| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/ganesh/vk/GrVkGpu.h" |
| |
| #include "include/gpu/GrBackendSemaphore.h" |
| #include "include/gpu/GrBackendSurface.h" |
| #include "include/gpu/GrContextOptions.h" |
| #include "include/gpu/GrDirectContext.h" |
| #include "include/private/SkTo.h" |
| #include "src/core/SkCompressedDataUtils.h" |
| #include "src/core/SkConvertPixels.h" |
| #include "src/core/SkMipmap.h" |
| #include "src/core/SkTraceEvent.h" |
| #include "src/gpu/ganesh/GrBackendUtils.h" |
| #include "src/gpu/ganesh/GrDataUtils.h" |
| #include "src/gpu/ganesh/GrDirectContextPriv.h" |
| #include "src/gpu/ganesh/GrGeometryProcessor.h" |
| #include "src/gpu/ganesh/GrGpuResourceCacheAccess.h" |
| #include "src/gpu/ganesh/GrNativeRect.h" |
| #include "src/gpu/ganesh/GrPipeline.h" |
| #include "src/gpu/ganesh/GrRenderTarget.h" |
| #include "src/gpu/ganesh/GrResourceProvider.h" |
| #include "src/gpu/ganesh/GrTexture.h" |
| #include "src/gpu/ganesh/GrThreadSafePipelineBuilder.h" |
| #include "src/gpu/ganesh/SkGr.h" |
| #include "src/gpu/ganesh/vk/GrVkBuffer.h" |
| #include "src/gpu/ganesh/vk/GrVkCommandBuffer.h" |
| #include "src/gpu/ganesh/vk/GrVkCommandPool.h" |
| #include "src/gpu/ganesh/vk/GrVkFramebuffer.h" |
| #include "src/gpu/ganesh/vk/GrVkImage.h" |
| #include "src/gpu/ganesh/vk/GrVkMemory.h" |
| #include "src/gpu/ganesh/vk/GrVkOpsRenderPass.h" |
| #include "src/gpu/ganesh/vk/GrVkPipeline.h" |
| #include "src/gpu/ganesh/vk/GrVkPipelineState.h" |
| #include "src/gpu/ganesh/vk/GrVkRenderPass.h" |
| #include "src/gpu/ganesh/vk/GrVkResourceProvider.h" |
| #include "src/gpu/ganesh/vk/GrVkSemaphore.h" |
| #include "src/gpu/ganesh/vk/GrVkTexture.h" |
| #include "src/gpu/ganesh/vk/GrVkTextureRenderTarget.h" |
| #include "src/gpu/vk/VulkanAMDMemoryAllocator.h" |
| #include "src/gpu/vk/VulkanInterface.h" |
| #include "src/image/SkImage_Gpu.h" |
| #include "src/image/SkSurface_Gpu.h" |
| |
| #include "include/gpu/vk/GrVkTypes.h" |
| #include "include/gpu/vk/VulkanExtensions.h" |
| |
| #include <utility> |
| |
| #define VK_CALL(X) GR_VK_CALL(this->vkInterface(), X) |
| #define VK_CALL_RET(RET, X) GR_VK_CALL_RESULT(this, RET, X) |
| |
| sk_sp<GrGpu> GrVkGpu::Make(const GrVkBackendContext& backendContext, |
| const GrContextOptions& options, GrDirectContext* direct) { |
| if (backendContext.fInstance == VK_NULL_HANDLE || |
| backendContext.fPhysicalDevice == VK_NULL_HANDLE || |
| backendContext.fDevice == VK_NULL_HANDLE || |
| backendContext.fQueue == VK_NULL_HANDLE) { |
| return nullptr; |
| } |
| if (!backendContext.fGetProc) { |
| return nullptr; |
| } |
| |
| PFN_vkEnumerateInstanceVersion localEnumerateInstanceVersion = |
| reinterpret_cast<PFN_vkEnumerateInstanceVersion>( |
| backendContext.fGetProc("vkEnumerateInstanceVersion", |
| VK_NULL_HANDLE, VK_NULL_HANDLE)); |
| uint32_t instanceVersion = 0; |
| if (!localEnumerateInstanceVersion) { |
| instanceVersion = VK_MAKE_VERSION(1, 0, 0); |
| } else { |
| VkResult err = localEnumerateInstanceVersion(&instanceVersion); |
| if (err) { |
| SkDebugf("Failed to enumerate instance version. Err: %d\n", err); |
| return nullptr; |
| } |
| } |
| |
| PFN_vkGetPhysicalDeviceProperties localGetPhysicalDeviceProperties = |
| reinterpret_cast<PFN_vkGetPhysicalDeviceProperties>( |
| backendContext.fGetProc("vkGetPhysicalDeviceProperties", |
| backendContext.fInstance, |
| VK_NULL_HANDLE)); |
| |
| if (!localGetPhysicalDeviceProperties) { |
| return nullptr; |
| } |
| VkPhysicalDeviceProperties physDeviceProperties; |
| localGetPhysicalDeviceProperties(backendContext.fPhysicalDevice, &physDeviceProperties); |
| uint32_t physDevVersion = physDeviceProperties.apiVersion; |
| |
| uint32_t apiVersion = backendContext.fMaxAPIVersion ? backendContext.fMaxAPIVersion |
| : instanceVersion; |
| |
| instanceVersion = std::min(instanceVersion, apiVersion); |
| physDevVersion = std::min(physDevVersion, apiVersion); |
| |
| sk_sp<const skgpu::VulkanInterface> interface; |
| |
| if (backendContext.fVkExtensions) { |
| interface.reset(new skgpu::VulkanInterface(backendContext.fGetProc, |
| backendContext.fInstance, |
| backendContext.fDevice, |
| instanceVersion, |
| physDevVersion, |
| backendContext.fVkExtensions)); |
| if (!interface->validate(instanceVersion, physDevVersion, backendContext.fVkExtensions)) { |
| return nullptr; |
| } |
| } else { |
| skgpu::VulkanExtensions extensions; |
| // The only extension flag that may effect the vulkan backend is the swapchain extension. We |
| // need to know if this is enabled to know if we can transition to a present layout when |
| // flushing a surface. |
| if (backendContext.fExtensions & kKHR_swapchain_GrVkExtensionFlag) { |
| const char* swapChainExtName = VK_KHR_SWAPCHAIN_EXTENSION_NAME; |
| extensions.init(backendContext.fGetProc, backendContext.fInstance, |
| backendContext.fPhysicalDevice, 0, nullptr, 1, &swapChainExtName); |
| } |
| interface.reset(new skgpu::VulkanInterface(backendContext.fGetProc, |
| backendContext.fInstance, |
| backendContext.fDevice, |
| instanceVersion, |
| physDevVersion, |
| &extensions)); |
| if (!interface->validate(instanceVersion, physDevVersion, &extensions)) { |
| return nullptr; |
| } |
| } |
| |
| sk_sp<GrVkCaps> caps; |
| if (backendContext.fDeviceFeatures2) { |
| caps.reset(new GrVkCaps(options, interface.get(), backendContext.fPhysicalDevice, |
| *backendContext.fDeviceFeatures2, instanceVersion, physDevVersion, |
| *backendContext.fVkExtensions, backendContext.fProtectedContext)); |
| } else if (backendContext.fDeviceFeatures) { |
| VkPhysicalDeviceFeatures2 features2; |
| features2.pNext = nullptr; |
| features2.features = *backendContext.fDeviceFeatures; |
| caps.reset(new GrVkCaps(options, interface.get(), backendContext.fPhysicalDevice, |
| features2, instanceVersion, physDevVersion, |
| *backendContext.fVkExtensions, backendContext.fProtectedContext)); |
| } else { |
| VkPhysicalDeviceFeatures2 features; |
| memset(&features, 0, sizeof(VkPhysicalDeviceFeatures2)); |
| features.pNext = nullptr; |
| if (backendContext.fFeatures & kGeometryShader_GrVkFeatureFlag) { |
| features.features.geometryShader = true; |
| } |
| if (backendContext.fFeatures & kDualSrcBlend_GrVkFeatureFlag) { |
| features.features.dualSrcBlend = true; |
| } |
| if (backendContext.fFeatures & kSampleRateShading_GrVkFeatureFlag) { |
| features.features.sampleRateShading = true; |
| } |
| skgpu::VulkanExtensions extensions; |
| // The only extension flag that may effect the vulkan backend is the swapchain extension. We |
| // need to know if this is enabled to know if we can transition to a present layout when |
| // flushing a surface. |
| if (backendContext.fExtensions & kKHR_swapchain_GrVkExtensionFlag) { |
| const char* swapChainExtName = VK_KHR_SWAPCHAIN_EXTENSION_NAME; |
| extensions.init(backendContext.fGetProc, backendContext.fInstance, |
| backendContext.fPhysicalDevice, 0, nullptr, 1, &swapChainExtName); |
| } |
| caps.reset(new GrVkCaps(options, interface.get(), backendContext.fPhysicalDevice, |
| features, instanceVersion, physDevVersion, extensions, |
| backendContext.fProtectedContext)); |
| } |
| |
| if (!caps) { |
| return nullptr; |
| } |
| |
| sk_sp<skgpu::VulkanMemoryAllocator> memoryAllocator = backendContext.fMemoryAllocator; |
| if (!memoryAllocator) { |
| // We were not given a memory allocator at creation |
| bool mustUseCoherentHostVisibleMemory = caps->mustUseCoherentHostVisibleMemory(); |
| memoryAllocator = skgpu::VulkanAMDMemoryAllocator::Make(backendContext.fInstance, |
| backendContext.fPhysicalDevice, |
| backendContext.fDevice, |
| physDevVersion, |
| backendContext.fVkExtensions, |
| interface, |
| mustUseCoherentHostVisibleMemory, |
| /*=threadSafe=*/false); |
| } |
| if (!memoryAllocator) { |
| SkDEBUGFAIL("No supplied vulkan memory allocator and unable to create one internally."); |
| return nullptr; |
| } |
| |
| sk_sp<GrVkGpu> vkGpu(new GrVkGpu(direct, backendContext, std::move(caps), interface, |
| instanceVersion, physDevVersion, |
| std::move(memoryAllocator))); |
| if (backendContext.fProtectedContext == GrProtected::kYes && |
| !vkGpu->vkCaps().supportsProtectedMemory()) { |
| return nullptr; |
| } |
| return std::move(vkGpu); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| GrVkGpu::GrVkGpu(GrDirectContext* direct, |
| const GrVkBackendContext& backendContext, |
| sk_sp<GrVkCaps> caps, |
| sk_sp<const skgpu::VulkanInterface> interface, |
| uint32_t instanceVersion, |
| uint32_t physicalDeviceVersion, |
| sk_sp<skgpu::VulkanMemoryAllocator> memoryAllocator) |
| : INHERITED(direct) |
| , fInterface(std::move(interface)) |
| , fMemoryAllocator(std::move(memoryAllocator)) |
| , fVkCaps(std::move(caps)) |
| , fPhysicalDevice(backendContext.fPhysicalDevice) |
| , fDevice(backendContext.fDevice) |
| , fQueue(backendContext.fQueue) |
| , fQueueIndex(backendContext.fGraphicsQueueIndex) |
| , fResourceProvider(this) |
| , fStagingBufferManager(this) |
| , fDisconnected(false) |
| , fProtectedContext(backendContext.fProtectedContext) { |
| SkASSERT(!backendContext.fOwnsInstanceAndDevice); |
| SkASSERT(fMemoryAllocator); |
| |
| this->initCapsAndCompiler(fVkCaps); |
| |
| VK_CALL(GetPhysicalDeviceProperties(backendContext.fPhysicalDevice, &fPhysDevProps)); |
| VK_CALL(GetPhysicalDeviceMemoryProperties(backendContext.fPhysicalDevice, &fPhysDevMemProps)); |
| |
| fResourceProvider.init(); |
| |
| fMainCmdPool = fResourceProvider.findOrCreateCommandPool(); |
| if (fMainCmdPool) { |
| fMainCmdBuffer = fMainCmdPool->getPrimaryCommandBuffer(); |
| SkASSERT(this->currentCommandBuffer()); |
| this->currentCommandBuffer()->begin(this); |
| } |
| } |
| |
| void GrVkGpu::destroyResources() { |
| if (fMainCmdPool) { |
| fMainCmdPool->getPrimaryCommandBuffer()->end(this, /*abandoningBuffer=*/true); |
| fMainCmdPool->close(); |
| } |
| |
| // wait for all commands to finish |
| this->finishOutstandingGpuWork(); |
| |
| if (fMainCmdPool) { |
| fMainCmdPool->unref(); |
| fMainCmdPool = nullptr; |
| } |
| |
| for (int i = 0; i < fSemaphoresToWaitOn.count(); ++i) { |
| fSemaphoresToWaitOn[i]->unref(); |
| } |
| fSemaphoresToWaitOn.reset(); |
| |
| for (int i = 0; i < fSemaphoresToSignal.count(); ++i) { |
| fSemaphoresToSignal[i]->unref(); |
| } |
| fSemaphoresToSignal.reset(); |
| |
| fStagingBufferManager.reset(); |
| |
| fMSAALoadManager.destroyResources(this); |
| |
| // must call this just before we destroy the command pool and VkDevice |
| fResourceProvider.destroyResources(); |
| } |
| |
| GrVkGpu::~GrVkGpu() { |
| if (!fDisconnected) { |
| this->destroyResources(); |
| } |
| // We don't delete the memory allocator until the very end of the GrVkGpu lifetime so that |
| // clients can continue to delete backend textures even after a context has been abandoned. |
| fMemoryAllocator.reset(); |
| } |
| |
| |
| void GrVkGpu::disconnect(DisconnectType type) { |
| INHERITED::disconnect(type); |
| if (!fDisconnected) { |
| this->destroyResources(); |
| |
| fSemaphoresToWaitOn.reset(); |
| fSemaphoresToSignal.reset(); |
| fMainCmdBuffer = nullptr; |
| fDisconnected = true; |
| } |
| } |
| |
| GrThreadSafePipelineBuilder* GrVkGpu::pipelineBuilder() { |
| return fResourceProvider.pipelineStateCache(); |
| } |
| |
| sk_sp<GrThreadSafePipelineBuilder> GrVkGpu::refPipelineBuilder() { |
| return fResourceProvider.refPipelineStateCache(); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| GrOpsRenderPass* GrVkGpu::onGetOpsRenderPass( |
| GrRenderTarget* rt, |
| bool useMSAASurface, |
| GrAttachment* stencil, |
| GrSurfaceOrigin origin, |
| const SkIRect& bounds, |
| const GrOpsRenderPass::LoadAndStoreInfo& colorInfo, |
| const GrOpsRenderPass::StencilLoadAndStoreInfo& stencilInfo, |
| const SkTArray<GrSurfaceProxy*, true>& sampledProxies, |
| GrXferBarrierFlags renderPassXferBarriers) { |
| if (!fCachedOpsRenderPass) { |
| fCachedOpsRenderPass = std::make_unique<GrVkOpsRenderPass>(this); |
| } |
| |
| // For the given render target and requested render pass features we need to find a compatible |
| // framebuffer to use for the render pass. Technically it is the underlying VkRenderPass that |
| // is compatible, but that is part of the framebuffer that we get here. |
| GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(rt); |
| |
| SkASSERT(!useMSAASurface || |
| rt->numSamples() > 1 || |
| (this->vkCaps().supportsDiscardableMSAAForDMSAA() && |
| vkRT->resolveAttachment() && |
