blob: 5c5f71109f12b2052873926e20bf159cb66a5e84 [file] [log] [blame]
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <new>
#include "include/core/SkPoint.h"
#include "include/core/SkPoint3.h"
#include "include/gpu/GrRecordingContext.h"
#include "include/private/SkFloatingPoint.h"
#include "include/private/SkTo.h"
#include "src/core/SkMathPriv.h"
#include "src/core/SkMatrixPriv.h"
#include "src/core/SkRectPriv.h"
#include "src/gpu/ganesh/GrAppliedClip.h"
#include "src/gpu/ganesh/GrCaps.h"
#include "src/gpu/ganesh/GrDrawOpTest.h"
#include "src/gpu/ganesh/GrGeometryProcessor.h"
#include "src/gpu/ganesh/GrGpu.h"
#include "src/gpu/ganesh/GrMemoryPool.h"
#include "src/gpu/ganesh/GrOpFlushState.h"
#include "src/gpu/ganesh/GrOpsTypes.h"
#include "src/gpu/ganesh/GrRecordingContextPriv.h"
#include "src/gpu/ganesh/GrResourceProvider.h"
#include "src/gpu/ganesh/GrResourceProviderPriv.h"
#include "src/gpu/ganesh/GrShaderCaps.h"
#include "src/gpu/ganesh/GrTexture.h"
#include "src/gpu/ganesh/GrTextureProxy.h"
#include "src/gpu/ganesh/SkGr.h"
#include "src/gpu/ganesh/SurfaceDrawContext.h"
#include "src/gpu/ganesh/effects/GrBlendFragmentProcessor.h"
#include "src/gpu/ganesh/effects/GrTextureEffect.h"
#include "src/gpu/ganesh/geometry/GrQuad.h"
#include "src/gpu/ganesh/geometry/GrQuadBuffer.h"
#include "src/gpu/ganesh/geometry/GrQuadUtils.h"
#include "src/gpu/ganesh/geometry/GrRect.h"
#include "src/gpu/ganesh/glsl/GrGLSLVarying.h"
#include "src/gpu/ganesh/ops/FillRectOp.h"
#include "src/gpu/ganesh/ops/GrMeshDrawOp.h"
#include "src/gpu/ganesh/ops/GrSimpleMeshDrawOpHelper.h"
#include "src/gpu/ganesh/ops/QuadPerEdgeAA.h"
#include "src/gpu/ganesh/ops/TextureOp.h"
namespace {
using Subset = skgpu::v1::QuadPerEdgeAA::Subset;
using VertexSpec = skgpu::v1::QuadPerEdgeAA::VertexSpec;
using ColorType = skgpu::v1::QuadPerEdgeAA::ColorType;
// Extracts lengths of vertical and horizontal edges of axis-aligned quad. "width" is the edge
// between v0 and v2 (or v1 and v3), "height" is the edge between v0 and v1 (or v2 and v3).
SkSize axis_aligned_quad_size(const GrQuad& quad) {
SkASSERT(quad.quadType() == GrQuad::Type::kAxisAligned);
// Simplification of regular edge length equation, since it's axis aligned and can avoid sqrt
float dw = sk_float_abs(quad.x(2) - quad.x(0)) + sk_float_abs(quad.y(2) - quad.y(0));
float dh = sk_float_abs(quad.x(1) - quad.x(0)) + sk_float_abs(quad.y(1) - quad.y(0));
return {dw, dh};
}
std::tuple<bool /* filter */,
bool /* mipmap */>
filter_and_mm_have_effect(const GrQuad& srcQuad, const GrQuad& dstQuad) {
// If not axis-aligned in src or dst, then always say it has an effect
if (srcQuad.quadType() != GrQuad::Type::kAxisAligned ||
dstQuad.quadType() != GrQuad::Type::kAxisAligned) {
return {true, true};
}
SkRect srcRect;
SkRect dstRect;
if (srcQuad.asRect(&srcRect) && dstQuad.asRect(&dstRect)) {
// Disable filtering when there is no scaling (width and height are the same), and the
// top-left corners have the same fraction (so src and dst snap to the pixel grid
// identically).
