInfo, kAdopt_GrWrapOwnership == ownership,
this->queueIndex())) {
return nullptr;
}
if (!check_tex_image_info(this->vkCaps(), imageInfo)) {
return nullptr;
}
if (backendTex.isProtected() && (fProtectedContext == GrProtected::kNo)) {
return nullptr;
}
sk_sp<GrBackendSurfaceMutableStateImpl> mutableState = backendTex.getMutableState();
SkASSERT(mutableState);
return GrVkTexture::MakeWrappedTexture(this, backendTex.dimensions(), ownership, cacheable,
ioType, imageInfo, std::move(mutableState));
}
sk_sp<GrTexture> GrVkGpu::onWrapCompressedBackendTexture(const GrBackendTexture& beTex,
GrWrapOwnership ownership,
GrWrapCacheable cacheable) {
return this->onWrapBackendTexture(beTex, ownership, cacheable, kRead_GrIOType);
}
sk_sp<GrTexture> GrVkGpu::onWrapRenderableBackendTexture(const GrBackendTexture& backendTex,
int sampleCnt,
GrWrapOwnership ownership,
GrWrapCacheable cacheable) {
GrVkImageInfo imageInfo;
if (!backendTex.getVkImageInfo(&imageInfo)) {
return nullptr;
}
if (!check_image_info(this->vkCaps(), imageInfo, kAdopt_GrWrapOwnership == ownership,
this->queueIndex())) {
return nullptr;
}
if (!check_tex_image_info(this->vkCaps(), imageInfo)) {
return nullptr;
}
// If sampleCnt is > 1 we will create an intermediate MSAA VkImage and then resolve into
// the wrapped VkImage.
bool resolveOnly = sampleCnt > 1;
if (!check_rt_image_info(this->vkCaps(), imageInfo, resolveOnly)) {
return nullptr;
}
if (backendTex.isProtected() && (fProtectedContext == GrProtected::kNo)) {
return nullptr;
}
sampleCnt = this->vkCaps().getRenderTargetSampleCount(sampleCnt, imageInfo.fFormat);
sk_sp<GrBackendSurfaceMutableStateImpl> mutableState = backendTex.getMutableState();
SkASSERT(mutableState);
return GrVkTextureRenderTarget::MakeWrappedTextureRenderTarget(this, backendTex.dimensions(),
sampleCnt, ownership, cacheable,
imageInfo,
std::move(mutableState));
}
sk_sp<GrRenderTarget> GrVkGpu::onWrapBackendRenderTarget(const GrBackendRenderTarget& backendRT) {
GrVkImageInfo info;
if (!backendRT.getVkImageInfo(&info)) {
return nullptr;
}
if (!check_image_info(this->vkCaps(), info, false, this->queueIndex())) {
return nullptr;
}
// We will always render directly to this VkImage.
static bool kResolveOnly = false;
if (!check_rt_image_info(this->vkCaps(), info, kResolveOnly)) {
return nullptr;
}
if (backendRT.isProtected() && (fProtectedContext == GrProtected::kNo)) {
return nullptr;
}
sk_sp<GrBackendSurfaceMutableStateImpl> mutableState = backendRT.getMutableState();
SkASSERT(mutableState);
sk_sp<GrVkRenderTarget> tgt = GrVkRenderTarget::MakeWrappedRenderTarget(
this, backendRT.dimensions(), backendRT.sampleCnt(), info, std::move(mutableState));
// We don't allow the client to supply a premade stencil buffer. We always create one if needed.
SkASSERT(!backendRT.stencilBits());
if (tgt) {
SkASSERT(tgt->canAttemptStencilAttachment(tgt->numSamples() > 1));
}
return std::move(tgt);
}
sk_sp<GrRenderTarget> GrVkGpu::onWrapVulkanSecondaryCBAsRenderTarget(
const SkImageInfo& imageInfo, const GrVkDrawableInfo& vkInfo) {
int maxSize = this->caps()->maxTextureSize();
if (imageInfo.width() > maxSize || imageInfo.height() > maxSize) {
return nullptr;
}
GrBackendFormat backendFormat = GrBackendFormat::MakeVk(vkInfo.fFormat);
if (!backendFormat.isValid()) {
return nullptr;
}
int sampleCnt = this->vkCaps().getRenderTargetSampleCount(1, vkInfo.fFormat);
if (!sampleCnt) {
return nullptr;
}
return GrVkRenderTarget::MakeSecondaryCBRenderTarget(this, imageInfo.dimensions(), vkInfo);
}
bool GrVkGpu::loadMSAAFromResolve(GrVkCommandBuffer* commandBuffer,
const GrVkRenderPass& renderPass,
GrAttachment* dst,
GrVkImage* src,
const SkIRect& srcRect) {
return fMSAALoadManager.loadMSAAFromResolve(this, commandBuffer, renderPass, dst, src, srcRect);
}
bool GrVkGpu::onRegenerateMipMapLevels(GrTexture* tex) {
if (!this->currentCommandBuffer()) {
return false;
}
auto* vkTex = static_cast<GrVkTexture*>(tex)->textureImage();
// don't do anything for linearly tiled textures (can't have mipmaps)
if (vkTex->isLinearTiled()) {
SkDebugf("Trying to create mipmap for linear tiled texture");
return false;
}
SkASSERT(tex->textureType() == GrTextureType::k2D);
// determine if we can blit to and from this format
const GrVkCaps& caps = this->vkCaps();
if (!caps.formatCanBeDstofBlit(vkTex->imageFormat(), false) ||
!caps.formatCanBeSrcofBlit(vkTex->imageFormat(), false) ||
!caps.mipmapSupport()) {
return false;
}
int width = tex->width();
int height = tex->height();
VkImageBlit blitRegion;
memset(&blitRegion, 0, sizeof(VkImageBlit));
// SkMipmap doesn't include the base level in the level count so we have to add 1
uint32_t levelCount = SkMipmap::ComputeLevelCount(tex->width(), tex->height()) + 1;
SkASSERT(levelCount == vkTex->mipLevels());
// change layout of the layers so we can write to them.