| vkRT->resolveAttachment()->supportsInputAttachmentUsage())); |
| |
| // Covert the GrXferBarrierFlags into render pass self dependency flags |
| GrVkRenderPass::SelfDependencyFlags selfDepFlags = GrVkRenderPass::SelfDependencyFlags::kNone; |
| if (renderPassXferBarriers & GrXferBarrierFlags::kBlend) { |
| selfDepFlags |= GrVkRenderPass::SelfDependencyFlags::kForNonCoherentAdvBlend; |
| } |
| if (renderPassXferBarriers & GrXferBarrierFlags::kTexture) { |
| selfDepFlags |= GrVkRenderPass::SelfDependencyFlags::kForInputAttachment; |
| } |
| |
| // Figure out if we need a resolve attachment for this render pass. A resolve attachment is |
| // needed if we are using msaa to draw with a discardable msaa attachment. If we are in this |
| // case we also need to update the color load/store ops since we don't want to ever load or |
| // store the msaa color attachment, but may need to for the resolve attachment. |
| GrOpsRenderPass::LoadAndStoreInfo localColorInfo = colorInfo; |
| bool withResolve = false; |
| GrVkRenderPass::LoadFromResolve loadFromResolve = GrVkRenderPass::LoadFromResolve::kNo; |
| GrOpsRenderPass::LoadAndStoreInfo resolveInfo{GrLoadOp::kLoad, GrStoreOp::kStore, {}}; |
| if (useMSAASurface && this->vkCaps().renderTargetSupportsDiscardableMSAA(vkRT)) { |
| withResolve = true; |
| localColorInfo.fStoreOp = GrStoreOp::kDiscard; |
| if (colorInfo.fLoadOp == GrLoadOp::kLoad) { |
| loadFromResolve = GrVkRenderPass::LoadFromResolve::kLoad; |
| localColorInfo.fLoadOp = GrLoadOp::kDiscard; |
| } else { |
| resolveInfo.fLoadOp = GrLoadOp::kDiscard; |
| } |
| } |
| |
| // Get the framebuffer to use for the render pass |
| sk_sp<GrVkFramebuffer> framebuffer; |
| if (vkRT->wrapsSecondaryCommandBuffer()) { |
| framebuffer = vkRT->externalFramebuffer(); |
| } else { |
| auto fb = vkRT->getFramebuffer(withResolve, SkToBool(stencil), selfDepFlags, |
| loadFromResolve); |
| framebuffer = sk_ref_sp(fb); |
| } |
| if (!framebuffer) { |
| return nullptr; |
| } |
| |
| if (!fCachedOpsRenderPass->set(rt, std::move(framebuffer), origin, bounds, localColorInfo, |
| stencilInfo, resolveInfo, selfDepFlags, loadFromResolve, |
| sampledProxies)) { |
| return nullptr; |
| } |
| return fCachedOpsRenderPass.get(); |
| } |
| |
| bool GrVkGpu::submitCommandBuffer(SyncQueue sync) { |
| TRACE_EVENT0("skia.gpu", TRACE_FUNC); |
| if (!this->currentCommandBuffer()) { |
| return false; |
| } |
| SkASSERT(!fCachedOpsRenderPass || !fCachedOpsRenderPass->isActive()); |
| |
| if (!this->currentCommandBuffer()->hasWork() && kForce_SyncQueue != sync && |
| !fSemaphoresToSignal.count() && !fSemaphoresToWaitOn.count()) { |
| // We may have added finished procs during the flush call. Since there is no actual work |
| // we are not submitting the command buffer and may never come back around to submit it. |
| // Thus we call all current finished procs manually, since the work has technically |
| // finished. |
| this->currentCommandBuffer()->callFinishedProcs(); |
| SkASSERT(fDrawables.empty()); |
| fResourceProvider.checkCommandBuffers(); |
| return true; |
| } |
| |
| fMainCmdBuffer->end(this); |
| SkASSERT(fMainCmdPool); |
| fMainCmdPool->close(); |
| bool didSubmit = fMainCmdBuffer->submitToQueue(this, fQueue, fSemaphoresToSignal, |
| fSemaphoresToWaitOn); |
| |
| if (didSubmit && sync == kForce_SyncQueue) { |
| fMainCmdBuffer->forceSync(this); |
| } |
| |
| // We must delete any drawables that had to wait until submit to destroy. |
| fDrawables.reset(); |
| |
| // If we didn't submit the command buffer then we did not wait on any semaphores. We will |
| // continue to hold onto these semaphores and wait on them during the next command buffer |
| // submission. |
| if (didSubmit) { |
| for (int i = 0; i < fSemaphoresToWaitOn.count(); ++i) { |
| fSemaphoresToWaitOn[i]->unref(); |
| } |
| fSemaphoresToWaitOn.reset(); |
| } |
| |
| // Even if we did not submit the command buffer, we drop all the signal semaphores since we will |
| // not try to recover the work that wasn't submitted and instead just drop it all. The client |
| // will be notified that the semaphores were not submit so that they will not try to wait on |
| // them. |
| for (int i = 0; i < fSemaphoresToSignal.count(); ++i) { |
| fSemaphoresToSignal[i]->unref(); |
| } |
| fSemaphoresToSignal.reset(); |
| |
| // Release old command pool and create a new one |
| fMainCmdPool->unref(); |
| fMainCmdPool = fResourceProvider.findOrCreateCommandPool(); |
| if (fMainCmdPool) { |
| fMainCmdBuffer = fMainCmdPool->getPrimaryCommandBuffer(); |
| SkASSERT(fMainCmdBuffer); |
| fMainCmdBuffer->begin(this); |
| } else { |
| fMainCmdBuffer = nullptr; |
| } |
| // We must wait to call checkCommandBuffers until after we get a new command buffer. The |
| // checkCommandBuffers may trigger a releaseProc which may cause us to insert a barrier for a |
| // released GrVkImage. That barrier needs to be put into a new command buffer and not the old |
| // one that was just submitted. |
| fResourceProvider.checkCommandBuffers(); |
| return didSubmit; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| sk_sp<GrGpuBuffer> GrVkGpu::onCreateBuffer(size_t size, |
| GrGpuBufferType type, |
| GrAccessPattern accessPattern) { |
| #ifdef SK_DEBUG |
| switch (type) { |
| case GrGpuBufferType::kVertex: |
| case GrGpuBufferType::kIndex: |
| case GrGpuBufferType::kDrawIndirect: |
| SkASSERT(accessPattern == kDynamic_GrAccessPattern || |
| accessPattern == kStatic_GrAccessPattern); |
| break; |
| case GrGpuBufferType::kXferCpuToGpu: |
| SkASSERT(accessPattern == kDynamic_GrAccessPattern); |
| break; |
| case GrGpuBufferType::kXferGpuToCpu: |
| SkASSERT(accessPattern == kDynamic_GrAccessPattern || |
| accessPattern == kStream_GrAccessPattern); |
| break; |
| case GrGpuBufferType::kUniform: |
| SkASSERT(accessPattern == kDynamic_GrAccessPattern); |
| break; |
| } |
| #endif |
| return GrVkBuffer::Make(this, size, type, accessPattern); |
| } |
| |
| bool GrVkGpu::onWritePixels(GrSurface* surface, |
| SkIRect rect, |
| GrColorType surfaceColorType, |
| GrColorType srcColorType, |
| const GrMipLevel texels[], |
| int mipLevelCount, |
| bool prepForTexSampling) { |
| GrVkTexture* texture = static_cast<GrVkTexture*>(surface->asTexture()); |
| if (!texture) { |
| return false; |
| } |
| GrVkImage* texImage = texture->textureImage(); |
| |
| // Make sure we have at least the base level |
| if (!mipLevelCount || !texels[0].fPixels) { |
| return false; |
| } |
| |
| SkASSERT(!GrVkFormatIsCompressed(texImage->imageFormat())); |
| bool success = false; |
| bool linearTiling = texImage->isLinearTiled(); |
| if (linearTiling) { |
| if (mipLevelCount > 1) { |
| SkDebugf("Can't upload mipmap data to linear tiled texture"); |
| return false; |
| } |
| if (VK_IMAGE_LAYOUT_PREINITIALIZED != texImage->currentLayout()) { |
| // Need to change the layout to general in order to perform a host write |
| texImage->setImageLayout(this, |
| VK_IMAGE_LAYOUT_GENERAL, |
| VK_ACCESS_HOST_WRITE_BIT, |
| VK_PIPELINE_STAGE_HOST_BIT, |
| false); |
| if (!this->submitCommandBuffer(kForce_SyncQueue)) { |
| return false; |
| } |
| } |
| success = this->uploadTexDataLinear(texImage, |
| rect, |
| srcColorType, |
| texels[0].fPixels, |
| texels[0].fRowBytes); |
| } else { |
| SkASSERT(mipLevelCount <= (int)texImage->mipLevels()); |
| success = this->uploadTexDataOptimal(texImage, |
| rect, |
| srcColorType, |
| texels, |
| mipLevelCount); |
| if (1 == mipLevelCount) { |
| texture->markMipmapsDirty(); |
| } |
| } |
| |
| if (prepForTexSampling) { |
| texImage->setImageLayout(this, |
| VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, |
| VK_ACCESS_SHADER_READ_BIT, |
| VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, |
| false); |
| } |
| |
| return success; |
| } |
| |
| // When we update vertex/index buffers via transfers we assume that they may have been used |
| // previously in draws and will be used again in draws afterwards. So we put a barrier before and |
| // after. If we had a mechanism for gathering the buffers that will be used in a GrVkOpsRenderPass |
| // *before* we begin a subpass we could do this lazily and non-redundantly by tracking the "last |
| // usage" on the GrVkBuffer. Then Pass 1 draw, xfer, xfer, xfer, Pass 2 draw would insert just two |
| // barriers: one before the first xfer and one before Pass 2. Currently, we'd use six barriers. |
| // Pass false as "after" before the transfer and true after the transfer. |
| static void add_transfer_dst_buffer_mem_barrier(GrVkGpu* gpu, |
| GrVkBuffer* dst, |
| size_t offset, |
| size_t size, |
| bool after) { |
| if (dst->intendedType() != GrGpuBufferType::kIndex && |
| dst->intendedType() != GrGpuBufferType::kVertex) { |
| return; |
| } |
| |
| VkAccessFlags srcAccessMask = dst->intendedType() == GrGpuBufferType::kIndex |
| ? VK_ACCESS_INDEX_READ_BIT |
| : VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT; |
| VkAccessFlags dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; |
| |
| VkPipelineStageFlagBits srcPipelineStageFlags = VK_PIPELINE_STAGE_VERTEX_INPUT_BIT; |
| VkPipelineStageFlagBits dstPipelineStageFlags = VK_PIPELINE_STAGE_TRANSFER_BIT; |
| |
| if (after) { |
| using std::swap; |
| swap(srcAccessMask, dstAccessMask ); |
| swap(srcPipelineStageFlags, dstPipelineStageFlags); |
| } |
| |
| VkBufferMemoryBarrier bufferMemoryBarrier = { |
| VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER, // sType |
| nullptr, // pNext |
| srcAccessMask, // srcAccessMask |
| dstAccessMask, // dstAccessMask |
| VK_QUEUE_FAMILY_IGNORED, // srcQueueFamilyIndex |
| VK_QUEUE_FAMILY_IGNORED, // dstQueueFamilyIndex |
| dst->vkBuffer(), // buffer |
| offset, // offset |
| size, // size |
| }; |
| |
| gpu->addBufferMemoryBarrier(srcPipelineStageFlags, |
| dstPipelineStageFlags, |
| /*byRegion=*/false, |
| &bufferMemoryBarrier); |
| } |
| |
| bool GrVkGpu::onTransferFromBufferToBuffer(sk_sp<GrGpuBuffer> src, |
| size_t srcOffset, |
| sk_sp<GrGpuBuffer> dst, |
| size_t dstOffset, |
| size_t size) { |
| if (!this->currentCommandBuffer()) { |
| return false; |
| } |
| |
| VkBufferCopy copyRegion; |
| copyRegion.srcOffset = srcOffset; |
| copyRegion.dstOffset = dstOffset; |
| copyRegion.size = size; |
| |
| add_transfer_dst_buffer_mem_barrier(this, |
| static_cast<GrVkBuffer*>(dst.get()), |
| dstOffset, |
| size, |
| /*after=*/false); |
| this->currentCommandBuffer()->copyBuffer(this, std::move(src), dst, 1, ©Region); |
| add_transfer_dst_buffer_mem_barrier(this, |
| static_cast<GrVkBuffer*>(dst.get()), |
| dstOffset, |
| size, |
| /*after=*/true); |
| |
| return true; |
| } |
| |
| bool GrVkGpu::onTransferPixelsTo(GrTexture* texture, |
| SkIRect rect, |
| GrColorType surfaceColorType, |
| GrColorType bufferColorType, |
| sk_sp<GrGpuBuffer> transferBuffer, |
| size_t bufferOffset, |
| size_t rowBytes) { |
| if (!this->currentCommandBuffer()) { |
| return false; |
| } |
| |
| size_t bpp = GrColorTypeBytesPerPixel(bufferColorType); |
| if (GrBackendFormatBytesPerPixel(texture->backendFormat()) != bpp) { |
| return false; |
| } |
| |
| // Vulkan only supports offsets that are both 4-byte aligned and aligned to a pixel. |
| if ((bufferOffset & 0x3) || (bufferOffset % bpp)) { |
| return false; |
| } |
| GrVkTexture* tex = static_cast<GrVkTexture*>(texture); |
| if (!tex) { |
| return false; |
| } |
| GrVkImage* vkImage = tex->textureImage(); |
| VkFormat format = vkImage->imageFormat(); |
| |
| // Can't transfer compressed data |
| SkASSERT(!GrVkFormatIsCompressed(format)); |
| |
| if (!transferBuffer) { |
| return false; |
| } |
| |
| if (bufferColorType != this->vkCaps().transferColorType(format, surfaceColorType)) { |
| return false; |
| } |
| SkASSERT(GrVkFormatBytesPerBlock(format) == GrColorTypeBytesPerPixel(bufferColorType)); |
| |
| SkASSERT(SkIRect::MakeSize(texture->dimensions()).contains(rect)); |
| |
| // Set up copy region |
| VkBufferImageCopy region; |
| memset(®ion, 0, sizeof(VkBufferImageCopy)); |
| region.bufferOffset = bufferOffset; |
| region.bufferRowLength = (uint32_t)(rowBytes/bpp); |
| region.bufferImageHeight = 0; |
| region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; |
| region.imageOffset = { rect.left(), rect.top(), 0 }; |
| region.imageExtent = { (uint32_t)rect.width(), (uint32_t)rect.height(), 1 }; |
| |
| // Change layout of our target so it can be copied to |