SkASSERT(srcRect.isSorted());
bool filter = srcRect.width() != dstRect.width() || srcRect.height() != dstRect.height() ||
SkScalarFraction(srcRect.fLeft) != SkScalarFraction(dstRect.fLeft) ||
SkScalarFraction(srcRect.fTop) != SkScalarFraction(dstRect.fTop);
bool mm = srcRect.width() > dstRect.width() || srcRect.height() > dstRect.height();
return {filter, mm};
}
// Extract edge lengths
SkSize srcSize = axis_aligned_quad_size(srcQuad);
SkSize dstSize = axis_aligned_quad_size(dstQuad);
// Although the quads are axis-aligned, the local coordinate system is transformed such
// that fractionally-aligned sample centers will not align with the device coordinate system
// So disable filtering when edges are the same length and both srcQuad and dstQuad
// 0th vertex is integer aligned.
bool filter = srcSize != dstSize ||
!SkScalarIsInt(srcQuad.x(0)) ||
!SkScalarIsInt(srcQuad.y(0)) ||
!SkScalarIsInt(dstQuad.x(0)) ||
!SkScalarIsInt(dstQuad.y(0));
bool mm = srcSize.fWidth > dstSize.fWidth || srcSize.fHeight > dstSize.fHeight;
return {filter, mm};
}
// Describes function for normalizing src coords: [x * iw, y * ih + yOffset] can represent
// regular and rectangular textures, w/ or w/o origin correction.
struct NormalizationParams {
float fIW; // 1 / width of texture, or 1.0 for texture rectangles
float fInvH; // 1 / height of texture, or 1.0 for tex rects, X -1 if bottom-left origin
float fYOffset; // 0 for top-left origin, height of [normalized] tex if bottom-left
};
NormalizationParams proxy_normalization_params(const GrSurfaceProxy* proxy,
GrSurfaceOrigin origin) {
// Whether or not the proxy is instantiated, this is the size its texture will be, so we can
// normalize the src coordinates up front.
SkISize dimensions = proxy->backingStoreDimensions();
float iw, ih, h;
if (proxy->backendFormat().textureType() == GrTextureType::kRectangle) {
iw = ih = 1.f;
h = dimensions.height();
} else {
iw = 1.f / dimensions.width();
ih = 1.f / dimensions.height();
h = 1.f;
}
if (origin == kBottomLeft_GrSurfaceOrigin) {
return {iw, -ih, h};
} else {
return {iw, ih, 0.0f};
}
}
// Normalize the subset. If 'subsetRect' is null, it is assumed no subset constraint is desired,
// so a sufficiently large rect is returned even if the quad ends up batched with an op that uses
// subsets overall. When there is a subset it will be inset based on the filter mode. Normalization
// and y-flipping are applied as indicated by NormalizationParams.
SkRect normalize_and_inset_subset(GrSamplerState::Filter filter,
const NormalizationParams& params,
const SkRect* subsetRect) {
static constexpr SkRect kLargeRect = {-100000, -100000, 1000000, 1000000};
if (!subsetRect) {
// Either the quad has no subset constraint and is batched with a subset constrained op
// (in which case we want a subset that doesn't restrict normalized tex coords), or the
// entire op doesn't use the subset, in which case the returned value is ignored.
return kLargeRect;
}
auto ltrb = skvx::Vec<4, float>::Load(subsetRect);
auto flipHi = skvx::Vec<4, float>({1.f, 1.f, -1.f, -1.f});
if (filter == GrSamplerState::Filter::kNearest) {
// Make sure our insetting puts us at pixel centers.
ltrb = skvx::floor(ltrb*flipHi)*flipHi;
}
// Inset with pin to the rect center.
ltrb += skvx::Vec<4, float>({.5f, .5f, -.5f, -.5f});
auto mid = (skvx::shuffle<2, 3, 0, 1>(ltrb) + ltrb)*0.5f;
ltrb = skvx::min(ltrb*flipHi, mid*flipHi)*flipHi;
// Normalize and offset
ltrb = ltrb * skvx::Vec<4, float>{params.fIW, params.fInvH, params.fIW, params.fInvH} +
skvx::Vec<4, float>{0.f, params.fYOffset, 0.f, params.fYOffset};
if (params.fInvH < 0.f) {
// Flip top and bottom to keep the rect sorted when loaded back to SkRect.
ltrb = skvx::shuffle<0, 3, 2, 1>(ltrb);
}
SkRect out;
ltrb.store(&out);
return out;
}
// Normalizes logical src coords and corrects for origin
void normalize_src_quad(const NormalizationParams& params,
GrQuad* srcQuad) {
// The src quad should not have any perspective
SkASSERT(!srcQuad->hasPerspective());
skvx::Vec<4, float> xs = srcQuad->x4f() * params.fIW;
skvx::Vec<4, float> ys = srcQuad->y4f() * params.fInvH + params.fYOffset;
xs.store(srcQuad->xs());
ys.store(srcQuad->ys());
}
// Count the number of proxy runs in the entry set. This usually is already computed by
// SkGpuDevice, but when the BatchLengthLimiter chops the set up it must determine a new proxy count
// for each split.