vkTex->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_ACCESS_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT, false);
// setup memory barrier
SkASSERT(GrVkFormatIsSupported(vkTex->imageFormat()));
VkImageMemoryBarrier imageMemoryBarrier = {
VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, // sType
nullptr, // pNext
VK_ACCESS_TRANSFER_WRITE_BIT, // srcAccessMask
VK_ACCESS_TRANSFER_READ_BIT, // dstAccessMask
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, // oldLayout
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, // newLayout
VK_QUEUE_FAMILY_IGNORED, // srcQueueFamilyIndex
VK_QUEUE_FAMILY_IGNORED, // dstQueueFamilyIndex
vkTex->image(), // image
{VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1} // subresourceRange
};
// Blit the miplevels
uint32_t mipLevel = 1;
while (mipLevel < levelCount) {
int prevWidth = width;
int prevHeight = height;
width = std::max(1, width / 2);
height = std::max(1, height / 2);
imageMemoryBarrier.subresourceRange.baseMipLevel = mipLevel - 1;
this->addImageMemoryBarrier(vkTex->resource(), VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT, false, &imageMemoryBarrier);
blitRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, mipLevel - 1, 0, 1 };
blitRegion.srcOffsets[0] = { 0, 0, 0 };
blitRegion.srcOffsets[1] = { prevWidth, prevHeight, 1 };
blitRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, mipLevel, 0, 1 };
blitRegion.dstOffsets[0] = { 0, 0, 0 };
blitRegion.dstOffsets[1] = { width, height, 1 };
this->currentCommandBuffer()->blitImage(this,
vkTex->resource(),
vkTex->image(),
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
vkTex->resource(),
vkTex->image(),
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&blitRegion,
VK_FILTER_LINEAR);
++mipLevel;
}
if (levelCount > 1) {
// This barrier logically is not needed, but it changes the final level to the same layout
// as all the others, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL. This makes tracking of the
// layouts and future layout changes easier. The alternative here would be to track layout
// and memory accesses per layer which doesn't seem work it.
imageMemoryBarrier.subresourceRange.baseMipLevel = mipLevel - 1;
this->addImageMemoryBarrier(vkTex->resource(), VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT, false, &imageMemoryBarrier);
vkTex->updateImageLayout(VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
sk_sp<GrAttachment> GrVkGpu::makeStencilAttachment(const GrBackendFormat& /*colorFormat*/,
SkISize dimensions, int numStencilSamples) {
VkFormat sFmt = this->vkCaps().preferredStencilFormat();
fStats.incStencilAttachmentCreates();
return GrVkImage::MakeStencil(this, dimensions, numStencilSamples, sFmt);
}
sk_sp<GrAttachment> GrVkGpu::makeMSAAAttachment(SkISize dimensions,
const GrBackendFormat& format,
int numSamples,
GrProtected isProtected,
GrMemoryless memoryless) {
VkFormat pixelFormat;
SkAssertResult(format.asVkFormat(&pixelFormat));
SkASSERT(!GrVkFormatIsCompressed(pixelFormat));
SkASSERT(this->vkCaps().isFormatRenderable(pixelFormat, numSamples));
fStats.incMSAAAttachmentCreates();
return GrVkImage::MakeMSAA(this, dimensions, numSamples, pixelFormat, isProtected, memoryless);
}
////////////////////////////////////////////////////////////////////////////////
bool copy_src_data(char* mapPtr,
VkFormat vkFormat,
const SkTArray<size_t>& individualMipOffsets,
const GrPixmap srcData[],
int numMipLevels) {
SkASSERT(srcData && numMipLevels);
SkASSERT(!GrVkFormatIsCompressed(vkFormat));
SkASSERT(individualMipOffsets.count() == numMipLevels);
SkASSERT(mapPtr);
size_t bytesPerPixel = GrVkFormatBytesPerBlock(vkFormat);
for (int level = 0; level < numMipLevels; ++level) {
const size_t trimRB = srcData[level].info().width() * bytesPerPixel;
SkRectMemcpy(mapPtr + individualMipOffsets[level], trimRB,
srcData[level].addr(), srcData[level].rowBytes(),
trimRB, srcData[level].height());
}
return true;
}
bool GrVkGpu::createVkImageForBackendSurface(VkFormat vkFormat,
SkISize dimensions,
int sampleCnt,
GrTexturable texturable,
GrRenderable renderable,
GrMipmapped mipmapped,
GrVkImageInfo* info,
GrProtected isProtected) {
SkASSERT(texturable == GrTexturable::kYes || renderable == GrRenderable::kYes);
if (fProtectedContext != isProtected) {
return false;
}
if (texturable == GrTexturable::kYes && !fVkCaps->isVkFormatTexturable(vkFormat)) {
return false;
}
// MSAA images are only currently used by createTestingOnlyBackendRenderTarget.
if (sampleCnt > 1 && (texturable == GrTexturable::kYes || renderable == GrRenderable::kNo)) {
return false;
}
if (renderable == GrRenderable::kYes) {
sampleCnt = fVkCaps->getRenderTargetSampleCount(sampleCnt, vkFormat);
if (!sampleCnt) {
return false;
}
}
int numMipLevels = 1;
if (mipmapped == GrMipmapped::kYes) {
numMipLevels = SkMipmap::ComputeLevelCount(dimensions.width(), dimensions.height()) + 1;
}
VkImageUsageFlags usageFlags = VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_TRANSFER_DST_BIT;
if (texturable == GrTexturable::kYes) {
usageFlags |= VK_IMAGE_USAGE_SAMPLED_BIT;
}
if (renderable == GrRenderable::kYes) {
usageFlags |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
// We always make our render targets support being used as input attachments
usageFlags |= VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT;
}
GrVkImage::ImageDesc imageDesc;
imageDesc.fImageType = VK_IMAGE_TYPE_2D;
imageDesc.fFormat = vkFormat;
imageDesc.fWidth = dimensions.width();
imageDesc.fHeight = dimensions.height();
imageDesc.fLevels = numMipLevels;
imageDesc.fSamples = sampleCnt;
imageDesc.fImageTiling = VK_IMAGE_TILING_OPTIMAL;
imageDesc.fUsageFlags = usageFlags;
imageDesc.fMemProps = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
imageDesc.fIsProtected = fProtectedContext;
if (!GrVkImage::InitImageInfo(this, imageDesc, info)) {
SkDebugf("Failed to init image info\n");
return false;
}
return true;
}
bool GrVkGpu::onClearBackendTexture(const GrBackendTexture& backendTexture,
sk_sp<skgpu::RefCntedCallback> finishedCallback,
std::array<float, 4> color) {
GrVkImageInfo info;
SkAssertResult(backendTexture.getVkImageInfo(&info));
sk_sp<GrBackendSurfaceMutableStateImpl> mutableState = backendTexture.getMutableState();
SkASSERT(mutableState);
sk_sp<GrVkTexture> texture =
GrVkTexture::MakeWrappedTexture(this, backendTexture.dimensions(),
kBorrow_GrWrapOwnership, GrWrapCacheable::kNo,
kRW_GrIOType, info, std::move(mutableState));
if (!texture) {
return false;
}
GrVkImage* texImage = texture->textureImage();
GrVkPrimaryCommandBuffer* cmdBuffer = this->currentCommandBuffer();
if (!cmdBuffer) {
return false;
}
texImage->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
// CmdClearColorImage doesn't work for compressed formats
SkASSERT(!GrVkFormatIsCompressed(info.fFormat));
VkClearColorValue vkColor;
// If we ever support SINT or UINT formats this needs to be updated to use the int32 and
// uint32 union members in those cases.