| vkImage->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| const GrVkBuffer* vkBuffer = static_cast<GrVkBuffer*>(transferBuffer.get()); |
| |
| // Copy the buffer to the image. |
| this->currentCommandBuffer()->copyBufferToImage(this, |
| vkBuffer->vkBuffer(), |
| vkImage, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| 1, |
| ®ion); |
| this->currentCommandBuffer()->addGrBuffer(std::move(transferBuffer)); |
| |
| tex->markMipmapsDirty(); |
| return true; |
| } |
| |
| bool GrVkGpu::onTransferPixelsFrom(GrSurface* surface, |
| SkIRect rect, |
| GrColorType surfaceColorType, |
| GrColorType bufferColorType, |
| sk_sp<GrGpuBuffer> transferBuffer, |
| size_t offset) { |
| if (!this->currentCommandBuffer()) { |
| return false; |
| } |
| SkASSERT(surface); |
| SkASSERT(transferBuffer); |
| if (fProtectedContext == GrProtected::kYes) { |
| return false; |
| } |
| |
| GrVkImage* srcImage; |
| if (GrVkRenderTarget* rt = static_cast<GrVkRenderTarget*>(surface->asRenderTarget())) { |
| // Reading from render targets that wrap a secondary command buffer is not allowed since |
| // it would require us to know the VkImage, which we don't have, as well as need us to |
| // stop and start the VkRenderPass which we don't have access to. |
| if (rt->wrapsSecondaryCommandBuffer()) { |
| return false; |
| } |
| if (!rt->nonMSAAAttachment()) { |
| return false; |
| } |
| srcImage = rt->nonMSAAAttachment(); |
| } else { |
| SkASSERT(surface->asTexture()); |
| srcImage = static_cast<GrVkTexture*>(surface->asTexture())->textureImage(); |
| } |
| |
| VkFormat format = srcImage->imageFormat(); |
| if (bufferColorType != this->vkCaps().transferColorType(format, surfaceColorType)) { |
| return false; |
| } |
| SkASSERT(GrVkFormatBytesPerBlock(format) == GrColorTypeBytesPerPixel(bufferColorType)); |
| |
| // Set up copy region |
| VkBufferImageCopy region; |
| memset(®ion, 0, sizeof(VkBufferImageCopy)); |
| region.bufferOffset = offset; |
| region.bufferRowLength = rect.width(); |
| region.bufferImageHeight = 0; |
| region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; |
| region.imageOffset = {rect.left(), rect.top(), 0}; |
| region.imageExtent = {(uint32_t)rect.width(), (uint32_t)rect.height(), 1}; |
| |
| srcImage->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
| VK_ACCESS_TRANSFER_READ_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| this->currentCommandBuffer()->copyImageToBuffer(this, srcImage, |
| VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
| transferBuffer, 1, ®ion); |
| |
| GrVkBuffer* vkBuffer = static_cast<GrVkBuffer*>(transferBuffer.get()); |
| // Make sure the copy to buffer has finished. |
| vkBuffer->addMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_ACCESS_HOST_READ_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| VK_PIPELINE_STAGE_HOST_BIT, |
| false); |
| return true; |
| } |
| |
| void GrVkGpu::resolveImage(GrSurface* dst, GrVkRenderTarget* src, const SkIRect& srcRect, |
| const SkIPoint& dstPoint) { |
| if (!this->currentCommandBuffer()) { |
| return; |
| } |
| |
| SkASSERT(dst); |
| SkASSERT(src && src->colorAttachment() && src->colorAttachment()->numSamples() > 1); |
| |
| VkImageResolve resolveInfo; |
| resolveInfo.srcSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1}; |
| resolveInfo.srcOffset = {srcRect.fLeft, srcRect.fTop, 0}; |
| resolveInfo.dstSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1}; |
| resolveInfo.dstOffset = {dstPoint.fX, dstPoint.fY, 0}; |
| resolveInfo.extent = {(uint32_t)srcRect.width(), (uint32_t)srcRect.height(), 1}; |
| |
| GrVkImage* dstImage; |
| GrRenderTarget* dstRT = dst->asRenderTarget(); |
| GrTexture* dstTex = dst->asTexture(); |
| if (dstTex) { |
| dstImage = static_cast<GrVkTexture*>(dstTex)->textureImage(); |
| } else { |
| SkASSERT(dst->asRenderTarget()); |
| dstImage = static_cast<GrVkRenderTarget*>(dstRT)->nonMSAAAttachment(); |
| } |
| SkASSERT(dstImage); |
| |
| dstImage->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| src->colorAttachment()->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
| VK_ACCESS_TRANSFER_READ_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| this->currentCommandBuffer()->addGrSurface(sk_ref_sp<const GrSurface>(src->colorAttachment())); |
| this->currentCommandBuffer()->addGrSurface(sk_ref_sp<const GrSurface>(dst)); |
| this->currentCommandBuffer()->resolveImage(this, *src->colorAttachment(), *dstImage, 1, |
| &resolveInfo); |
| } |
| |
| void GrVkGpu::onResolveRenderTarget(GrRenderTarget* target, const SkIRect& resolveRect) { |
| SkASSERT(target->numSamples() > 1); |
| GrVkRenderTarget* rt = static_cast<GrVkRenderTarget*>(target); |
| SkASSERT(rt->colorAttachmentView() && rt->resolveAttachmentView()); |
| |
| if (this->vkCaps().renderTargetSupportsDiscardableMSAA(rt)) { |
| // We would have resolved the RT during the render pass; |
| return; |
| } |
| |
| this->resolveImage(target, rt, resolveRect, |
| SkIPoint::Make(resolveRect.x(), resolveRect.y())); |
| } |
| |
| bool GrVkGpu::uploadTexDataLinear(GrVkImage* texImage, |
| SkIRect rect, |
| GrColorType dataColorType, |
| const void* data, |
| size_t rowBytes) { |
| SkASSERT(data); |
| SkASSERT(texImage->isLinearTiled()); |
| |
| SkASSERT(SkIRect::MakeSize(texImage->dimensions()).contains(rect)); |
| |
| size_t bpp = GrColorTypeBytesPerPixel(dataColorType); |
| size_t trimRowBytes = rect.width() * bpp; |
| |
| SkASSERT(VK_IMAGE_LAYOUT_PREINITIALIZED == texImage->currentLayout() || |
| VK_IMAGE_LAYOUT_GENERAL == texImage->currentLayout()); |
| const VkImageSubresource subres = { |
| VK_IMAGE_ASPECT_COLOR_BIT, |
| 0, // mipLevel |
| 0, // arraySlice |
| }; |
| VkSubresourceLayout layout; |
| |
| const skgpu::VulkanInterface* interface = this->vkInterface(); |
| |
| GR_VK_CALL(interface, GetImageSubresourceLayout(fDevice, |
| texImage->image(), |
| &subres, |
| &layout)); |
| |
| const skgpu::VulkanAlloc& alloc = texImage->alloc(); |
| if (VK_NULL_HANDLE == alloc.fMemory) { |
| return false; |
| } |
| VkDeviceSize offset = rect.top()*layout.rowPitch + rect.left()*bpp; |
| VkDeviceSize size = rect.height()*layout.rowPitch; |
| SkASSERT(size + offset <= alloc.fSize); |
| void* mapPtr = GrVkMemory::MapAlloc(this, alloc); |
| if (!mapPtr) { |
| return false; |
| } |
| mapPtr = reinterpret_cast<char*>(mapPtr) + offset; |
| |
| SkRectMemcpy(mapPtr, |
| static_cast<size_t>(layout.rowPitch), |
| data, |
| rowBytes, |
| trimRowBytes, |
| rect.height()); |
| |
| GrVkMemory::FlushMappedAlloc(this, alloc, offset, size); |
| GrVkMemory::UnmapAlloc(this, alloc); |
| |
| return true; |
| } |
| |
| // This fills in the 'regions' vector in preparation for copying a buffer to an image. |
| // 'individualMipOffsets' is filled in as a side-effect. |
| static size_t fill_in_compressed_regions(GrStagingBufferManager* stagingBufferManager, |
| SkTArray<VkBufferImageCopy>* regions, |
| SkTArray<size_t>* individualMipOffsets, |
| GrStagingBufferManager::Slice* slice, |
| SkImage::CompressionType compression, |
| VkFormat vkFormat, |
| SkISize dimensions, |
| GrMipmapped mipmapped) { |
| SkASSERT(compression != SkImage::CompressionType::kNone); |
| int numMipLevels = 1; |
| if (mipmapped == GrMipmapped::kYes) { |
| numMipLevels = SkMipmap::ComputeLevelCount(dimensions.width(), dimensions.height()) + 1; |
| } |
| |
| regions->reserve_back(numMipLevels); |
| individualMipOffsets->reserve_back(numMipLevels); |
| |
| size_t bytesPerBlock = GrVkFormatBytesPerBlock(vkFormat); |
| |
| size_t bufferSize = SkCompressedDataSize(compression, |
| dimensions, |
| individualMipOffsets, |
| mipmapped == GrMipmapped::kYes); |
| SkASSERT(individualMipOffsets->count() == numMipLevels); |
| |
| // Get a staging buffer slice to hold our mip data. |
| // Vulkan requires offsets in the buffer to be aligned to multiple of the texel size and 4 |
| size_t alignment = bytesPerBlock; |
| switch (alignment & 0b11) { |
| case 0: break; // alignment is already a multiple of 4. |
| case 2: alignment *= 2; break; // alignment is a multiple of 2 but not 4. |
| default: alignment *= 4; break; // alignment is not a multiple of 2. |
| } |
| *slice = stagingBufferManager->allocateStagingBufferSlice(bufferSize, alignment); |
| if (!slice->fBuffer) { |
| return 0; |
| } |
| |
| for (int i = 0; i < numMipLevels; ++i) { |
| VkBufferImageCopy& region = regions->push_back(); |
| memset(®ion, 0, sizeof(VkBufferImageCopy)); |
| region.bufferOffset = slice->fOffset + (*individualMipOffsets)[i]; |
| SkISize revisedDimensions = GrCompressedDimensions(compression, dimensions); |
| region.bufferRowLength = revisedDimensions.width(); |
| region.bufferImageHeight = revisedDimensions.height(); |
| region.imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, SkToU32(i), 0, 1}; |
| region.imageOffset = {0, 0, 0}; |
| region.imageExtent = {SkToU32(dimensions.width()), |
| SkToU32(dimensions.height()), 1}; |
| |
| dimensions = {std::max(1, dimensions.width() /2), |
| std::max(1, dimensions.height()/2)}; |
| } |
| |
| return bufferSize; |
| } |
| |
| bool GrVkGpu::uploadTexDataOptimal(GrVkImage* texImage, |
| SkIRect rect, |
| GrColorType dataColorType, |
| const GrMipLevel texels[], |
| int mipLevelCount) { |
| if (!this->currentCommandBuffer()) { |
| return false; |
| } |
| |
| SkASSERT(!texImage->isLinearTiled()); |
| // The assumption is either that we have no mipmaps, or that our rect is the entire texture |
| SkASSERT(mipLevelCount == 1 || rect == SkIRect::MakeSize(texImage->dimensions())); |
| |
| // We assume that if the texture has mip levels, we either upload to all the levels or just the |
| // first. |
| SkASSERT(mipLevelCount == 1 || mipLevelCount == (int)texImage->mipLevels()); |
| |
| SkASSERT(!rect.isEmpty()); |
| |
| SkASSERT(this->vkCaps().surfaceSupportsWritePixels(texImage)); |
| |
| SkASSERT(this->vkCaps().isVkFormatTexturable(texImage->imageFormat())); |
| size_t bpp = GrColorTypeBytesPerPixel(dataColorType); |
| |
| // texels is const. |
| // But we may need to adjust the fPixels ptr based on the copyRect, or fRowBytes. |
| // Because of this we need to make a non-const shallow copy of texels. |
| SkAutoTArray<GrMipLevel> texelsShallowCopy(mipLevelCount); |
| std::copy_n(texels, mipLevelCount, texelsShallowCopy.get()); |
| |
| SkTArray<size_t> individualMipOffsets; |
| size_t combinedBufferSize; |
| if (mipLevelCount > 1) { |
| combinedBufferSize = GrComputeTightCombinedBufferSize(bpp, |
| rect.size(), |
| &individualMipOffsets, |
| mipLevelCount); |
| } else { |
| SkASSERT(texelsShallowCopy[0].fPixels && texelsShallowCopy[0].fRowBytes); |
| combinedBufferSize = rect.width()*rect.height()*bpp; |
| individualMipOffsets.push_back(0); |
| } |
| SkASSERT(combinedBufferSize); |
| |
| // Get a staging buffer slice to hold our mip data. |
| // Vulkan requires offsets in the buffer to be aligned to multiple of the texel size and 4 |
| size_t alignment = bpp; |
| switch (alignment & 0b11) { |
| case 0: break; // alignment is already a multiple of 4. |
| case 2: alignment *= 2; break; // alignment is a multiple of 2 but not 4. |
| default: alignment *= 4; break; // alignment is not a multiple of 2. |
| } |
| GrStagingBufferManager::Slice slice = |
| fStagingBufferManager.allocateStagingBufferSlice(combinedBufferSize, alignment); |
| if (!slice.fBuffer) { |
| return false; |
| } |
| |
| int uploadLeft = rect.left(); |
| int uploadTop = rect.top(); |
| |
| char* buffer = (char*) slice.fOffsetMapPtr; |
| SkTArray<VkBufferImageCopy> regions(mipLevelCount); |
| |
| int currentWidth = rect.width(); |
| int currentHeight = rect.height(); |
| for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) { |
| if (texelsShallowCopy[currentMipLevel].fPixels) { |
| const size_t trimRowBytes = currentWidth * bpp; |
| const size_t rowBytes = texelsShallowCopy[currentMipLevel].fRowBytes; |
| |
| // copy data into the buffer, skipping the trailing bytes |
| char* dst = buffer + individualMipOffsets[currentMipLevel]; |
| const char* src = (const char*)texelsShallowCopy[currentMipLevel].fPixels; |
| SkRectMemcpy(dst, trimRowBytes, src, rowBytes, trimRowBytes, currentHeight); |
| |
| VkBufferImageCopy& region = regions.push_back(); |
| memset(®ion, 0, sizeof(VkBufferImageCopy)); |
| region.bufferOffset = slice.fOffset + individualMipOffsets[currentMipLevel]; |
| region.bufferRowLength = currentWidth; |
| region.bufferImageHeight = currentHeight; |
| region.imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, SkToU32(currentMipLevel), 0, 1}; |