int proxy_run_count(const GrTextureSetEntry set[], int count) {
int actualProxyRunCount = 0;
const GrSurfaceProxy* lastProxy = nullptr;
for (int i = 0; i < count; ++i) {
if (set[i].fProxyView.proxy() != lastProxy) {
actualProxyRunCount++;
lastProxy = set[i].fProxyView.proxy();
}
}
return actualProxyRunCount;
}
bool safe_to_ignore_subset_rect(GrAAType aaType, GrSamplerState::Filter filter,
const DrawQuad& quad, const SkRect& subsetRect) {
// If both the device and local quad are both axis-aligned, and filtering is off, the local quad
// can push all the way up to the edges of the the subset rect and the sampler shouldn't
// overshoot. Unfortunately, antialiasing adds enough jitter that we can only rely on this in
// the non-antialiased case.
SkRect localBounds = quad.fLocal.bounds();
if (aaType == GrAAType::kNone &&
filter == GrSamplerState::Filter::kNearest &&
quad.fDevice.quadType() == GrQuad::Type::kAxisAligned &&
quad.fLocal.quadType() == GrQuad::Type::kAxisAligned &&
subsetRect.contains(localBounds)) {
return true;
}
// If the local quad is inset by at least 0.5 pixels into the subset rect's bounds, the
// sampler shouldn't overshoot, even when antialiasing and filtering is taken into account.
if (subsetRect.makeInset(0.5f, 0.5f).contains(localBounds)) {
return true;
}
// The subset rect cannot be ignored safely.
return false;
}
/**
* Op that implements TextureOp::Make. It draws textured quads. Each quad can modulate against a
* the texture by color. The blend with the destination is always src-over. The edges are non-AA.
*/
class TextureOpImpl final : public GrMeshDrawOp {
public:
using Saturate = skgpu::v1::TextureOp::Saturate;
static GrOp::Owner Make(GrRecordingContext* context,
GrSurfaceProxyView proxyView,
sk_sp<GrColorSpaceXform> textureXform,
GrSamplerState::Filter filter,
GrSamplerState::MipmapMode mm,
const SkPMColor4f& color,
Saturate saturate,
GrAAType aaType,
DrawQuad* quad,
const SkRect* subset) {
return GrOp::Make<TextureOpImpl>(context, std::move(proxyView), std::move(textureXform),
filter, mm, color, saturate, aaType, quad, subset);
}
static GrOp::Owner Make(GrRecordingContext* context,
GrTextureSetEntry set[],
int cnt,
int proxyRunCnt,
GrSamplerState::Filter filter,
GrSamplerState::MipmapMode mm,
Saturate saturate,
GrAAType aaType,
SkCanvas::SrcRectConstraint constraint,
const SkMatrix& viewMatrix,
sk_sp<GrColorSpaceXform> textureColorSpaceXform) {
// Allocate size based on proxyRunCnt, since that determines number of ViewCountPairs.
SkASSERT(proxyRunCnt <= cnt);
return GrOp::MakeWithExtraMemory<TextureOpImpl>(
context, sizeof(ViewCountPair) * (proxyRunCnt - 1),
set, cnt, proxyRunCnt, filter, mm, saturate, aaType, constraint,
viewMatrix, std::move(textureColorSpaceXform));
}
~TextureOpImpl() override {
for (unsigned p = 1; p < fMetadata.fProxyCount; ++p) {
fViewCountPairs[p].~ViewCountPair();
}
}
const char* name() const override { return "TextureOp"; }
void visitProxies(const GrVisitProxyFunc& func) const override {
bool mipped = (fMetadata.mipmapMode() != GrSamplerState::MipmapMode::kNone);
for (unsigned p = 0; p < fMetadata.fProxyCount; ++p) {
func(fViewCountPairs[p].fProxy.get(), GrMipmapped(mipped));
}
if (fDesc && fDesc->fProgramInfo) {
fDesc->fProgramInfo->visitFPProxies(func);
}
}
#ifdef SK_DEBUG
static void ValidateResourceLimits() {
// The op implementation has an upper bound on the number of quads that it can represent.