vkColor.float32[0] = color[0];
vkColor.float32[1] = color[1];
vkColor.float32[2] = color[2];
vkColor.float32[3] = color[3];
VkImageSubresourceRange range;
range.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
range.baseArrayLayer = 0;
range.baseMipLevel = 0;
range.layerCount = 1;
range.levelCount = info.fLevelCount;
cmdBuffer->clearColorImage(this, texImage, &vkColor, 1, &range);
// Change image layout to shader read since if we use this texture as a borrowed
// texture within Ganesh we require that its layout be set to that
texImage->setImageLayout(this, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_ACCESS_SHADER_READ_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
false);
if (finishedCallback) {
this->addFinishedCallback(std::move(finishedCallback));
}
return true;
}
GrBackendTexture GrVkGpu::onCreateBackendTexture(SkISize dimensions,
const GrBackendFormat& format,
GrRenderable renderable,
GrMipmapped mipmapped,
GrProtected isProtected,
std::string_view label) {
const GrVkCaps& caps = this->vkCaps();
if (fProtectedContext != isProtected) {
return {};
}
VkFormat vkFormat;
if (!format.asVkFormat(&vkFormat)) {
return {};
}
// TODO: move the texturability check up to GrGpu::createBackendTexture and just assert here
if (!caps.isVkFormatTexturable(vkFormat)) {
return {};
}
if (GrVkFormatNeedsYcbcrSampler(vkFormat)) {
return {};
}
GrVkImageInfo info;
if (!this->createVkImageForBackendSurface(vkFormat, dimensions, 1, GrTexturable::kYes,
renderable, mipmapped, &info, isProtected)) {
return {};
}
return GrBackendTexture(dimensions.width(), dimensions.height(), info);
}
GrBackendTexture GrVkGpu::onCreateCompressedBackendTexture(
SkISize dimensions, const GrBackendFormat& format, GrMipmapped mipmapped,
GrProtected isProtected) {
return this->onCreateBackendTexture(dimensions,
format,
GrRenderable::kNo,
mipmapped,
isProtected,
/*label=*/"VkGpu_CreateCompressedBackendTexture");
}
bool GrVkGpu::onUpdateCompressedBackendTexture(const GrBackendTexture& backendTexture,
sk_sp<skgpu::RefCntedCallback> finishedCallback,
const void* data,
size_t size) {
GrVkImageInfo info;
SkAssertResult(backendTexture.getVkImageInfo(&info));
sk_sp<GrBackendSurfaceMutableStateImpl> mutableState = backendTexture.getMutableState();
SkASSERT(mutableState);
sk_sp<GrVkTexture> texture = GrVkTexture::MakeWrappedTexture(this,
backendTexture.dimensions(),
kBorrow_GrWrapOwnership,
GrWrapCacheable::kNo,
kRW_GrIOType,
info,
std::move(mutableState));
if (!texture) {
return false;
}
GrVkPrimaryCommandBuffer* cmdBuffer = this->currentCommandBuffer();
if (!cmdBuffer) {
return false;
}
GrVkImage* image = texture->textureImage();
image->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
SkImage::CompressionType compression =
GrBackendFormatToCompressionType(backendTexture.getBackendFormat());
SkTArray<VkBufferImageCopy> regions;
SkTArray<size_t> individualMipOffsets;
GrStagingBufferManager::Slice slice;
fill_in_compressed_regions(&fStagingBufferManager,
&regions,
&individualMipOffsets,
&slice,
compression,
info.fFormat,
backendTexture.dimensions(),
backendTexture.fMipmapped);
if (!slice.fBuffer) {
return false;
}
memcpy(slice.fOffsetMapPtr, data, size);
cmdBuffer->addGrSurface(texture);
// Copy the buffer to the image. This call takes the raw VkBuffer instead of a GrGpuBuffer
// because we don't need the command buffer to ref the buffer here. The reason being is that
// the buffer is coming from the staging manager and the staging manager will make sure the
// command buffer has a ref on the buffer. This avoids having to add and remove a ref for
// every upload in the frame.
cmdBuffer->copyBufferToImage(this,
static_cast<GrVkBuffer*>(slice.fBuffer)->vkBuffer(),
image,
image->currentLayout(),
regions.count(),
regions.begin());
// Change image layout to shader read since if we use this texture as a borrowed
// texture within Ganesh we require that its layout be set to that
image->setImageLayout(this,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_ACCESS_SHADER_READ_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
false);
if (finishedCallback) {
this->addFinishedCallback(std::move(finishedCallback));
}
return true;
}
void set_layout_and_queue_from_mutable_state(GrVkGpu* gpu, GrVkImage* image,
const GrVkSharedImageInfo& newInfo) {
// Even though internally we use this helper for getting src access flags and stages they
// can also be used for general dst flags since we don't know exactly what the client
// plans on using the image for.