| region.imageOffset = {uploadLeft, uploadTop, 0}; |
| region.imageExtent = {(uint32_t)currentWidth, (uint32_t)currentHeight, 1}; |
| } |
| |
| currentWidth = std::max(1, currentWidth/2); |
| currentHeight = std::max(1, currentHeight/2); |
| } |
| |
| // Change layout of our target so it can be copied to |
| texImage->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| // Copy the buffer to the image. This call takes the raw VkBuffer instead of a GrGpuBuffer |
| // because we don't need the command buffer to ref the buffer here. The reason being is that |
| // the buffer is coming from the staging manager and the staging manager will make sure the |
| // command buffer has a ref on the buffer. This avoids having to add and remove a ref for ever |
| // upload in the frame. |
| GrVkBuffer* vkBuffer = static_cast<GrVkBuffer*>(slice.fBuffer); |
| this->currentCommandBuffer()->copyBufferToImage(this, |
| vkBuffer->vkBuffer(), |
| texImage, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| regions.count(), |
| regions.begin()); |
| return true; |
| } |
| |
| // It's probably possible to roll this into uploadTexDataOptimal, |
| // but for now it's easier to maintain as a separate entity. |
| bool GrVkGpu::uploadTexDataCompressed(GrVkImage* uploadTexture, |
| SkImage::CompressionType compression, VkFormat vkFormat, |
| SkISize dimensions, GrMipmapped mipmapped, |
| const void* data, size_t dataSize) { |
| if (!this->currentCommandBuffer()) { |
| return false; |
| } |
| SkASSERT(data); |
| SkASSERT(!uploadTexture->isLinearTiled()); |
| // For now the assumption is that our rect is the entire texture. |
| // Compressed textures are read-only so this should be a reasonable assumption. |
| SkASSERT(dimensions.fWidth == uploadTexture->width() && |
| dimensions.fHeight == uploadTexture->height()); |
| |
| if (dimensions.fWidth == 0 || dimensions.fHeight == 0) { |
| return false; |
| } |
| |
| SkASSERT(uploadTexture->imageFormat() == vkFormat); |
| SkASSERT(this->vkCaps().isVkFormatTexturable(vkFormat)); |
| |
| |
| GrStagingBufferManager::Slice slice; |
| SkTArray<VkBufferImageCopy> regions; |
| SkTArray<size_t> individualMipOffsets; |
| SkDEBUGCODE(size_t combinedBufferSize =) fill_in_compressed_regions(&fStagingBufferManager, |
| ®ions, |
| &individualMipOffsets, |
| &slice, |
| compression, |
| vkFormat, |
| dimensions, |
| mipmapped); |
| if (!slice.fBuffer) { |
| return false; |
| } |
| SkASSERT(dataSize == combinedBufferSize); |
| |
| { |
| char* buffer = (char*)slice.fOffsetMapPtr; |
| memcpy(buffer, data, dataSize); |
| } |
| |
| // Change layout of our target so it can be copied to |
| uploadTexture->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| // Copy the buffer to the image. This call takes the raw VkBuffer instead of a GrGpuBuffer |
| // because we don't need the command buffer to ref the buffer here. The reason being is that |
| // the buffer is coming from the staging manager and the staging manager will make sure the |
| // command buffer has a ref on the buffer. This avoids having to add and remove a ref for ever |
| // upload in the frame. |
| GrVkBuffer* vkBuffer = static_cast<GrVkBuffer*>(slice.fBuffer); |
| this->currentCommandBuffer()->copyBufferToImage(this, |
| vkBuffer->vkBuffer(), |
| uploadTexture, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| regions.count(), |
| regions.begin()); |
| |
| return true; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // TODO: make this take a GrMipmapped |
| sk_sp<GrTexture> GrVkGpu::onCreateTexture(SkISize dimensions, |
| const GrBackendFormat& format, |
| GrRenderable renderable, |
| int renderTargetSampleCnt, |
| SkBudgeted budgeted, |
| GrProtected isProtected, |
| int mipLevelCount, |
| uint32_t levelClearMask, |
| std::string_view label) { |
| VkFormat pixelFormat; |
| SkAssertResult(format.asVkFormat(&pixelFormat)); |
| SkASSERT(!GrVkFormatIsCompressed(pixelFormat)); |
| SkASSERT(mipLevelCount > 0); |
| |
| GrMipmapStatus mipmapStatus = |
| mipLevelCount > 1 ? GrMipmapStatus::kDirty : GrMipmapStatus::kNotAllocated; |
| |
| sk_sp<GrVkTexture> tex; |
| if (renderable == GrRenderable::kYes) { |
| tex = GrVkTextureRenderTarget::MakeNewTextureRenderTarget( |
| this, budgeted, dimensions, pixelFormat, mipLevelCount, renderTargetSampleCnt, |
| mipmapStatus, isProtected, label); |
| } else { |
| tex = GrVkTexture::MakeNewTexture(this, budgeted, dimensions, pixelFormat, |
| mipLevelCount, isProtected, mipmapStatus, label); |
| } |
| |
| if (!tex) { |
| return nullptr; |
| } |
| |
| if (levelClearMask) { |
| if (!this->currentCommandBuffer()) { |
| return nullptr; |
| } |
| SkSTArray<1, VkImageSubresourceRange> ranges; |
| bool inRange = false; |
| GrVkImage* texImage = tex->textureImage(); |
| for (uint32_t i = 0; i < texImage->mipLevels(); ++i) { |
| if (levelClearMask & (1U << i)) { |
| if (inRange) { |
| ranges.back().levelCount++; |
| } else { |
| auto& range = ranges.push_back(); |
| range.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
| range.baseArrayLayer = 0; |
| range.baseMipLevel = i; |
| range.layerCount = 1; |
| range.levelCount = 1; |
| inRange = true; |
| } |
| } else if (inRange) { |
| inRange = false; |
| } |
| } |
| SkASSERT(!ranges.empty()); |
| static constexpr VkClearColorValue kZeroClearColor = {}; |
| texImage->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); |
| this->currentCommandBuffer()->clearColorImage(this, texImage, &kZeroClearColor, |
| ranges.count(), ranges.begin()); |
| } |
| return std::move(tex); |
| } |
| |
| sk_sp<GrTexture> GrVkGpu::onCreateCompressedTexture(SkISize dimensions, |
| const GrBackendFormat& format, |
| SkBudgeted budgeted, |
| GrMipmapped mipmapped, |
| GrProtected isProtected, |
| const void* data, size_t dataSize) { |
| VkFormat pixelFormat; |
| SkAssertResult(format.asVkFormat(&pixelFormat)); |
| SkASSERT(GrVkFormatIsCompressed(pixelFormat)); |
| |
| int numMipLevels = 1; |
| if (mipmapped == GrMipmapped::kYes) { |
| numMipLevels = SkMipmap::ComputeLevelCount(dimensions.width(), dimensions.height())+1; |
| } |
| |
| GrMipmapStatus mipmapStatus = (mipmapped == GrMipmapped::kYes) ? GrMipmapStatus::kValid |
| : GrMipmapStatus::kNotAllocated; |
| |
| auto tex = GrVkTexture::MakeNewTexture(this, |
| budgeted, |
| dimensions, |
| pixelFormat, |
| numMipLevels, |
| isProtected, |
| mipmapStatus, |
| /*label=*/"VkGpu_CreateCompressedTexture"); |
| if (!tex) { |
| return nullptr; |
| } |
| |
| SkImage::CompressionType compression = GrBackendFormatToCompressionType(format); |
| if (!this->uploadTexDataCompressed(tex->textureImage(), compression, pixelFormat, |
| dimensions, mipmapped, data, dataSize)) { |
| return nullptr; |
| } |
| |
| return std::move(tex); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| bool GrVkGpu::updateBuffer(sk_sp<GrVkBuffer> buffer, const void* src, |
| VkDeviceSize offset, VkDeviceSize size) { |
| if (!this->currentCommandBuffer()) { |
| return false; |
| } |
| add_transfer_dst_buffer_mem_barrier(this, |
| static_cast<GrVkBuffer*>(buffer.get()), |
| offset, |
| size, |
| /*after=*/false); |
| this->currentCommandBuffer()->updateBuffer(this, buffer, offset, size, src); |
| add_transfer_dst_buffer_mem_barrier(this, |
| static_cast<GrVkBuffer*>(buffer.get()), |
| offset, |
| size, |
| /*after=*/true); |
| |
| return true; |
| } |
| |
| bool GrVkGpu::zeroBuffer(sk_sp<GrGpuBuffer> buffer) { |
| if (!this->currentCommandBuffer()) { |
| return false; |
| } |
| |
| add_transfer_dst_buffer_mem_barrier(this, |
| static_cast<GrVkBuffer*>(buffer.get()), |
| /*offset=*/0, |
| buffer->size(), |
| /*after=*/false); |
| this->currentCommandBuffer()->fillBuffer(this, |
| buffer, |
| /*offset=*/0, |
| buffer->size(), |
| /*data=*/0); |
| add_transfer_dst_buffer_mem_barrier(this, |
| static_cast<GrVkBuffer*>(buffer.get()), |
| /*offset=*/0, |
| buffer->size(), |
| /*after=*/true); |
| |
| return true; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| static bool check_image_info(const GrVkCaps& caps, |
| const GrVkImageInfo& info, |
| bool needsAllocation, |
| uint32_t graphicsQueueIndex) { |
| if (VK_NULL_HANDLE == info.fImage) { |
| return false; |
| } |
| |
| if (VK_NULL_HANDLE == info.fAlloc.fMemory && needsAllocation) { |
| return false; |
| } |
| |
| if (info.fImageLayout == VK_IMAGE_LAYOUT_PRESENT_SRC_KHR && !caps.supportsSwapchain()) { |
| return false; |
| } |
| |
| if (info.fCurrentQueueFamily != VK_QUEUE_FAMILY_IGNORED && |
| info.fCurrentQueueFamily != VK_QUEUE_FAMILY_EXTERNAL && |
| info.fCurrentQueueFamily != VK_QUEUE_FAMILY_FOREIGN_EXT) { |
| if (info.fSharingMode == VK_SHARING_MODE_EXCLUSIVE) { |
| if (info.fCurrentQueueFamily != graphicsQueueIndex) { |
| return false; |
| } |
| } else { |
| return false; |
| } |
| } |
| |
| if (info.fYcbcrConversionInfo.isValid()) { |
| if (!caps.supportsYcbcrConversion()) { |
| return false; |
| } |
| if (info.fYcbcrConversionInfo.fExternalFormat != 0) { |
| return true; |
| } |
| } |
| |
| // We currently require everything to be made with transfer bits set |
| if (!SkToBool(info.fImageUsageFlags & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) || |
| !SkToBool(info.fImageUsageFlags & VK_IMAGE_USAGE_TRANSFER_DST_BIT)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool check_tex_image_info(const GrVkCaps& caps, const GrVkImageInfo& info) { |
| // We don't support directly importing multisampled textures for sampling from shaders. |
| if (info.fSampleCount != 1) { |
| return false; |
| } |
| |
| if (info.fYcbcrConversionInfo.isValid() && info.fYcbcrConversionInfo.fExternalFormat != 0) { |
| return true; |
| } |
| if (info.fImageTiling == VK_IMAGE_TILING_OPTIMAL) { |
| if (!caps.isVkFormatTexturable(info.fFormat)) { |
| return false; |
| } |
| } else if (info.fImageTiling == VK_IMAGE_TILING_LINEAR) { |
| if (!caps.isVkFormatTexturableLinearly(info.fFormat)) { |
| return false; |
| } |
| } else if (info.fImageTiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) { |
| if (!caps.supportsDRMFormatModifiers()) { |
| return false; |
| } |
| // To be technically correct we should query the vulkan support for VkFormat and |
| // drmFormatModifier pairs to confirm the required feature support is there. However, we |
| // currently don't have our caps and format tables set up to do this effeciently. So |
| // instead we just rely on the client's passed in VkImageUsageFlags and assume they we set |
| // up using valid features (checked below). In practice this should all be safe because |
| // currently we are setting all drm format modifier textures to have a |
| // GrTextureType::kExternal so we just really need to be able to read these video VkImage in |
| // a shader. The video decoder isn't going to give us VkImages that don't support being |
| // sampled. |
| } else { |
| SkUNREACHABLE; |
| } |
| |
| // We currently require all textures to be made with sample support |
| if (!SkToBool(info.fImageUsageFlags & VK_IMAGE_USAGE_SAMPLED_BIT)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool check_rt_image_info(const GrVkCaps& caps, const GrVkImageInfo& info, bool resolveOnly) { |
| if (!caps.isFormatRenderable(info.fFormat, info.fSampleCount)) { |
| return false; |
| } |
| if (!resolveOnly && !SkToBool(info.fImageUsageFlags & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)) { |
| return false; |
| } |
| return true; |
| } |
| |
| sk_sp<GrTexture> GrVkGpu::onWrapBackendTexture(const GrBackendTexture& backendTex, |
| GrWrapOwnership ownership, |
| GrWrapCacheable cacheable, |
| GrIOType ioType) { |
| GrVkImageInfo imageInfo; |
| if (!backendTex.getVkImageInfo(&imageInfo)) { |
| return nullptr; |
| } |
| |
| if (!check_image_info(this->vkCaps(), imageInfo, kAdopt_GrWrapOwnership == ownership, |
| this->queueIndex())) { |
| return nullptr; |
| } |
| |
| if (!check_tex_image_info(this->vkCaps(), imageInfo)) { |
| return nullptr; |
| } |
| |
| if (backendTex.isProtected() && (fProtectedContext == GrProtected::kNo)) { |
| return nullptr; |
| } |
| |
| sk_sp<GrBackendSurfaceMutableStateImpl> mutableState = backendTex.getMutableState(); |
| SkASSERT(mutableState); |
| return GrVkTexture::MakeWrappedTexture(this, backendTex.dimensions(), ownership, cacheable, |
| ioType, imageInfo, std::move(mutableState)); |
| } |
| |
| sk_sp<GrTexture> GrVkGpu::onWrapCompressedBackendTexture(const GrBackendTexture& beTex, |
| GrWrapOwnership ownership, |
| GrWrapCacheable cacheable) { |