// However, the resource manager imposes its own limit on the number of quads, which should
// always be lower than the numerical limit this op can hold.
using CountStorage = decltype(Metadata::fTotalQuadCount);
CountStorage maxQuadCount = std::numeric_limits<CountStorage>::max();
// GrResourceProvider::Max...() is typed as int, so don't compare across signed/unsigned.
int resourceLimit = SkTo<int>(maxQuadCount);
SkASSERT(GrResourceProvider::MaxNumAAQuads() <= resourceLimit &&
GrResourceProvider::MaxNumNonAAQuads() <= resourceLimit);
}
#endif
GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip*,
GrClampType clampType) override {
SkASSERT(fMetadata.colorType() == ColorType::kNone);
auto iter = fQuads.metadata();
while(iter.next()) {
auto colorType = skgpu::v1::QuadPerEdgeAA::MinColorType(iter->fColor);
colorType = std::max(static_cast<ColorType>(fMetadata.fColorType),
colorType);
if (caps.reducedShaderMode()) {
colorType = std::max(colorType, ColorType::kByte);
}
fMetadata.fColorType = static_cast<uint16_t>(colorType);
}
return GrProcessorSet::EmptySetAnalysis();
}
FixedFunctionFlags fixedFunctionFlags() const override {
return fMetadata.aaType() == GrAAType::kMSAA ? FixedFunctionFlags::kUsesHWAA
: FixedFunctionFlags::kNone;
}
DEFINE_OP_CLASS_ID
private:
friend class ::GrOp;
struct ColorSubsetAndAA {
ColorSubsetAndAA(const SkPMColor4f& color, const SkRect& subsetRect, GrQuadAAFlags aaFlags)
: fColor(color)
, fSubsetRect(subsetRect)
, fAAFlags(static_cast<uint16_t>(aaFlags)) {
SkASSERT(fAAFlags == static_cast<uint16_t>(aaFlags));
}
SkPMColor4f fColor;
// If the op doesn't use subsets, this is ignored. If the op uses subsets and the specific
// entry does not, this rect will equal kLargeRect, so it automatically has no effect.
SkRect fSubsetRect;
unsigned fAAFlags : 4;
GrQuadAAFlags aaFlags() const { return static_cast<GrQuadAAFlags>(fAAFlags); }
};
struct ViewCountPair {
// Normally this would be a GrSurfaceProxyView, but TextureOp applies the GrOrigin right
// away so it doesn't need to be stored, and all ViewCountPairs in an op have the same
// swizzle so that is stored in the op metadata.
sk_sp<GrSurfaceProxy> fProxy;
int fQuadCnt;
};
// TextureOp and ViewCountPair are 8 byte aligned. This is packed into 8 bytes to minimally
// increase the size of the op; increasing the op size can have a surprising impact on
// performance (since texture ops are one of the most commonly used in an app).
struct Metadata {
// AAType must be filled after initialization; ColorType is determined in finalize()
Metadata(const skgpu::Swizzle& swizzle,
GrSamplerState::Filter filter,
GrSamplerState::MipmapMode mm,
Subset subset,
Saturate saturate)
: fSwizzle(swizzle)
, fProxyCount(1)
, fTotalQuadCount(1)
, fFilter(static_cast<uint16_t>(filter))
, fMipmapMode(static_cast<uint16_t>(mm))
, fAAType(static_cast<uint16_t>(GrAAType::kNone))
, fColorType(static_cast<uint16_t>(ColorType::kNone))
, fSubset(static_cast<uint16_t>(subset))
, fSaturate(static_cast<uint16_t>(saturate)) {}
skgpu::Swizzle fSwizzle; // sizeof(skgpu::Swizzle) == uint16_t
uint16_t fProxyCount;
// This will be >= fProxyCount, since a proxy may be drawn multiple times
uint16_t fTotalQuadCount;
// These must be based on uint16_t to help MSVC's pack bitfields optimally
uint16_t fFilter : 2; // GrSamplerState::Filter
uint16_t fMipmapMode : 2; // GrSamplerState::MipmapMode
uint16_t fAAType : 2; // GrAAType
uint16_t fColorType : 2; // GrQuadPerEdgeAA::ColorType
uint16_t fSubset : 1; // bool
uint16_t fSaturate : 1; // bool
uint16_t fUnused : 6; // # of bits left before Metadata exceeds 8 bytes
GrSamplerState::Filter filter() const {
return static_cast<GrSamplerState::Filter>(fFilter);
}
GrSamplerState::MipmapMode mipmapMode() const {
return static_cast<GrSamplerState::MipmapMode>(fMipmapMode);
}
GrAAType aaType() const { return static_cast<GrAAType>(fAAType); }
ColorType colorType() const { return static_cast<ColorType>(fColorType); }
Subset subset() const { return static_cast<Subset>(fSubset); }
Saturate saturate() const { return static_cast<Saturate>(fSaturate); }
static_assert(GrSamplerState::kFilterCount <= 4);
static_assert(kGrAATypeCount <= 4);
static_assert(skgpu::v1::QuadPerEdgeAA::kColorTypeCount <= 4);
};
static_assert(sizeof(Metadata) == 8);
// This descriptor is used to store the draw info we decide on during on(Pre)PrepareDraws. We
// store the data in a separate struct in order to minimize the size of the TextureOp.