VkImageLayout newLayout = newInfo.getImageLayout();
if (newLayout == VK_IMAGE_LAYOUT_UNDEFINED) {
newLayout = image->currentLayout();
}
VkPipelineStageFlags dstStage = GrVkImage::LayoutToPipelineSrcStageFlags(newLayout);
VkAccessFlags dstAccess = GrVkImage::LayoutToSrcAccessMask(newLayout);
uint32_t currentQueueFamilyIndex = image->currentQueueFamilyIndex();
uint32_t newQueueFamilyIndex = newInfo.getQueueFamilyIndex();
auto isSpecialQueue = [](uint32_t queueFamilyIndex) {
return queueFamilyIndex == VK_QUEUE_FAMILY_EXTERNAL ||
queueFamilyIndex == VK_QUEUE_FAMILY_FOREIGN_EXT;
};
if (isSpecialQueue(currentQueueFamilyIndex) && isSpecialQueue(newQueueFamilyIndex)) {
// It is illegal to have both the new and old queue be special queue families (i.e. external
// or foreign).
return;
}
image->setImageLayoutAndQueueIndex(gpu, newLayout, dstAccess, dstStage, false,
newQueueFamilyIndex);
}
bool GrVkGpu::setBackendSurfaceState(GrVkImageInfo info,
sk_sp<GrBackendSurfaceMutableStateImpl> currentState,
SkISize dimensions,
const GrVkSharedImageInfo& newInfo,
GrBackendSurfaceMutableState* previousState,
sk_sp<skgpu::RefCntedCallback> finishedCallback) {
sk_sp<GrVkImage> texture = GrVkImage::MakeWrapped(this,
dimensions,
info,
std::move(currentState),
GrVkImage::UsageFlags::kColorAttachment,
kBorrow_GrWrapOwnership,
GrWrapCacheable::kNo,
"VkGpu_SetBackendSurfaceState",
/*forSecondaryCB=*/false);
SkASSERT(texture);
if (!texture) {
return false;
}
if (previousState) {
previousState->setVulkanState(texture->currentLayout(),
texture->currentQueueFamilyIndex());
}
set_layout_and_queue_from_mutable_state(this, texture.get(), newInfo);
if (finishedCallback) {
this->addFinishedCallback(std::move(finishedCallback));
}
return true;
}
bool GrVkGpu::setBackendTextureState(const GrBackendTexture& backendTeture,
const GrBackendSurfaceMutableState& newState,
GrBackendSurfaceMutableState* previousState,
sk_sp<skgpu::RefCntedCallback> finishedCallback) {
GrVkImageInfo info;
SkAssertResult(backendTeture.getVkImageInfo(&info));
sk_sp<GrBackendSurfaceMutableStateImpl> currentState = backendTeture.getMutableState();
SkASSERT(currentState);
SkASSERT(newState.isValid() && newState.fBackend == GrBackend::kVulkan);
return this->setBackendSurfaceState(info, std::move(currentState), backendTeture.dimensions(),
newState.fVkState, previousState,
std::move(finishedCallback));
}
bool GrVkGpu::setBackendRenderTargetState(const GrBackendRenderTarget& backendRenderTarget,
const GrBackendSurfaceMutableState& newState,
GrBackendSurfaceMutableState* previousState,
sk_sp<skgpu::RefCntedCallback> finishedCallback) {
GrVkImageInfo info;
SkAssertResult(backendRenderTarget.getVkImageInfo(&info));
sk_sp<GrBackendSurfaceMutableStateImpl> currentState = backendRenderTarget.getMutableState();
SkASSERT(currentState);
SkASSERT(newState.fBackend == GrBackend::kVulkan);
return this->setBackendSurfaceState(info, std::move(currentState),
backendRenderTarget.dimensions(), newState.fVkState,
previousState, std::move(finishedCallback));
}
void GrVkGpu::xferBarrier(GrRenderTarget* rt, GrXferBarrierType barrierType) {
GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(rt);
VkPipelineStageFlags dstStage;
VkAccessFlags dstAccess;
if (barrierType == kBlend_GrXferBarrierType) {
dstStage = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dstAccess = VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT;
} else {
SkASSERT(barrierType == kTexture_GrXferBarrierType);
dstStage = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
dstAccess = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT;
}
GrVkImage* image = vkRT->colorAttachment();
VkImageMemoryBarrier barrier;
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.pNext = nullptr;
barrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
barrier.dstAccessMask = dstAccess;
barrier.oldLayout = image->currentLayout();
barrier.newLayout = barrier.oldLayout;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.image = image->image();
barrier.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, image->mipLevels(), 0, 1};
this->addImageMemoryBarrier(image->resource(),
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
dstStage, true, &barrier);
}
void GrVkGpu::deleteBackendTexture(const GrBackendTexture& tex) {
SkASSERT(GrBackendApi::kVulkan == tex.fBackend);
GrVkImageInfo info;
if (tex.getVkImageInfo(&info)) {
GrVkImage::DestroyImageInfo(this, const_cast<GrVkImageInfo*>(&info));
}
}
bool GrVkGpu::compile(const GrProgramDesc& desc, const GrProgramInfo& programInfo) {
GrVkRenderPass::AttachmentsDescriptor attachmentsDescriptor;
GrVkRenderPass::AttachmentFlags attachmentFlags;
GrVkRenderTarget::ReconstructAttachmentsDescriptor(this->vkCaps(), programInfo,
&attachmentsDescriptor, &attachmentFlags);
GrVkRenderPass::SelfDependencyFlags selfDepFlags = GrVkRenderPass::SelfDependencyFlags::kNone;
if (programInfo.renderPassBarriers() & GrXferBarrierFlags::kBlend) {
selfDepFlags |= GrVkRenderPass::SelfDependencyFlags::kForNonCoherentAdvBlend;
}
if (programInfo.renderPassBarriers() & GrXferBarrierFlags::kTexture) {
selfDepFlags |= GrVkRenderPass::SelfDependencyFlags::kForInputAttachment;
}
GrVkRenderPass::LoadFromResolve loadFromResolve = GrVkRenderPass::LoadFromResolve::kNo;
if (this->vkCaps().programInfoWillUseDiscardableMSAA(programInfo) &&
programInfo.colorLoadOp() == GrLoadOp::kLoad) {
loadFromResolve = GrVkRenderPass::LoadFromResolve::kLoad;
}
sk_sp<const GrVkRenderPass> renderPass(this->resourceProvider().findCompatibleRenderPass(
&attachmentsDescriptor, attachmentFlags, selfDepFlags, loadFromResolve));
if (!renderPass) {
return false;
}
GrThreadSafePipelineBuilder::Stats::ProgramCacheResult stat;
auto pipelineState = this->resourceProvider().findOrCreateCompatiblePipelineState(
desc,
programInfo,
renderPass->vkRenderPass(),
&stat);
if (!pipelineState) {
return false;
}
return stat != GrThreadSafePipelineBuilder::Stats::ProgramCacheResult::kHit;
}
#if GR_TEST_UTILS
bool GrVkGpu::isTestingOnlyBackendTexture(const GrBackendTexture& tex) const {
SkASSERT(GrBackendApi::kVulkan == tex.fBackend);
GrVkImageInfo backend;
if (!tex.getVkImageInfo(&backend)) {
return false;
}
if (backend.fImage && backend.fAlloc.fMemory) {