| return this->onWrapBackendTexture(beTex, ownership, cacheable, kRead_GrIOType); |
| } |
| |
| sk_sp<GrTexture> GrVkGpu::onWrapRenderableBackendTexture(const GrBackendTexture& backendTex, |
| int sampleCnt, |
| GrWrapOwnership ownership, |
| GrWrapCacheable cacheable) { |
| GrVkImageInfo imageInfo; |
| if (!backendTex.getVkImageInfo(&imageInfo)) { |
| return nullptr; |
| } |
| |
| if (!check_image_info(this->vkCaps(), imageInfo, kAdopt_GrWrapOwnership == ownership, |
| this->queueIndex())) { |
| return nullptr; |
| } |
| |
| if (!check_tex_image_info(this->vkCaps(), imageInfo)) { |
| return nullptr; |
| } |
| // If sampleCnt is > 1 we will create an intermediate MSAA VkImage and then resolve into |
| // the wrapped VkImage. |
| bool resolveOnly = sampleCnt > 1; |
| if (!check_rt_image_info(this->vkCaps(), imageInfo, resolveOnly)) { |
| return nullptr; |
| } |
| |
| if (backendTex.isProtected() && (fProtectedContext == GrProtected::kNo)) { |
| return nullptr; |
| } |
| |
| sampleCnt = this->vkCaps().getRenderTargetSampleCount(sampleCnt, imageInfo.fFormat); |
| |
| sk_sp<GrBackendSurfaceMutableStateImpl> mutableState = backendTex.getMutableState(); |
| SkASSERT(mutableState); |
| |
| return GrVkTextureRenderTarget::MakeWrappedTextureRenderTarget(this, backendTex.dimensions(), |
| sampleCnt, ownership, cacheable, |
| imageInfo, |
| std::move(mutableState)); |
| } |
| |
| sk_sp<GrRenderTarget> GrVkGpu::onWrapBackendRenderTarget(const GrBackendRenderTarget& backendRT) { |
| GrVkImageInfo info; |
| if (!backendRT.getVkImageInfo(&info)) { |
| return nullptr; |
| } |
| |
| if (!check_image_info(this->vkCaps(), info, false, this->queueIndex())) { |
| return nullptr; |
| } |
| |
| // We will always render directly to this VkImage. |
| static bool kResolveOnly = false; |
| if (!check_rt_image_info(this->vkCaps(), info, kResolveOnly)) { |
| return nullptr; |
| } |
| |
| if (backendRT.isProtected() && (fProtectedContext == GrProtected::kNo)) { |
| return nullptr; |
| } |
| |
| sk_sp<GrBackendSurfaceMutableStateImpl> mutableState = backendRT.getMutableState(); |
| SkASSERT(mutableState); |
| |
| sk_sp<GrVkRenderTarget> tgt = GrVkRenderTarget::MakeWrappedRenderTarget( |
| this, backendRT.dimensions(), backendRT.sampleCnt(), info, std::move(mutableState)); |
| |
| // We don't allow the client to supply a premade stencil buffer. We always create one if needed. |
| SkASSERT(!backendRT.stencilBits()); |
| if (tgt) { |
| SkASSERT(tgt->canAttemptStencilAttachment(tgt->numSamples() > 1)); |
| } |
| |
| return std::move(tgt); |
| } |
| |
| sk_sp<GrRenderTarget> GrVkGpu::onWrapVulkanSecondaryCBAsRenderTarget( |
| const SkImageInfo& imageInfo, const GrVkDrawableInfo& vkInfo) { |
| int maxSize = this->caps()->maxTextureSize(); |
| if (imageInfo.width() > maxSize || imageInfo.height() > maxSize) { |
| return nullptr; |
| } |
| |
| GrBackendFormat backendFormat = GrBackendFormat::MakeVk(vkInfo.fFormat); |
| if (!backendFormat.isValid()) { |
| return nullptr; |
| } |
| int sampleCnt = this->vkCaps().getRenderTargetSampleCount(1, vkInfo.fFormat); |
| if (!sampleCnt) { |
| return nullptr; |
| } |
| |
| return GrVkRenderTarget::MakeSecondaryCBRenderTarget(this, imageInfo.dimensions(), vkInfo); |
| } |
| |
| bool GrVkGpu::loadMSAAFromResolve(GrVkCommandBuffer* commandBuffer, |
| const GrVkRenderPass& renderPass, |
| GrAttachment* dst, |
| GrVkImage* src, |
| const SkIRect& srcRect) { |
| return fMSAALoadManager.loadMSAAFromResolve(this, commandBuffer, renderPass, dst, src, srcRect); |
| } |
| |
| bool GrVkGpu::onRegenerateMipMapLevels(GrTexture* tex) { |
| if (!this->currentCommandBuffer()) { |
| return false; |
| } |
| auto* vkTex = static_cast<GrVkTexture*>(tex)->textureImage(); |
| // don't do anything for linearly tiled textures (can't have mipmaps) |
| if (vkTex->isLinearTiled()) { |
| SkDebugf("Trying to create mipmap for linear tiled texture"); |
| return false; |
| } |
| SkASSERT(tex->textureType() == GrTextureType::k2D); |
| |
| // determine if we can blit to and from this format |
| const GrVkCaps& caps = this->vkCaps(); |
| if (!caps.formatCanBeDstofBlit(vkTex->imageFormat(), false) || |
| !caps.formatCanBeSrcofBlit(vkTex->imageFormat(), false) || |
| !caps.mipmapSupport()) { |
| return false; |
| } |
| |
| int width = tex->width(); |
| int height = tex->height(); |
| VkImageBlit blitRegion; |
| memset(&blitRegion, 0, sizeof(VkImageBlit)); |
| |
| // SkMipmap doesn't include the base level in the level count so we have to add 1 |
| uint32_t levelCount = SkMipmap::ComputeLevelCount(tex->width(), tex->height()) + 1; |
| SkASSERT(levelCount == vkTex->mipLevels()); |
| |
| // change layout of the layers so we can write to them. |
| vkTex->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, false); |
| |
| // setup memory barrier |
| SkASSERT(GrVkFormatIsSupported(vkTex->imageFormat())); |
| VkImageMemoryBarrier imageMemoryBarrier = { |
| VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, // sType |
| nullptr, // pNext |
| VK_ACCESS_TRANSFER_WRITE_BIT, // srcAccessMask |
| VK_ACCESS_TRANSFER_READ_BIT, // dstAccessMask |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, // oldLayout |
| VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, // newLayout |
| VK_QUEUE_FAMILY_IGNORED, // srcQueueFamilyIndex |
| VK_QUEUE_FAMILY_IGNORED, // dstQueueFamilyIndex |
| vkTex->image(), // image |
| {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1} // subresourceRange |
| }; |
| |
| // Blit the miplevels |
| uint32_t mipLevel = 1; |
| while (mipLevel < levelCount) { |
| int prevWidth = width; |
| int prevHeight = height; |
| width = std::max(1, width / 2); |
| height = std::max(1, height / 2); |
| |
| imageMemoryBarrier.subresourceRange.baseMipLevel = mipLevel - 1; |
| this->addImageMemoryBarrier(vkTex->resource(), VK_PIPELINE_STAGE_TRANSFER_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, false, &imageMemoryBarrier); |
| |
| blitRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, mipLevel - 1, 0, 1 }; |
| blitRegion.srcOffsets[0] = { 0, 0, 0 }; |
| blitRegion.srcOffsets[1] = { prevWidth, prevHeight, 1 }; |
| blitRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, mipLevel, 0, 1 }; |
| blitRegion.dstOffsets[0] = { 0, 0, 0 }; |
| blitRegion.dstOffsets[1] = { width, height, 1 }; |
| this->currentCommandBuffer()->blitImage(this, |
| vkTex->resource(), |
| vkTex->image(), |
| VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
| vkTex->resource(), |
| vkTex->image(), |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| 1, |
| &blitRegion, |
| VK_FILTER_LINEAR); |
| ++mipLevel; |
| } |
| if (levelCount > 1) { |
| // This barrier logically is not needed, but it changes the final level to the same layout |
| // as all the others, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL. This makes tracking of the |
| // layouts and future layout changes easier. The alternative here would be to track layout |
| // and memory accesses per layer which doesn't seem work it. |
| imageMemoryBarrier.subresourceRange.baseMipLevel = mipLevel - 1; |
| this->addImageMemoryBarrier(vkTex->resource(), VK_PIPELINE_STAGE_TRANSFER_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, false, &imageMemoryBarrier); |
| vkTex->updateImageLayout(VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL); |
| } |
| return true; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| sk_sp<GrAttachment> GrVkGpu::makeStencilAttachment(const GrBackendFormat& /*colorFormat*/, |
| SkISize dimensions, int numStencilSamples) { |
| VkFormat sFmt = this->vkCaps().preferredStencilFormat(); |
| |
| fStats.incStencilAttachmentCreates(); |
| return GrVkImage::MakeStencil(this, dimensions, numStencilSamples, sFmt); |
| } |
| |
| sk_sp<GrAttachment> GrVkGpu::makeMSAAAttachment(SkISize dimensions, |
| const GrBackendFormat& format, |
| int numSamples, |
| GrProtected isProtected, |
| GrMemoryless memoryless) { |
| VkFormat pixelFormat; |
| SkAssertResult(format.asVkFormat(&pixelFormat)); |
| SkASSERT(!GrVkFormatIsCompressed(pixelFormat)); |
| SkASSERT(this->vkCaps().isFormatRenderable(pixelFormat, numSamples)); |
| |
| fStats.incMSAAAttachmentCreates(); |
| return GrVkImage::MakeMSAA(this, dimensions, numSamples, pixelFormat, isProtected, memoryless); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| bool copy_src_data(char* mapPtr, |
| VkFormat vkFormat, |
| const SkTArray<size_t>& individualMipOffsets, |
| const GrPixmap srcData[], |
| int numMipLevels) { |
| SkASSERT(srcData && numMipLevels); |
| SkASSERT(!GrVkFormatIsCompressed(vkFormat)); |
| SkASSERT(individualMipOffsets.count() == numMipLevels); |
| SkASSERT(mapPtr); |
| |
| size_t bytesPerPixel = GrVkFormatBytesPerBlock(vkFormat); |
| |
| for (int level = 0; level < numMipLevels; ++level) { |
| const size_t trimRB = srcData[level].info().width() * bytesPerPixel; |
| |
| SkRectMemcpy(mapPtr + individualMipOffsets[level], trimRB, |
| srcData[level].addr(), srcData[level].rowBytes(), |
| trimRB, srcData[level].height()); |
| } |
| return true; |
| } |
| |
| bool GrVkGpu::createVkImageForBackendSurface(VkFormat vkFormat, |
| SkISize dimensions, |
| int sampleCnt, |
| GrTexturable texturable, |
| GrRenderable renderable, |
| GrMipmapped mipmapped, |
| GrVkImageInfo* info, |
| GrProtected isProtected) { |
| SkASSERT(texturable == GrTexturable::kYes || renderable == GrRenderable::kYes); |
| |
| if (fProtectedContext != isProtected) { |
| return false; |
| } |
| |
| if (texturable == GrTexturable::kYes && !fVkCaps->isVkFormatTexturable(vkFormat)) { |
| return false; |
| } |
| |
| // MSAA images are only currently used by createTestingOnlyBackendRenderTarget. |
| if (sampleCnt > 1 && (texturable == GrTexturable::kYes || renderable == GrRenderable::kNo)) { |
| return false; |
| } |
| |
| if (renderable == GrRenderable::kYes) { |
| sampleCnt = fVkCaps->getRenderTargetSampleCount(sampleCnt, vkFormat); |
| if (!sampleCnt) { |
| return false; |
| } |
| } |
| |
| |
| int numMipLevels = 1; |
| if (mipmapped == GrMipmapped::kYes) { |
| numMipLevels = SkMipmap::ComputeLevelCount(dimensions.width(), dimensions.height()) + 1; |
| } |
| |
| VkImageUsageFlags usageFlags = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | |
| VK_IMAGE_USAGE_TRANSFER_DST_BIT; |
| if (texturable == GrTexturable::kYes) { |
| usageFlags |= VK_IMAGE_USAGE_SAMPLED_BIT; |
| } |
| if (renderable == GrRenderable::kYes) { |
| usageFlags |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; |
| // We always make our render targets support being used as input attachments |
| usageFlags |= VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT; |
| } |
| |
| GrVkImage::ImageDesc imageDesc; |
| imageDesc.fImageType = VK_IMAGE_TYPE_2D; |
| imageDesc.fFormat = vkFormat; |
| imageDesc.fWidth = dimensions.width(); |
| imageDesc.fHeight = dimensions.height(); |
| imageDesc.fLevels = numMipLevels; |
| imageDesc.fSamples = sampleCnt; |
| imageDesc.fImageTiling = VK_IMAGE_TILING_OPTIMAL; |
| imageDesc.fUsageFlags = usageFlags; |
| imageDesc.fMemProps = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; |
| imageDesc.fIsProtected = fProtectedContext; |
| |
| if (!GrVkImage::InitImageInfo(this, imageDesc, info)) { |
| SkDebugf("Failed to init image info\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool GrVkGpu::onClearBackendTexture(const GrBackendTexture& backendTexture, |
| sk_sp<skgpu::RefCntedCallback> finishedCallback, |
| std::array<float, 4> color) { |
| GrVkImageInfo info; |
| SkAssertResult(backendTexture.getVkImageInfo(&info)); |
| |
| sk_sp<GrBackendSurfaceMutableStateImpl> mutableState = backendTexture.getMutableState(); |
| SkASSERT(mutableState); |
| sk_sp<GrVkTexture> texture = |
| GrVkTexture::MakeWrappedTexture(this, backendTexture.dimensions(), |
| kBorrow_GrWrapOwnership, GrWrapCacheable::kNo, |
| kRW_GrIOType, info, std::move(mutableState)); |
| if (!texture) { |
| return false; |
| } |
| GrVkImage* texImage = texture->textureImage(); |
| |
| GrVkPrimaryCommandBuffer* cmdBuffer = this->currentCommandBuffer(); |
| if (!cmdBuffer) { |
| return false; |
| } |
| |
| texImage->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| // CmdClearColorImage doesn't work for compressed formats |
| SkASSERT(!GrVkFormatIsCompressed(info.fFormat)); |
| |
| VkClearColorValue vkColor; |
| // If we ever support SINT or UINT formats this needs to be updated to use the int32 and |
| // uint32 union members in those cases. |