VkMemoryRequirements req;
memset(&req, 0, sizeof(req));
GR_VK_CALL(this->vkInterface(), GetImageMemoryRequirements(fDevice,
backend.fImage,
&req));
// TODO: find a better check
// This will probably fail with a different driver
return (req.size > 0) && (req.size <= 8192 * 8192);
}
return false;
}
GrBackendRenderTarget GrVkGpu::createTestingOnlyBackendRenderTarget(SkISize dimensions,
GrColorType ct,
int sampleCnt,
GrProtected isProtected) {
if (dimensions.width() > this->caps()->maxRenderTargetSize() ||
dimensions.height() > this->caps()->maxRenderTargetSize()) {
return {};
}
VkFormat vkFormat = this->vkCaps().getFormatFromColorType(ct);
GrVkImageInfo info;
if (!this->createVkImageForBackendSurface(vkFormat, dimensions, sampleCnt, GrTexturable::kNo,
GrRenderable::kYes, GrMipmapped::kNo, &info,
isProtected)) {
return {};
}
return GrBackendRenderTarget(dimensions.width(), dimensions.height(), 0, info);
}
void GrVkGpu::deleteTestingOnlyBackendRenderTarget(const GrBackendRenderTarget& rt) {
SkASSERT(GrBackendApi::kVulkan == rt.fBackend);
GrVkImageInfo info;
if (rt.getVkImageInfo(&info)) {
// something in the command buffer may still be using this, so force submit
SkAssertResult(this->submitCommandBuffer(kForce_SyncQueue));
GrVkImage::DestroyImageInfo(this, const_cast<GrVkImageInfo*>(&info));
}
}
#endif
////////////////////////////////////////////////////////////////////////////////
void GrVkGpu::addBufferMemoryBarrier(const GrManagedResource* resource,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask,
bool byRegion,
VkBufferMemoryBarrier* barrier) const {
if (!this->currentCommandBuffer()) {
return;
}
SkASSERT(resource);
this->currentCommandBuffer()->pipelineBarrier(this,
resource,
srcStageMask,
dstStageMask,
byRegion,
GrVkCommandBuffer::kBufferMemory_BarrierType,
barrier);
}
void GrVkGpu::addBufferMemoryBarrier(VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask,
bool byRegion,
VkBufferMemoryBarrier* barrier) const {
if (!this->currentCommandBuffer()) {
return;
}
// We don't pass in a resource here to the command buffer. The command buffer only is using it
// to hold a ref, but every place where we add a buffer memory barrier we are doing some other
// command with the buffer on the command buffer. Thus those other commands will already cause
// the command buffer to be holding a ref to the buffer.
this->currentCommandBuffer()->pipelineBarrier(this,
/*resource=*/nullptr,
srcStageMask,
dstStageMask,
byRegion,
GrVkCommandBuffer::kBufferMemory_BarrierType,
barrier);
}
void GrVkGpu::addImageMemoryBarrier(const GrManagedResource* resource,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask,
bool byRegion,
VkImageMemoryBarrier* barrier) const {
// If we are in the middle of destroying or abandoning the context we may hit a release proc
// that triggers the destruction of a GrVkImage. This could cause us to try and transfer the
// VkImage back to the original queue. In this state we don't submit anymore work and we may not
// have a current command buffer. Thus we won't do the queue transfer.
if (!this->currentCommandBuffer()) {
return;
}
SkASSERT(resource);
this->currentCommandBuffer()->pipelineBarrier(this,
resource,
srcStageMask,
dstStageMask,
byRegion,
GrVkCommandBuffer::kImageMemory_BarrierType,
barrier);
}
void GrVkGpu::prepareSurfacesForBackendAccessAndStateUpdates(
SkSpan<GrSurfaceProxy*> proxies,
SkSurface::BackendSurfaceAccess access,
const GrBackendSurfaceMutableState* newState) {
// Submit the current command buffer to the Queue. Whether we inserted semaphores or not does
// not effect what we do here.
if (!proxies.empty() && (access == SkSurface::BackendSurfaceAccess::kPresent || newState)) {
// We currently don't support passing in new surface state for multiple proxies here. The
// only time we have multiple proxies is if we are flushing a yuv SkImage which won't have
// state updates anyways. Additionally if we have a newState than we must not have any
// BackendSurfaceAccess.
SkASSERT(!newState || proxies.size() == 1);
SkASSERT(!newState || access == SkSurface::BackendSurfaceAccess::kNoAccess);
GrVkImage* image;
for (GrSurfaceProxy* proxy : proxies) {
SkASSERT(proxy->isInstantiated());
if (GrTexture* tex = proxy->peekTexture()) {
image = static_cast<GrVkTexture*>(tex)->textureImage();
} else {
GrRenderTarget* rt = proxy->peekRenderTarget();
SkASSERT(rt);
GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(rt);
image = vkRT->externalAttachment();
}
if (newState) {
const GrVkSharedImageInfo& newInfo = newState->fVkState;
set_layout_and_queue_from_mutable_state(this, image, newInfo);
} else {
SkASSERT(access == SkSurface::BackendSurfaceAccess::kPresent);
image->prepareForPresent(this);
}
}
}
}
void GrVkGpu::addFinishedProc(GrGpuFinishedProc finishedProc,
GrGpuFinishedContext finishedContext) {
SkASSERT(finishedProc);
this->addFinishedCallback(skgpu::RefCntedCallback::Make(finishedProc, finishedContext));
}
void GrVkGpu::addFinishedCallback(sk_sp<skgpu::RefCntedCallback> finishedCallback) {
SkASSERT(finishedCallback);
fResourceProvider.addFinishedProcToActiveCommandBuffers(std::move(finishedCallback));
}
void GrVkGpu::takeOwnershipOfBuffer(sk_sp<GrGpuBuffer> buffer) {
this->currentCommandBuffer()->addGrBuffer(std::move(buffer));
}
bool GrVkGpu::onSubmitToGpu(bool syncCpu) {
if (syncCpu) {
return this->submitCommandBuffer(kForce_SyncQueue);
} else {
return this->submitCommandBuffer(kSkip_SyncQueue);
}
}
void GrVkGpu::finishOutstandingGpuWork() {
VK_CALL(QueueWaitIdle(fQueue));
if (this->vkCaps().mustSyncCommandBuffersWithQueue()) {
fResourceProvider.forceSyncAllCommandBuffers();
}
}
void GrVkGpu::onReportSubmitHistograms() {
#if SK_HISTOGRAMS_ENABLED
uint64_t allocatedMemory = fMemoryAllocator->totalAllocatedMemory();
uint64_t usedMemory = fMemoryAllocator->totalUsedMemory();
SkASSERT(usedMemory <= allocatedMemory);
if (allocatedMemory > 0) {
SK_HISTOGRAM_PERCENTAGE("VulkanMemoryAllocator.PercentUsed",
(usedMemory * 100) / allocatedMemory);
}
// allocatedMemory is in bytes and need to be reported it in kilobytes. SK_HISTOGRAM_MEMORY_KB
// supports samples up to around 500MB which should support the amounts of memory we allocate.
SK_HISTOGRAM_MEMORY_KB("VulkanMemoryAllocator.AmountAllocated", allocatedMemory >> 10);
#endif
}
void GrVkGpu::copySurfaceAsCopyImage(GrSurface* dst,
GrSurface* src,
GrVkImage* dstImage,
GrVkImage* srcImage,
const SkIRect& srcRect,
const SkIPoint& dstPoint) {
if (!this->currentCommandBuffer()) {
return;
}
#ifdef SK_DEBUG
int dstSampleCnt = dstImage->numSamples();
int srcSampleCnt = srcImage->numSamples();
bool dstHasYcbcr = dstImage->ycbcrConversionInfo().isValid();
bool srcHasYcbcr = srcImage->ycbcrConversionInfo().isValid();
VkFormat dstFormat = dstImage->imageFormat();
VkFormat srcFormat;
SkAssertResult(dst->backendFormat().asVkFormat(&srcFormat));
SkASSERT(this->vkCaps().canCopyImage(dstFormat, dstSampleCnt, dstHasYcbcr,
srcFormat, srcSampleCnt, srcHasYcbcr));
#endif
if (src->isProtected() && !dst->isProtected()) {
SkDebugf("Can't copy from protected memory to non-protected");
return;
}
// These flags are for flushing/invalidating caches and for the dst image it doesn't matter if
// the cache is flushed since it is only being written to.
dstImage->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
srcImage->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_ACCESS_TRANSFER_READ_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
VkImageCopy copyRegion;
memset(&copyRegion, 0, sizeof(VkImageCopy));
copyRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
copyRegion.srcOffset = { srcRect.fLeft, srcRect.fTop, 0 };
copyRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
copyRegion.dstOffset = { dstPoint.fX, dstPoint.fY, 0 };
copyRegion.extent = { (uint32_t)srcRect.width(), (uint32_t)srcRect.height(), 1 };
this->currentCommandBuffer()->addGrSurface(sk_ref_sp<const GrSurface>(src));
this->currentCommandBuffer()->addGrSurface(sk_ref_sp<const GrSurface>(dst));
this->currentCommandBuffer()->copyImage(this,
srcImage,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
dstImage,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&copyRegion);
SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY,
srcRect.width(), srcRect.height());
// The rect is already in device space so we pass in kTopLeft so no flip is done.
this->didWriteToSurface(dst, kTopLeft_GrSurfaceOrigin, &dstRect);
}
void GrVkGpu::copySurfaceAsBlit(GrSurface* dst,
GrSurface* src,
GrVkImage* dstImage,
GrVkImage* srcImage,
const SkIRect& srcRect,
const SkIPoint& dstPoint) {
if (!this->currentCommandBuffer()) {
return;
}
#ifdef SK_DEBUG
int dstSampleCnt = dstImage->numSamples();
int srcSampleCnt = srcImage->numSamples();
bool dstHasYcbcr = dstImage->ycbcrConversionInfo().isValid();
bool srcHasYcbcr = srcImage->ycbcrConversionInfo().isValid();
VkFormat dstFormat = dstImage->imageFormat();
VkFormat srcFormat;
SkAssertResult(dst->backendFormat().asVkFormat(&srcFormat));
SkASSERT(this->vkCaps().canCopyAsBlit(dstFormat,
dstSampleCnt,
dstImage->isLinearTiled(),
dstHasYcbcr,
srcFormat,
srcSampleCnt,
srcImage->isLinearTiled(),
srcHasYcbcr));
#endif
if (src->isProtected() && !dst->isProtected()) {
SkDebugf("Can't copy from protected memory to non-protected");
return;
}
dstImage->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
srcImage->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_ACCESS_TRANSFER_READ_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
// Flip rect if necessary
SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, srcRect.width(),
srcRect.height());
VkImageBlit blitRegion;
memset(&blitRegion, 0, sizeof(VkImageBlit));
blitRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
blitRegion.srcOffsets[0] = { srcRect.fLeft, srcRect.fTop, 0 };
blitRegion.srcOffsets[1] = { srcRect.fRight, srcRect.fBottom, 1 };
blitRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
blitRegion.dstOffsets[0] = { dstRect.fLeft, dstRect.fTop, 0 };
blitRegion.dstOffsets[1] = { dstRect.fRight, dstRect.fBottom, 1 };
this->currentCommandBuffer()->addGrSurface(sk_ref_sp<const GrSurface>(src));
this->currentCommandBuffer()->addGrSurface(sk_ref_sp<const GrSurface>(dst));
this->currentCommandBuffer()->blitImage(this,
*srcImage,
*dstImage,
1,
&blitRegion,
VK_FILTER_NEAREST); // We never scale so any filter works here
// The rect is already in device space so we pass in kTopLeft so no flip is done.
this->didWriteToSurface(dst, kTopLeft_GrSurfaceOrigin, &dstRect);
}
void GrVkGpu::copySurfaceAsResolve(GrSurface* dst, GrSurface* src, const SkIRect& srcRect,
const SkIPoint& dstPoint) {
if (src->isProtected() && !dst->isProtected()) {
SkDebugf("Can't copy from protected memory to non-protected");
return;
}
GrVkRenderTarget* srcRT = static_cast<GrVkRenderTarget*>(src->asRenderTarget());
this->resolveImage(dst, srcRT, srcRect, dstPoint);
SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY,
srcRect.width(), srcRect.height());
// The rect is already in device space so we pass in kTopLeft so no flip is done.