| vkColor.float32[0] = color[0]; |
| vkColor.float32[1] = color[1]; |
| vkColor.float32[2] = color[2]; |
| vkColor.float32[3] = color[3]; |
| VkImageSubresourceRange range; |
| range.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
| range.baseArrayLayer = 0; |
| range.baseMipLevel = 0; |
| range.layerCount = 1; |
| range.levelCount = info.fLevelCount; |
| cmdBuffer->clearColorImage(this, texImage, &vkColor, 1, &range); |
| |
| // Change image layout to shader read since if we use this texture as a borrowed |
| // texture within Ganesh we require that its layout be set to that |
| texImage->setImageLayout(this, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, |
| VK_ACCESS_SHADER_READ_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, |
| false); |
| |
| if (finishedCallback) { |
| this->addFinishedCallback(std::move(finishedCallback)); |
| } |
| return true; |
| } |
| |
| GrBackendTexture GrVkGpu::onCreateBackendTexture(SkISize dimensions, |
| const GrBackendFormat& format, |
| GrRenderable renderable, |
| GrMipmapped mipmapped, |
| GrProtected isProtected, |
| std::string_view label) { |
| const GrVkCaps& caps = this->vkCaps(); |
| |
| if (fProtectedContext != isProtected) { |
| return {}; |
| } |
| |
| VkFormat vkFormat; |
| if (!format.asVkFormat(&vkFormat)) { |
| return {}; |
| } |
| |
| // TODO: move the texturability check up to GrGpu::createBackendTexture and just assert here |
| if (!caps.isVkFormatTexturable(vkFormat)) { |
| return {}; |
| } |
| |
| if (GrVkFormatNeedsYcbcrSampler(vkFormat)) { |
| return {}; |
| } |
| |
| GrVkImageInfo info; |
| if (!this->createVkImageForBackendSurface(vkFormat, dimensions, 1, GrTexturable::kYes, |
| renderable, mipmapped, &info, isProtected)) { |
| return {}; |
| } |
| |
| return GrBackendTexture(dimensions.width(), dimensions.height(), info); |
| } |
| |
| GrBackendTexture GrVkGpu::onCreateCompressedBackendTexture( |
| SkISize dimensions, const GrBackendFormat& format, GrMipmapped mipmapped, |
| GrProtected isProtected) { |
| return this->onCreateBackendTexture(dimensions, |
| format, |
| GrRenderable::kNo, |
| mipmapped, |
| isProtected, |
| /*label=*/"VkGpu_CreateCompressedBackendTexture"); |
| } |
| |
| bool GrVkGpu::onUpdateCompressedBackendTexture(const GrBackendTexture& backendTexture, |
| sk_sp<skgpu::RefCntedCallback> finishedCallback, |
| const void* data, |
| size_t size) { |
| GrVkImageInfo info; |
| SkAssertResult(backendTexture.getVkImageInfo(&info)); |
| |
| sk_sp<GrBackendSurfaceMutableStateImpl> mutableState = backendTexture.getMutableState(); |
| SkASSERT(mutableState); |
| sk_sp<GrVkTexture> texture = GrVkTexture::MakeWrappedTexture(this, |
| backendTexture.dimensions(), |
| kBorrow_GrWrapOwnership, |
| GrWrapCacheable::kNo, |
| kRW_GrIOType, |
| info, |
| std::move(mutableState)); |
| if (!texture) { |
| return false; |
| } |
| |
| GrVkPrimaryCommandBuffer* cmdBuffer = this->currentCommandBuffer(); |
| if (!cmdBuffer) { |
| return false; |
| } |
| GrVkImage* image = texture->textureImage(); |
| image->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| SkImage::CompressionType compression = |
| GrBackendFormatToCompressionType(backendTexture.getBackendFormat()); |
| |
| SkTArray<VkBufferImageCopy> regions; |
| SkTArray<size_t> individualMipOffsets; |
| GrStagingBufferManager::Slice slice; |
| |
| fill_in_compressed_regions(&fStagingBufferManager, |
| ®ions, |
| &individualMipOffsets, |
| &slice, |
| compression, |
| info.fFormat, |
| backendTexture.dimensions(), |
| backendTexture.fMipmapped); |
| |
| if (!slice.fBuffer) { |
| return false; |
| } |
| |
| memcpy(slice.fOffsetMapPtr, data, size); |
| |
| cmdBuffer->addGrSurface(texture); |
| // Copy the buffer to the image. This call takes the raw VkBuffer instead of a GrGpuBuffer |
| // because we don't need the command buffer to ref the buffer here. The reason being is that |
| // the buffer is coming from the staging manager and the staging manager will make sure the |
| // command buffer has a ref on the buffer. This avoids having to add and remove a ref for |
| // every upload in the frame. |
| cmdBuffer->copyBufferToImage(this, |
| static_cast<GrVkBuffer*>(slice.fBuffer)->vkBuffer(), |
| image, |
| image->currentLayout(), |
| regions.count(), |
| regions.begin()); |
| |
| // Change image layout to shader read since if we use this texture as a borrowed |
| // texture within Ganesh we require that its layout be set to that |
| image->setImageLayout(this, |
| VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, |
| VK_ACCESS_SHADER_READ_BIT, |
| VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, |
| false); |
| |
| if (finishedCallback) { |
| this->addFinishedCallback(std::move(finishedCallback)); |
| } |
| return true; |
| } |
| |
| void set_layout_and_queue_from_mutable_state(GrVkGpu* gpu, GrVkImage* image, |
| const GrVkSharedImageInfo& newInfo) { |
| // Even though internally we use this helper for getting src access flags and stages they |
| // can also be used for general dst flags since we don't know exactly what the client |
| // plans on using the image for. |
| VkImageLayout newLayout = newInfo.getImageLayout(); |
| if (newLayout == VK_IMAGE_LAYOUT_UNDEFINED) { |
| newLayout = image->currentLayout(); |
| } |
| VkPipelineStageFlags dstStage = GrVkImage::LayoutToPipelineSrcStageFlags(newLayout); |
| VkAccessFlags dstAccess = GrVkImage::LayoutToSrcAccessMask(newLayout); |
| |
| uint32_t currentQueueFamilyIndex = image->currentQueueFamilyIndex(); |
| uint32_t newQueueFamilyIndex = newInfo.getQueueFamilyIndex(); |
| auto isSpecialQueue = [](uint32_t queueFamilyIndex) { |
| return queueFamilyIndex == VK_QUEUE_FAMILY_EXTERNAL || |
| queueFamilyIndex == VK_QUEUE_FAMILY_FOREIGN_EXT; |
| }; |
| if (isSpecialQueue(currentQueueFamilyIndex) && isSpecialQueue(newQueueFamilyIndex)) { |
| // It is illegal to have both the new and old queue be special queue families (i.e. external |
| // or foreign). |
| return; |
| } |
| |
| image->setImageLayoutAndQueueIndex(gpu, newLayout, dstAccess, dstStage, false, |
| newQueueFamilyIndex); |
| } |
| |
| bool GrVkGpu::setBackendSurfaceState(GrVkImageInfo info, |
| sk_sp<GrBackendSurfaceMutableStateImpl> currentState, |
| SkISize dimensions, |
| const GrVkSharedImageInfo& newInfo, |
| GrBackendSurfaceMutableState* previousState, |
| sk_sp<skgpu::RefCntedCallback> finishedCallback) { |
| sk_sp<GrVkImage> texture = GrVkImage::MakeWrapped(this, |
| dimensions, |
| info, |
| std::move(currentState), |
| GrVkImage::UsageFlags::kColorAttachment, |
| kBorrow_GrWrapOwnership, |
| GrWrapCacheable::kNo, |
| "VkGpu_SetBackendSurfaceState", |
| /*forSecondaryCB=*/false); |
| SkASSERT(texture); |
| if (!texture) { |
| return false; |
| } |
| if (previousState) { |
| previousState->setVulkanState(texture->currentLayout(), |
| texture->currentQueueFamilyIndex()); |
| } |
| set_layout_and_queue_from_mutable_state(this, texture.get(), newInfo); |
| if (finishedCallback) { |
| this->addFinishedCallback(std::move(finishedCallback)); |
| } |
| return true; |
| } |
| |
| bool GrVkGpu::setBackendTextureState(const GrBackendTexture& backendTeture, |
| const GrBackendSurfaceMutableState& newState, |
| GrBackendSurfaceMutableState* previousState, |
| sk_sp<skgpu::RefCntedCallback> finishedCallback) { |
| GrVkImageInfo info; |
| SkAssertResult(backendTeture.getVkImageInfo(&info)); |
| sk_sp<GrBackendSurfaceMutableStateImpl> currentState = backendTeture.getMutableState(); |
| SkASSERT(currentState); |
| SkASSERT(newState.isValid() && newState.fBackend == GrBackend::kVulkan); |
| return this->setBackendSurfaceState(info, std::move(currentState), backendTeture.dimensions(), |
| newState.fVkState, previousState, |
| std::move(finishedCallback)); |
| } |
| |
| bool GrVkGpu::setBackendRenderTargetState(const GrBackendRenderTarget& backendRenderTarget, |
| const GrBackendSurfaceMutableState& newState, |
| GrBackendSurfaceMutableState* previousState, |
| sk_sp<skgpu::RefCntedCallback> finishedCallback) { |
| GrVkImageInfo info; |
| SkAssertResult(backendRenderTarget.getVkImageInfo(&info)); |
| sk_sp<GrBackendSurfaceMutableStateImpl> currentState = backendRenderTarget.getMutableState(); |
| SkASSERT(currentState); |
| SkASSERT(newState.fBackend == GrBackend::kVulkan); |
| return this->setBackendSurfaceState(info, std::move(currentState), |
| backendRenderTarget.dimensions(), newState.fVkState, |
| previousState, std::move(finishedCallback)); |
| } |
| |
| void GrVkGpu::xferBarrier(GrRenderTarget* rt, GrXferBarrierType barrierType) { |
| GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(rt); |
| VkPipelineStageFlags dstStage; |
| VkAccessFlags dstAccess; |
| if (barrierType == kBlend_GrXferBarrierType) { |
| dstStage = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; |
| dstAccess = VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT; |
| } else { |
| SkASSERT(barrierType == kTexture_GrXferBarrierType); |
| dstStage = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT; |
| dstAccess = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT; |
| } |
| GrVkImage* image = vkRT->colorAttachment(); |
| VkImageMemoryBarrier barrier; |
| barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; |
| barrier.pNext = nullptr; |
| barrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; |
| barrier.dstAccessMask = dstAccess; |
| barrier.oldLayout = image->currentLayout(); |
| barrier.newLayout = barrier.oldLayout; |
| barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; |
| barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; |
| barrier.image = image->image(); |
| barrier.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, image->mipLevels(), 0, 1}; |
| this->addImageMemoryBarrier(image->resource(), |
| VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, |
| dstStage, true, &barrier); |
| } |
| |
| void GrVkGpu::deleteBackendTexture(const GrBackendTexture& tex) { |
| SkASSERT(GrBackendApi::kVulkan == tex.fBackend); |
| |
| GrVkImageInfo info; |
| if (tex.getVkImageInfo(&info)) { |
| GrVkImage::DestroyImageInfo(this, const_cast<GrVkImageInfo*>(&info)); |
| } |
| } |
| |
| bool GrVkGpu::compile(const GrProgramDesc& desc, const GrProgramInfo& programInfo) { |
| GrVkRenderPass::AttachmentsDescriptor attachmentsDescriptor; |
| GrVkRenderPass::AttachmentFlags attachmentFlags; |
| GrVkRenderTarget::ReconstructAttachmentsDescriptor(this->vkCaps(), programInfo, |
| &attachmentsDescriptor, &attachmentFlags); |
| |
| GrVkRenderPass::SelfDependencyFlags selfDepFlags = GrVkRenderPass::SelfDependencyFlags::kNone; |
| if (programInfo.renderPassBarriers() & GrXferBarrierFlags::kBlend) { |
| selfDepFlags |= GrVkRenderPass::SelfDependencyFlags::kForNonCoherentAdvBlend; |
| } |
| if (programInfo.renderPassBarriers() & GrXferBarrierFlags::kTexture) { |
| selfDepFlags |= GrVkRenderPass::SelfDependencyFlags::kForInputAttachment; |
| } |
| |
| GrVkRenderPass::LoadFromResolve loadFromResolve = GrVkRenderPass::LoadFromResolve::kNo; |
| if (this->vkCaps().programInfoWillUseDiscardableMSAA(programInfo) && |
| programInfo.colorLoadOp() == GrLoadOp::kLoad) { |
| loadFromResolve = GrVkRenderPass::LoadFromResolve::kLoad; |
| } |
| sk_sp<const GrVkRenderPass> renderPass(this->resourceProvider().findCompatibleRenderPass( |
| &attachmentsDescriptor, attachmentFlags, selfDepFlags, loadFromResolve)); |
| if (!renderPass) { |
| return false; |
| } |
| |
| GrThreadSafePipelineBuilder::Stats::ProgramCacheResult stat; |
| |
| auto pipelineState = this->resourceProvider().findOrCreateCompatiblePipelineState( |
| desc, |
| programInfo, |
| renderPass->vkRenderPass(), |
| &stat); |
| if (!pipelineState) { |
| return false; |
| } |
| |
| return stat != GrThreadSafePipelineBuilder::Stats::ProgramCacheResult::kHit; |
| } |
| |
| #if GR_TEST_UTILS |
| bool GrVkGpu::isTestingOnlyBackendTexture(const GrBackendTexture& tex) const { |
| SkASSERT(GrBackendApi::kVulkan == tex.fBackend); |
| |
| GrVkImageInfo backend; |
| if (!tex.getVkImageInfo(&backend)) { |
| return false; |
| } |
| |
| if (backend.fImage && backend.fAlloc.fMemory) { |
| VkMemoryRequirements req; |
| memset(&req, 0, sizeof(req)); |
| GR_VK_CALL(this->vkInterface(), GetImageMemoryRequirements(fDevice, |
| backend.fImage, |
| &req)); |
| // TODO: find a better check |
| // This will probably fail with a different driver |
| return (req.size > 0) && (req.size <= 8192 * 8192); |
| } |
| |