this->didWriteToSurface(dst, kTopLeft_GrSurfaceOrigin, &dstRect);
}
bool GrVkGpu::onCopySurface(GrSurface* dst, GrSurface* src, const SkIRect& srcRect,
const SkIPoint& dstPoint) {
#ifdef SK_DEBUG
if (GrVkRenderTarget* srcRT = static_cast<GrVkRenderTarget*>(src->asRenderTarget())) {
SkASSERT(!srcRT->wrapsSecondaryCommandBuffer());
}
if (GrVkRenderTarget* dstRT = static_cast<GrVkRenderTarget*>(dst->asRenderTarget())) {
SkASSERT(!dstRT->wrapsSecondaryCommandBuffer());
}
#endif
if (src->isProtected() && !dst->isProtected()) {
SkDebugf("Can't copy from protected memory to non-protected");
return false;
}
GrVkImage* dstImage;
GrVkImage* srcImage;
GrRenderTarget* dstRT = dst->asRenderTarget();
if (dstRT) {
GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(dstRT);
if (vkRT->wrapsSecondaryCommandBuffer()) {
return false;
}
// This will technically return true for single sample rts that used DMSAA in which case we
// don't have to pick the resolve attachment. But in that case the resolve and color
// attachments will be the same anyways.
if (this->vkCaps().renderTargetSupportsDiscardableMSAA(vkRT)) {
dstImage = vkRT->resolveAttachment();
} else {
dstImage = vkRT->colorAttachment();
}
} else if (dst->asTexture()) {
dstImage = static_cast<GrVkTexture*>(dst->asTexture())->textureImage();
} else {
// The surface in a GrAttachment already
dstImage = static_cast<GrVkImage*>(dst);
}
GrRenderTarget* srcRT = src->asRenderTarget();
if (srcRT) {
GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(srcRT);
// This will technically return true for single sample rts that used DMSAA in which case we
// don't have to pick the resolve attachment. But in that case the resolve and color
// attachments will be the same anyways.
if (this->vkCaps().renderTargetSupportsDiscardableMSAA(vkRT)) {
srcImage = vkRT->resolveAttachment();
} else {
srcImage = vkRT->colorAttachment();
}
} else if (src->asTexture()) {
SkASSERT(src->asTexture());
srcImage = static_cast<GrVkTexture*>(src->asTexture())->textureImage();
} else {
// The surface in a GrAttachment already
srcImage = static_cast<GrVkImage*>(src);
}
VkFormat dstFormat = dstImage->imageFormat();
VkFormat srcFormat = srcImage->imageFormat();
int dstSampleCnt = dstImage->numSamples();
int srcSampleCnt = srcImage->numSamples();
bool dstHasYcbcr = dstImage->ycbcrConversionInfo().isValid();
bool srcHasYcbcr = srcImage->ycbcrConversionInfo().isValid();
if (this->vkCaps().canCopyAsResolve(dstFormat, dstSampleCnt, dstHasYcbcr,
srcFormat, srcSampleCnt, srcHasYcbcr)) {
this->copySurfaceAsResolve(dst, src, srcRect, dstPoint);
return true;
}
if (this->vkCaps().canCopyImage(dstFormat, dstSampleCnt, dstHasYcbcr,
srcFormat, srcSampleCnt, srcHasYcbcr)) {
this->copySurfaceAsCopyImage(dst, src, dstImage, srcImage, srcRect, dstPoint);
return true;
}
if (this->vkCaps().canCopyAsBlit(dstFormat,
dstSampleCnt,
dstImage->isLinearTiled(),
dstHasYcbcr,
srcFormat,
srcSampleCnt,
srcImage->isLinearTiled(),
srcHasYcbcr)) {
this->copySurfaceAsBlit(dst, src, dstImage, srcImage, srcRect, dstPoint);
return true;
}
return false;
}
bool GrVkGpu::onReadPixels(GrSurface* surface,
SkIRect rect,
GrColorType surfaceColorType,
GrColorType dstColorType,
void* buffer,
size_t rowBytes) {
if (surface->isProtected()) {
return false;
}
if (!this->currentCommandBuffer()) {
return false;
}
GrVkImage* image = nullptr;
GrVkRenderTarget* rt = static_cast<GrVkRenderTarget*>(surface->asRenderTarget());
if (rt) {
// Reading from render targets that wrap a secondary command buffer is not allowed since
// it would require us to know the VkImage, which we don't have, as well as need us to
// stop and start the VkRenderPass which we don't have access to.
if (rt->wrapsSecondaryCommandBuffer()) {
return false;
}
image = rt->nonMSAAAttachment();
} else {
image = static_cast<GrVkTexture*>(surface->asTexture())->textureImage();
}
if (!image) {
return false;
}
if (dstColorType == GrColorType::kUnknown ||
dstColorType != this->vkCaps().transferColorType(image->imageFormat(), surfaceColorType)) {
return false;
}
// Change layout of our target so it can be used as copy
image->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_ACCESS_TRANSFER_READ_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
size_t bpp = GrColorTypeBytesPerPixel(dstColorType);
if (GrVkFormatBytesPerBlock(image->imageFormat()) != bpp) {
return false;
}
size_t tightRowBytes = bpp*rect.width();
VkBufferImageCopy region;
memset(&region, 0, sizeof(VkBufferImageCopy));
VkOffset3D offset = { rect.left(), rect.top(), 0 };
region.imageOffset = offset;
region.imageExtent = { (uint32_t)rect.width(), (uint32_t)rect.height(), 1 };
size_t transBufferRowBytes = bpp * region.imageExtent.width;
size_t imageRows = region.imageExtent.height;
GrResourceProvider* resourceProvider = this->getContext()->priv().resourceProvider();
sk_sp<GrGpuBuffer> transferBuffer = resourceProvider->createBuffer(
transBufferRowBytes * imageRows,
GrGpuBufferType::kXferGpuToCpu,
kDynamic_GrAccessPattern,
GrResourceProvider::ZeroInit::kNo);
if (!transferBuffer) {
return false;
}
GrVkBuffer* vkBuffer = static_cast<GrVkBuffer*>(transferBuffer.get());
// Copy the image to a buffer so we can map it to cpu memory
region.bufferOffset = 0;
region.bufferRowLength = 0; // Forces RowLength to be width. We handle the rowBytes below.
region.bufferImageHeight = 0; // Forces height to be tightly packed. Only useful for 3d images.
region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
this->currentCommandBuffer()->copyImageToBuffer(this,
image,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
transferBuffer,
1,
&region);
// make sure the copy to buffer has finished
vkBuffer->addMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT,
VK_ACCESS_HOST_READ_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_HOST_BIT,
false);
// We need to submit the current command buffer to the Queue and make sure it finishes before
// we can copy the data out of the buffer.