| return false; |
| } |
| |
| GrBackendRenderTarget GrVkGpu::createTestingOnlyBackendRenderTarget(SkISize dimensions, |
| GrColorType ct, |
| int sampleCnt, |
| GrProtected isProtected) { |
| if (dimensions.width() > this->caps()->maxRenderTargetSize() || |
| dimensions.height() > this->caps()->maxRenderTargetSize()) { |
| return {}; |
| } |
| |
| VkFormat vkFormat = this->vkCaps().getFormatFromColorType(ct); |
| |
| GrVkImageInfo info; |
| if (!this->createVkImageForBackendSurface(vkFormat, dimensions, sampleCnt, GrTexturable::kNo, |
| GrRenderable::kYes, GrMipmapped::kNo, &info, |
| isProtected)) { |
| return {}; |
| } |
| return GrBackendRenderTarget(dimensions.width(), dimensions.height(), 0, info); |
| } |
| |
| void GrVkGpu::deleteTestingOnlyBackendRenderTarget(const GrBackendRenderTarget& rt) { |
| SkASSERT(GrBackendApi::kVulkan == rt.fBackend); |
| |
| GrVkImageInfo info; |
| if (rt.getVkImageInfo(&info)) { |
| // something in the command buffer may still be using this, so force submit |
| SkAssertResult(this->submitCommandBuffer(kForce_SyncQueue)); |
| GrVkImage::DestroyImageInfo(this, const_cast<GrVkImageInfo*>(&info)); |
| } |
| } |
| #endif |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| void GrVkGpu::addBufferMemoryBarrier(const GrManagedResource* resource, |
| VkPipelineStageFlags srcStageMask, |
| VkPipelineStageFlags dstStageMask, |
| bool byRegion, |
| VkBufferMemoryBarrier* barrier) const { |
| if (!this->currentCommandBuffer()) { |
| return; |
| } |
| SkASSERT(resource); |
| this->currentCommandBuffer()->pipelineBarrier(this, |
| resource, |
| srcStageMask, |
| dstStageMask, |
| byRegion, |
| GrVkCommandBuffer::kBufferMemory_BarrierType, |
| barrier); |
| } |
| void GrVkGpu::addBufferMemoryBarrier(VkPipelineStageFlags srcStageMask, |
| VkPipelineStageFlags dstStageMask, |
| bool byRegion, |
| VkBufferMemoryBarrier* barrier) const { |
| if (!this->currentCommandBuffer()) { |
| return; |
| } |
| // We don't pass in a resource here to the command buffer. The command buffer only is using it |
| // to hold a ref, but every place where we add a buffer memory barrier we are doing some other |
| // command with the buffer on the command buffer. Thus those other commands will already cause |
| // the command buffer to be holding a ref to the buffer. |
| this->currentCommandBuffer()->pipelineBarrier(this, |
| /*resource=*/nullptr, |
| srcStageMask, |
| dstStageMask, |
| byRegion, |
| GrVkCommandBuffer::kBufferMemory_BarrierType, |
| barrier); |
| } |
| |
| void GrVkGpu::addImageMemoryBarrier(const GrManagedResource* resource, |
| VkPipelineStageFlags srcStageMask, |
| VkPipelineStageFlags dstStageMask, |
| bool byRegion, |
| VkImageMemoryBarrier* barrier) const { |
| // If we are in the middle of destroying or abandoning the context we may hit a release proc |
| // that triggers the destruction of a GrVkImage. This could cause us to try and transfer the |
| // VkImage back to the original queue. In this state we don't submit anymore work and we may not |
| // have a current command buffer. Thus we won't do the queue transfer. |
| if (!this->currentCommandBuffer()) { |
| return; |
| } |
| SkASSERT(resource); |
| this->currentCommandBuffer()->pipelineBarrier(this, |
| resource, |
| srcStageMask, |
| dstStageMask, |
| byRegion, |
| GrVkCommandBuffer::kImageMemory_BarrierType, |
| barrier); |
| } |
| |
| void GrVkGpu::prepareSurfacesForBackendAccessAndStateUpdates( |
| SkSpan<GrSurfaceProxy*> proxies, |
| SkSurface::BackendSurfaceAccess access, |
| const GrBackendSurfaceMutableState* newState) { |
| // Submit the current command buffer to the Queue. Whether we inserted semaphores or not does |
| // not effect what we do here. |
| if (!proxies.empty() && (access == SkSurface::BackendSurfaceAccess::kPresent || newState)) { |
| // We currently don't support passing in new surface state for multiple proxies here. The |
| // only time we have multiple proxies is if we are flushing a yuv SkImage which won't have |
| // state updates anyways. Additionally if we have a newState than we must not have any |
| // BackendSurfaceAccess. |
| SkASSERT(!newState || proxies.size() == 1); |
| SkASSERT(!newState || access == SkSurface::BackendSurfaceAccess::kNoAccess); |
| GrVkImage* image; |
| for (GrSurfaceProxy* proxy : proxies) { |
| SkASSERT(proxy->isInstantiated()); |
| if (GrTexture* tex = proxy->peekTexture()) { |
| image = static_cast<GrVkTexture*>(tex)->textureImage(); |
| } else { |
| GrRenderTarget* rt = proxy->peekRenderTarget(); |
| SkASSERT(rt); |
| GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(rt); |
| image = vkRT->externalAttachment(); |
| } |
| if (newState) { |
| const GrVkSharedImageInfo& newInfo = newState->fVkState; |
| set_layout_and_queue_from_mutable_state(this, image, newInfo); |
| } else { |
| SkASSERT(access == SkSurface::BackendSurfaceAccess::kPresent); |
| image->prepareForPresent(this); |
| } |
| } |
| } |
| } |
| |
| void GrVkGpu::addFinishedProc(GrGpuFinishedProc finishedProc, |
| GrGpuFinishedContext finishedContext) { |
| SkASSERT(finishedProc); |
| this->addFinishedCallback(skgpu::RefCntedCallback::Make(finishedProc, finishedContext)); |
| } |
| |
| void GrVkGpu::addFinishedCallback(sk_sp<skgpu::RefCntedCallback> finishedCallback) { |
| SkASSERT(finishedCallback); |
| fResourceProvider.addFinishedProcToActiveCommandBuffers(std::move(finishedCallback)); |
| } |
| |
| void GrVkGpu::takeOwnershipOfBuffer(sk_sp<GrGpuBuffer> buffer) { |
| this->currentCommandBuffer()->addGrBuffer(std::move(buffer)); |
| } |
| |
| bool GrVkGpu::onSubmitToGpu(bool syncCpu) { |
| if (syncCpu) { |
| return this->submitCommandBuffer(kForce_SyncQueue); |
| } else { |
| return this->submitCommandBuffer(kSkip_SyncQueue); |
| } |
| } |
| |
| void GrVkGpu::finishOutstandingGpuWork() { |
| VK_CALL(QueueWaitIdle(fQueue)); |
| |
| if (this->vkCaps().mustSyncCommandBuffersWithQueue()) { |
| fResourceProvider.forceSyncAllCommandBuffers(); |
| } |
| } |
| |
| void GrVkGpu::onReportSubmitHistograms() { |
| #if SK_HISTOGRAMS_ENABLED |
| uint64_t allocatedMemory = fMemoryAllocator->totalAllocatedMemory(); |
| uint64_t usedMemory = fMemoryAllocator->totalUsedMemory(); |
| SkASSERT(usedMemory <= allocatedMemory); |
| if (allocatedMemory > 0) { |
| SK_HISTOGRAM_PERCENTAGE("VulkanMemoryAllocator.PercentUsed", |
| (usedMemory * 100) / allocatedMemory); |
| } |
| // allocatedMemory is in bytes and need to be reported it in kilobytes. SK_HISTOGRAM_MEMORY_KB |
| // supports samples up to around 500MB which should support the amounts of memory we allocate. |
| SK_HISTOGRAM_MEMORY_KB("VulkanMemoryAllocator.AmountAllocated", allocatedMemory >> 10); |
| #endif |
| } |
| |
| void GrVkGpu::copySurfaceAsCopyImage(GrSurface* dst, |
| GrSurface* src, |
| GrVkImage* dstImage, |
| GrVkImage* srcImage, |
| const SkIRect& srcRect, |
| const SkIPoint& dstPoint) { |
| if (!this->currentCommandBuffer()) { |
| return; |
| } |
| |
| #ifdef SK_DEBUG |
| int dstSampleCnt = dstImage->numSamples(); |
| int srcSampleCnt = srcImage->numSamples(); |
| bool dstHasYcbcr = dstImage->ycbcrConversionInfo().isValid(); |
| bool srcHasYcbcr = srcImage->ycbcrConversionInfo().isValid(); |
| VkFormat dstFormat = dstImage->imageFormat(); |
| VkFormat srcFormat; |
| SkAssertResult(dst->backendFormat().asVkFormat(&srcFormat)); |
| SkASSERT(this->vkCaps().canCopyImage(dstFormat, dstSampleCnt, dstHasYcbcr, |
| srcFormat, srcSampleCnt, srcHasYcbcr)); |
| #endif |
| if (src->isProtected() && !dst->isProtected()) { |
| SkDebugf("Can't copy from protected memory to non-protected"); |
| return; |
| } |
| |
| // These flags are for flushing/invalidating caches and for the dst image it doesn't matter if |
| // the cache is flushed since it is only being written to. |
| dstImage->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| srcImage->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
| VK_ACCESS_TRANSFER_READ_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| VkImageCopy copyRegion; |
| memset(©Region, 0, sizeof(VkImageCopy)); |
| copyRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; |
| copyRegion.srcOffset = { srcRect.fLeft, srcRect.fTop, 0 }; |
| copyRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; |
| copyRegion.dstOffset = { dstPoint.fX, dstPoint.fY, 0 }; |
| copyRegion.extent = { (uint32_t)srcRect.width(), (uint32_t)srcRect.height(), 1 }; |
| |
| this->currentCommandBuffer()->addGrSurface(sk_ref_sp<const GrSurface>(src)); |
| this->currentCommandBuffer()->addGrSurface(sk_ref_sp<const GrSurface>(dst)); |
| this->currentCommandBuffer()->copyImage(this, |
| srcImage, |
| VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
| dstImage, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| 1, |
| ©Region); |
| |
| SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, |
| srcRect.width(), srcRect.height()); |
| // The rect is already in device space so we pass in kTopLeft so no flip is done. |
| this->didWriteToSurface(dst, kTopLeft_GrSurfaceOrigin, &dstRect); |
| } |
| |
| void GrVkGpu::copySurfaceAsBlit(GrSurface* dst, |
| GrSurface* src, |
| GrVkImage* dstImage, |
| GrVkImage* srcImage, |
| const SkIRect& srcRect, |
| const SkIPoint& dstPoint) { |
| if (!this->currentCommandBuffer()) { |
| return; |
| } |
| |
| #ifdef SK_DEBUG |
| int dstSampleCnt = dstImage->numSamples(); |
| int srcSampleCnt = srcImage->numSamples(); |
| bool dstHasYcbcr = dstImage->ycbcrConversionInfo().isValid(); |
| bool srcHasYcbcr = srcImage->ycbcrConversionInfo().isValid(); |
| VkFormat dstFormat = dstImage->imageFormat(); |
| VkFormat srcFormat; |
| SkAssertResult(dst->backendFormat().asVkFormat(&srcFormat)); |
| SkASSERT(this->vkCaps().canCopyAsBlit(dstFormat, |
| dstSampleCnt, |
| dstImage->isLinearTiled(), |
| dstHasYcbcr, |
| srcFormat, |
| srcSampleCnt, |
| srcImage->isLinearTiled(), |
| srcHasYcbcr)); |
| |
| #endif |
| if (src->isProtected() && !dst->isProtected()) { |
| SkDebugf("Can't copy from protected memory to non-protected"); |
| return; |
| } |
| |
| dstImage->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| srcImage->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
| VK_ACCESS_TRANSFER_READ_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| // Flip rect if necessary |
| SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, srcRect.width(), |
| srcRect.height()); |
| |
| VkImageBlit blitRegion; |
| memset(&blitRegion, 0, sizeof(VkImageBlit)); |
| blitRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; |
| blitRegion.srcOffsets[0] = { srcRect.fLeft, srcRect.fTop, 0 }; |
| blitRegion.srcOffsets[1] = { srcRect.fRight, srcRect.fBottom, 1 }; |
| blitRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; |
| blitRegion.dstOffsets[0] = { dstRect.fLeft, dstRect.fTop, 0 }; |
| blitRegion.dstOffsets[1] = { dstRect.fRight, dstRect.fBottom, 1 }; |
| |
| this->currentCommandBuffer()->addGrSurface(sk_ref_sp<const GrSurface>(src)); |
| this->currentCommandBuffer()->addGrSurface(sk_ref_sp<const GrSurface>(dst)); |
| this->currentCommandBuffer()->blitImage(this, |
| *srcImage, |
| *dstImage, |
| 1, |
| &blitRegion, |
| VK_FILTER_NEAREST); // We never scale so any filter works here |
| |
| // The rect is already in device space so we pass in kTopLeft so no flip is done. |
| this->didWriteToSurface(dst, kTopLeft_GrSurfaceOrigin, &dstRect); |
| } |
| |
| void GrVkGpu::copySurfaceAsResolve(GrSurface* dst, GrSurface* src, const SkIRect& srcRect, |
| const SkIPoint& dstPoint) { |
| if (src->isProtected() && !dst->isProtected()) { |
| SkDebugf("Can't copy from protected memory to non-protected"); |
| return; |
| } |
| GrVkRenderTarget* srcRT = static_cast<GrVkRenderTarget*>(src->asRenderTarget()); |
| this->resolveImage(dst, srcRT, srcRect, dstPoint); |
| SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, |
| srcRect.width(), srcRect.height()); |
| // The rect is already in device space so we pass in kTopLeft so no flip is done. |
| this->didWriteToSurface(dst, kTopLeft_GrSurfaceOrigin, &dstRect); |
| } |
| |
| bool GrVkGpu::onCopySurface(GrSurface* dst, GrSurface* src, const SkIRect& srcRect, |
| const SkIPoint& dstPoint) { |
| #ifdef SK_DEBUG |
| if (GrVkRenderTarget* srcRT = static_cast<GrVkRenderTarget*>(src->asRenderTarget())) { |
| SkASSERT(!srcRT->wrapsSecondaryCommandBuffer()); |
| } |
| if (GrVkRenderTarget* dstRT = static_cast<GrVkRenderTarget*>(dst->asRenderTarget())) { |
| SkASSERT(!dstRT->wrapsSecondaryCommandBuffer()); |