if (!this->submitCommandBuffer(kForce_SyncQueue)) {
return false;
}
void* mappedMemory = transferBuffer->map();
if (!mappedMemory) {
return false;
}
SkRectMemcpy(buffer, rowBytes, mappedMemory, transBufferRowBytes, tightRowBytes, rect.height());
transferBuffer->unmap();
return true;
}
bool GrVkGpu::beginRenderPass(const GrVkRenderPass* renderPass,
sk_sp<const GrVkFramebuffer> framebuffer,
const VkClearValue* colorClear,
const GrSurface* target,
const SkIRect& renderPassBounds,
bool forSecondaryCB) {
if (!this->currentCommandBuffer()) {
return false;
}
SkASSERT (!framebuffer->isExternal());
#ifdef SK_DEBUG
uint32_t index;
bool result = renderPass->colorAttachmentIndex(&index);
SkASSERT(result && 0 == index);
result = renderPass->stencilAttachmentIndex(&index);
if (result) {
SkASSERT(1 == index);
}
#endif
VkClearValue clears[3];
int stencilIndex = renderPass->hasResolveAttachment() ? 2 : 1;
clears[0].color = colorClear->color;
clears[stencilIndex].depthStencil.depth = 0.0f;
clears[stencilIndex].depthStencil.stencil = 0;
return this->currentCommandBuffer()->beginRenderPass(
this, renderPass, std::move(framebuffer), clears, target, renderPassBounds, forSecondaryCB);
}
void GrVkGpu::endRenderPass(GrRenderTarget* target, GrSurfaceOrigin origin,
const SkIRect& bounds) {
// We had a command buffer when we started the render pass, we should have one now as well.
SkASSERT(this->currentCommandBuffer());
this->currentCommandBuffer()->endRenderPass(this);
this->didWriteToSurface(target, origin, &bounds);
}
bool GrVkGpu::checkVkResult(VkResult result) {
switch (result) {
case VK_SUCCESS:
return true;
case VK_ERROR_DEVICE_LOST:
fDeviceIsLost = true;
return false;
case VK_ERROR_OUT_OF_DEVICE_MEMORY:
case VK_ERROR_OUT_OF_HOST_MEMORY:
this->setOOMed();
return false;
default:
return false;
}
}
void GrVkGpu::submitSecondaryCommandBuffer(std::unique_ptr<GrVkSecondaryCommandBuffer> buffer) {
if (!this->currentCommandBuffer()) {
return;
}
this->currentCommandBuffer()->executeCommands(this, std::move(buffer));
}
void GrVkGpu::submit(GrOpsRenderPass* renderPass) {
SkASSERT(fCachedOpsRenderPass.get() == renderPass);
fCachedOpsRenderPass->submit();
fCachedOpsRenderPass->reset();
}
GrFence SK_WARN_UNUSED_RESULT GrVkGpu::insertFence() {
VkFenceCreateInfo createInfo;
memset(&createInfo, 0, sizeof(VkFenceCreateInfo));
createInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
createInfo.pNext = nullptr;
createInfo.flags = 0;
VkFence fence = VK_NULL_HANDLE;
VkResult result;
VK_CALL_RET(result, CreateFence(this->device(), &createInfo, nullptr, &fence));
if (result != VK_SUCCESS) {
return 0;
}
VK_CALL_RET(result, QueueSubmit(this->queue(), 0, nullptr, fence));
if (result != VK_SUCCESS) {
VK_CALL(DestroyFence(this->device(), fence, nullptr));
return 0;
}
static_assert(sizeof(GrFence) >= sizeof(VkFence));
return (GrFence)fence;
}
bool GrVkGpu::waitFence(GrFence fence) {
SkASSERT(VK_NULL_HANDLE != (VkFence)fence);
VkResult result;
VK_CALL_RET(result, WaitForFences(this->device(), 1, (VkFence*)&fence, VK_TRUE, 0));
return (VK_SUCCESS == result);
}
void GrVkGpu::deleteFence(GrFence fence) {
VK_CALL(DestroyFence(this->device(), (VkFence)fence, nullptr));
}
std::unique_ptr<GrSemaphore> SK_WARN_UNUSED_RESULT GrVkGpu::makeSemaphore(bool isOwned) {
return GrVkSemaphore::Make(this, isOwned);
}
std::unique_ptr<GrSemaphore> GrVkGpu::wrapBackendSemaphore(const GrBackendSemaphore& semaphore,
GrSemaphoreWrapType wrapType,
GrWrapOwnership ownership) {
return GrVkSemaphore::MakeWrapped(this, semaphore.vkSemaphore(), wrapType, ownership);
}
void GrVkGpu::insertSemaphore(GrSemaphore* semaphore) {
SkASSERT(semaphore);
GrVkSemaphore* vkSem = static_cast<GrVkSemaphore*>(semaphore);
GrVkSemaphore::Resource* resource = vkSem->getResource();
if (resource->shouldSignal()) {
resource->ref();
fSemaphoresToSignal.push_back(resource);
}
}
void GrVkGpu::waitSemaphore(GrSemaphore* semaphore) {
SkASSERT(semaphore);
GrVkSemaphore* vkSem = static_cast<GrVkSemaphore*>(semaphore);
GrVkSemaphore::Resource* resource = vkSem->getResource();
if (resource->shouldWait()) {
resource->ref();
fSemaphoresToWaitOn.push_back(resource);
}
}
std::unique_ptr<GrSemaphore> GrVkGpu::prepareTextureForCrossContextUsage(GrTexture* texture) {
SkASSERT(texture);
GrVkImage* vkTexture = static_cast<GrVkTexture*>(texture)->textureImage();
vkTexture->setImageLayout(this,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_ACCESS_SHADER_READ_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
false);
// TODO: should we have a way to notify the caller that this has failed? Currently if the submit
// fails (caused by DEVICE_LOST) this will just cause us to fail the next use of the gpu.
// Eventually we will abandon the whole GPU if this fails.
this->submitToGpu(false);
// The image layout change serves as a barrier, so no semaphore is needed.
// If we ever decide we need to return a semaphore here, we need to make sure GrVkSemaphore is
// thread safe so that only the first thread that tries to use the semaphore actually submits
// it. This additionally would also require thread safety in command buffer submissions to
// queues in general.
return nullptr;
}
void GrVkGpu::addDrawable(std::unique_ptr<SkDrawable::GpuDrawHandler> drawable) {
fDrawables.emplace_back(std::move(drawable));
}
void GrVkGpu::storeVkPipelineCacheData() {
if (this->getContext()->priv().getPersistentCache()) {
this->resourceProvider().storePipelineCacheData();
}
}