| } |
| #endif |
| if (src->isProtected() && !dst->isProtected()) { |
| SkDebugf("Can't copy from protected memory to non-protected"); |
| return false; |
| } |
| |
| GrVkImage* dstImage; |
| GrVkImage* srcImage; |
| GrRenderTarget* dstRT = dst->asRenderTarget(); |
| if (dstRT) { |
| GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(dstRT); |
| if (vkRT->wrapsSecondaryCommandBuffer()) { |
| return false; |
| } |
| // This will technically return true for single sample rts that used DMSAA in which case we |
| // don't have to pick the resolve attachment. But in that case the resolve and color |
| // attachments will be the same anyways. |
| if (this->vkCaps().renderTargetSupportsDiscardableMSAA(vkRT)) { |
| dstImage = vkRT->resolveAttachment(); |
| } else { |
| dstImage = vkRT->colorAttachment(); |
| } |
| } else if (dst->asTexture()) { |
| dstImage = static_cast<GrVkTexture*>(dst->asTexture())->textureImage(); |
| } else { |
| // The surface in a GrAttachment already |
| dstImage = static_cast<GrVkImage*>(dst); |
| } |
| GrRenderTarget* srcRT = src->asRenderTarget(); |
| if (srcRT) { |
| GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(srcRT); |
| // This will technically return true for single sample rts that used DMSAA in which case we |
| // don't have to pick the resolve attachment. But in that case the resolve and color |
| // attachments will be the same anyways. |
| if (this->vkCaps().renderTargetSupportsDiscardableMSAA(vkRT)) { |
| srcImage = vkRT->resolveAttachment(); |
| } else { |
| srcImage = vkRT->colorAttachment(); |
| } |
| } else if (src->asTexture()) { |
| SkASSERT(src->asTexture()); |
| srcImage = static_cast<GrVkTexture*>(src->asTexture())->textureImage(); |
| } else { |
| // The surface in a GrAttachment already |
| srcImage = static_cast<GrVkImage*>(src); |
| } |
| |
| VkFormat dstFormat = dstImage->imageFormat(); |
| VkFormat srcFormat = srcImage->imageFormat(); |
| |
| int dstSampleCnt = dstImage->numSamples(); |
| int srcSampleCnt = srcImage->numSamples(); |
| |
| bool dstHasYcbcr = dstImage->ycbcrConversionInfo().isValid(); |
| bool srcHasYcbcr = srcImage->ycbcrConversionInfo().isValid(); |
| |
| if (this->vkCaps().canCopyAsResolve(dstFormat, dstSampleCnt, dstHasYcbcr, |
| srcFormat, srcSampleCnt, srcHasYcbcr)) { |
| this->copySurfaceAsResolve(dst, src, srcRect, dstPoint); |
| return true; |
| } |
| |
| if (this->vkCaps().canCopyImage(dstFormat, dstSampleCnt, dstHasYcbcr, |
| srcFormat, srcSampleCnt, srcHasYcbcr)) { |
| this->copySurfaceAsCopyImage(dst, src, dstImage, srcImage, srcRect, dstPoint); |
| return true; |
| } |
| |
| if (this->vkCaps().canCopyAsBlit(dstFormat, |
| dstSampleCnt, |
| dstImage->isLinearTiled(), |
| dstHasYcbcr, |
| srcFormat, |
| srcSampleCnt, |
| srcImage->isLinearTiled(), |
| srcHasYcbcr)) { |
| this->copySurfaceAsBlit(dst, src, dstImage, srcImage, srcRect, dstPoint); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool GrVkGpu::onReadPixels(GrSurface* surface, |
| SkIRect rect, |
| GrColorType surfaceColorType, |
| GrColorType dstColorType, |
| void* buffer, |
| size_t rowBytes) { |
| if (surface->isProtected()) { |
| return false; |
| } |
| |
| if (!this->currentCommandBuffer()) { |
| return false; |
| } |
| |
| GrVkImage* image = nullptr; |
| GrVkRenderTarget* rt = static_cast<GrVkRenderTarget*>(surface->asRenderTarget()); |
| if (rt) { |
| // Reading from render targets that wrap a secondary command buffer is not allowed since |
| // it would require us to know the VkImage, which we don't have, as well as need us to |
| // stop and start the VkRenderPass which we don't have access to. |
| if (rt->wrapsSecondaryCommandBuffer()) { |
| return false; |
| } |
| image = rt->nonMSAAAttachment(); |
| } else { |
| image = static_cast<GrVkTexture*>(surface->asTexture())->textureImage(); |
| } |
| |
| if (!image) { |
| return false; |
| } |
| |
| if (dstColorType == GrColorType::kUnknown || |
| dstColorType != this->vkCaps().transferColorType(image->imageFormat(), surfaceColorType)) { |
| return false; |
| } |
| |
| // Change layout of our target so it can be used as copy |
| image->setImageLayout(this, |
| VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
| VK_ACCESS_TRANSFER_READ_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| false); |
| |
| size_t bpp = GrColorTypeBytesPerPixel(dstColorType); |
| if (GrVkFormatBytesPerBlock(image->imageFormat()) != bpp) { |
| return false; |
| } |
| size_t tightRowBytes = bpp*rect.width(); |
| |
| VkBufferImageCopy region; |
| memset(®ion, 0, sizeof(VkBufferImageCopy)); |
| VkOffset3D offset = { rect.left(), rect.top(), 0 }; |
| region.imageOffset = offset; |
| region.imageExtent = { (uint32_t)rect.width(), (uint32_t)rect.height(), 1 }; |
| |
| size_t transBufferRowBytes = bpp * region.imageExtent.width; |
| size_t imageRows = region.imageExtent.height; |
| GrResourceProvider* resourceProvider = this->getContext()->priv().resourceProvider(); |
| sk_sp<GrGpuBuffer> transferBuffer = resourceProvider->createBuffer( |
| transBufferRowBytes * imageRows, |
| GrGpuBufferType::kXferGpuToCpu, |
| kDynamic_GrAccessPattern, |
| GrResourceProvider::ZeroInit::kNo); |
| |
| if (!transferBuffer) { |
| return false; |
| } |
| |
| GrVkBuffer* vkBuffer = static_cast<GrVkBuffer*>(transferBuffer.get()); |
| |
| // Copy the image to a buffer so we can map it to cpu memory |
| region.bufferOffset = 0; |
| region.bufferRowLength = 0; // Forces RowLength to be width. We handle the rowBytes below. |
| region.bufferImageHeight = 0; // Forces height to be tightly packed. Only useful for 3d images. |
| region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; |
| |
| this->currentCommandBuffer()->copyImageToBuffer(this, |
| image, |
| VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
| transferBuffer, |
| 1, |
| ®ion); |
| |
| // make sure the copy to buffer has finished |
| vkBuffer->addMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT, |
| VK_ACCESS_HOST_READ_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT, |
| VK_PIPELINE_STAGE_HOST_BIT, |
| false); |
| |
| // We need to submit the current command buffer to the Queue and make sure it finishes before |
| // we can copy the data out of the buffer. |
| if (!this->submitCommandBuffer(kForce_SyncQueue)) { |
| return false; |
| } |
| void* mappedMemory = transferBuffer->map(); |
| if (!mappedMemory) { |
| return false; |
| } |
| |
| SkRectMemcpy(buffer, rowBytes, mappedMemory, transBufferRowBytes, tightRowBytes, rect.height()); |
| |
| transferBuffer->unmap(); |
| return true; |
| } |
| |
| bool GrVkGpu::beginRenderPass(const GrVkRenderPass* renderPass, |
| sk_sp<const GrVkFramebuffer> framebuffer, |
| const VkClearValue* colorClear, |
| const GrSurface* target, |
| const SkIRect& renderPassBounds, |
| bool forSecondaryCB) { |
| if (!this->currentCommandBuffer()) { |
| return false; |
| } |
| SkASSERT (!framebuffer->isExternal()); |
| |
| #ifdef SK_DEBUG |
| uint32_t index; |
| bool result = renderPass->colorAttachmentIndex(&index); |
| SkASSERT(result && 0 == index); |
| result = renderPass->stencilAttachmentIndex(&index); |
| if (result) { |
| SkASSERT(1 == index); |
| } |
| #endif |
| VkClearValue clears[3]; |
| int stencilIndex = renderPass->hasResolveAttachment() ? 2 : 1; |
| clears[0].color = colorClear->color; |
| clears[stencilIndex].depthStencil.depth = 0.0f; |
| clears[stencilIndex].depthStencil.stencil = 0; |
| |
| return this->currentCommandBuffer()->beginRenderPass( |
| this, renderPass, std::move(framebuffer), clears, target, renderPassBounds, forSecondaryCB); |
| } |
| |
| void GrVkGpu::endRenderPass(GrRenderTarget* target, GrSurfaceOrigin origin, |
| const SkIRect& bounds) { |
| // We had a command buffer when we started the render pass, we should have one now as well. |
| SkASSERT(this->currentCommandBuffer()); |
| this->currentCommandBuffer()->endRenderPass(this); |
| this->didWriteToSurface(target, origin, &bounds); |
| } |
| |
| bool GrVkGpu::checkVkResult(VkResult result) { |
| switch (result) { |
| case VK_SUCCESS: |
| return true; |
| case VK_ERROR_DEVICE_LOST: |
| fDeviceIsLost = true; |
| return false; |
| case VK_ERROR_OUT_OF_DEVICE_MEMORY: |
| case VK_ERROR_OUT_OF_HOST_MEMORY: |
| this->setOOMed(); |
| return false; |
| default: |
| return false; |
| } |
| } |
| |
| void GrVkGpu::submitSecondaryCommandBuffer(std::unique_ptr<GrVkSecondaryCommandBuffer> buffer) { |
| if (!this->currentCommandBuffer()) { |
| return; |
| } |
| this->currentCommandBuffer()->executeCommands(this, std::move(buffer)); |
| } |
| |
| void GrVkGpu::submit(GrOpsRenderPass* renderPass) { |
| SkASSERT(fCachedOpsRenderPass.get() == renderPass); |
| |
| fCachedOpsRenderPass->submit(); |
| fCachedOpsRenderPass->reset(); |
| } |
| |
| GrFence SK_WARN_UNUSED_RESULT GrVkGpu::insertFence() { |
| VkFenceCreateInfo createInfo; |
| memset(&createInfo, 0, sizeof(VkFenceCreateInfo)); |
| createInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; |
| createInfo.pNext = nullptr; |
| createInfo.flags = 0; |
| VkFence fence = VK_NULL_HANDLE; |
| VkResult result; |
| |
| VK_CALL_RET(result, CreateFence(this->device(), &createInfo, nullptr, &fence)); |
| if (result != VK_SUCCESS) { |
| return 0; |
| } |
| VK_CALL_RET(result, QueueSubmit(this->queue(), 0, nullptr, fence)); |
| if (result != VK_SUCCESS) { |
| VK_CALL(DestroyFence(this->device(), fence, nullptr)); |
| return 0; |
| } |
| |
| static_assert(sizeof(GrFence) >= sizeof(VkFence)); |
| return (GrFence)fence; |
| } |
| |
| bool GrVkGpu::waitFence(GrFence fence) { |
| SkASSERT(VK_NULL_HANDLE != (VkFence)fence); |
| |
| VkResult result; |
| VK_CALL_RET(result, WaitForFences(this->device(), 1, (VkFence*)&fence, VK_TRUE, 0)); |
| return (VK_SUCCESS == result); |
| } |
| |
| void GrVkGpu::deleteFence(GrFence fence) { |
| VK_CALL(DestroyFence(this->device(), (VkFence)fence, nullptr)); |
| } |
| |
| std::unique_ptr<GrSemaphore> SK_WARN_UNUSED_RESULT GrVkGpu::makeSemaphore(bool isOwned) { |
| return GrVkSemaphore::Make(this, isOwned); |
| } |
| |
| std::unique_ptr<GrSemaphore> GrVkGpu::wrapBackendSemaphore(const GrBackendSemaphore& semaphore, |
| GrSemaphoreWrapType wrapType, |
| GrWrapOwnership ownership) { |
| return GrVkSemaphore::MakeWrapped(this, semaphore.vkSemaphore(), wrapType, ownership); |
| } |
| |
| void GrVkGpu::insertSemaphore(GrSemaphore* semaphore) { |
| SkASSERT(semaphore); |
| |
| GrVkSemaphore* vkSem = static_cast<GrVkSemaphore*>(semaphore); |
| |
| GrVkSemaphore::Resource* resource = vkSem->getResource(); |
| if (resource->shouldSignal()) { |
| resource->ref(); |
| fSemaphoresToSignal.push_back(resource); |
| } |
| } |
| |
| void GrVkGpu::waitSemaphore(GrSemaphore* semaphore) { |
| SkASSERT(semaphore); |
| |
| GrVkSemaphore* vkSem = static_cast<GrVkSemaphore*>(semaphore); |
| |
| GrVkSemaphore::Resource* resource = vkSem->getResource(); |
| if (resource->shouldWait()) { |
| resource->ref(); |
| fSemaphoresToWaitOn.push_back(resource); |
| } |
| } |
| |
| std::unique_ptr<GrSemaphore> GrVkGpu::prepareTextureForCrossContextUsage(GrTexture* texture) { |
| SkASSERT(texture); |
| GrVkImage* vkTexture = static_cast<GrVkTexture*>(texture)->textureImage(); |
| vkTexture->setImageLayout(this, |
| VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, |
| VK_ACCESS_SHADER_READ_BIT, |
| VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, |
| false); |
| // TODO: should we have a way to notify the caller that this has failed? Currently if the submit |
| // fails (caused by DEVICE_LOST) this will just cause us to fail the next use of the gpu. |
| // Eventually we will abandon the whole GPU if this fails. |
| this->submitToGpu(false); |
| |
| // The image layout change serves as a barrier, so no semaphore is needed. |
| // If we ever decide we need to return a semaphore here, we need to make sure GrVkSemaphore is |
| // thread safe so that only the first thread that tries to use the semaphore actually submits |
| // it. This additionally would also require thread safety in command buffer submissions to |
| // queues in general. |
| return nullptr; |
| } |
| |
| void GrVkGpu::addDrawable(std::unique_ptr<SkDrawable::GpuDrawHandler> drawable) { |
| fDrawables.emplace_back(std::move(drawable)); |
| } |
| |
| void GrVkGpu::storeVkPipelineCacheData() { |
| if (this->getContext()->priv().getPersistentCache()) { |
| this->resourceProvider().storePipelineCacheData(); |
| } |
| } |