// Historically, increasing the TextureOp's size has caused surprising perf regressions, but we
// may want to re-evaluate whether this is still necessary.
//
// In the onPrePrepareDraws case it is allocated in the creation-time opData arena, and
// allocatePrePreparedVertices is also called.
//
// In the onPrepareDraws case this descriptor is allocated in the flush-time arena (i.e., as
// part of the flushState).
struct Desc {
VertexSpec fVertexSpec;
int fNumProxies = 0;
int fNumTotalQuads = 0;
// This member variable is only used by 'onPrePrepareDraws'.
char* fPrePreparedVertices = nullptr;
GrProgramInfo* fProgramInfo = nullptr;
sk_sp<const GrBuffer> fIndexBuffer;
sk_sp<const GrBuffer> fVertexBuffer;
int fBaseVertex;
// How big should 'fVertices' be to hold all the vertex data?
size_t totalSizeInBytes() const {
return this->totalNumVertices() * fVertexSpec.vertexSize();
}
int totalNumVertices() const {
return fNumTotalQuads * fVertexSpec.verticesPerQuad();
}
void allocatePrePreparedVertices(SkArenaAlloc* arena) {
fPrePreparedVertices = arena->makeArrayDefault<char>(this->totalSizeInBytes());
}
};
// If subsetRect is not null it will be used to apply a strict src rect-style constraint.
TextureOpImpl(GrSurfaceProxyView proxyView,
sk_sp<GrColorSpaceXform> textureColorSpaceXform,
GrSamplerState::Filter filter,
GrSamplerState::MipmapMode mm,
const SkPMColor4f& color,
Saturate saturate,
GrAAType aaType,
DrawQuad* quad,
const SkRect* subsetRect)
: INHERITED(ClassID())
, fQuads(1, true /* includes locals */)
, fTextureColorSpaceXform(std::move(textureColorSpaceXform))
, fDesc(nullptr)
, fMetadata(proxyView.swizzle(), filter, mm, Subset(!!subsetRect), saturate) {
// Clean up disparities between the overall aa type and edge configuration and apply
// optimizations based on the rect and matrix when appropriate
GrQuadUtils::ResolveAAType(aaType, quad->fEdgeFlags, quad->fDevice,
&aaType, &quad->fEdgeFlags);
fMetadata.fAAType = static_cast<uint16_t>(aaType);
// We expect our caller to have already caught this optimization.
SkASSERT(!subsetRect ||
!subsetRect->contains(proxyView.proxy()->backingStoreBoundsRect()));
// We may have had a strict constraint with nearest filter solely due to possible AA bloat.
// Try to identify cases where the subsetting isn't actually necessary, and skip it.
if (subsetRect) {
if (safe_to_ignore_subset_rect(aaType, filter, *quad, *subsetRect)) {
subsetRect = nullptr;
fMetadata.fSubset = static_cast<uint16_t>(Subset::kNo);
}
}
// Normalize src coordinates and the subset (if set)
NormalizationParams params = proxy_normalization_params(proxyView.proxy(),
proxyView.origin());
normalize_src_quad(params, &quad->fLocal);
SkRect subset = normalize_and_inset_subset(filter, params, subsetRect);
// Set bounds before clipping so we don't have to worry about unioning the bounds of
// the two potential quads (GrQuad::bounds() is perspective-safe).
bool hairline = GrQuadUtils::WillUseHairline(quad->fDevice, aaType, quad->fEdgeFlags);
this->setBounds(quad->fDevice.bounds(), HasAABloat(aaType == GrAAType::kCoverage),
hairline ? IsHairline::kYes : IsHairline::kNo);
int quadCount = this->appendQuad(quad, color, subset);
fViewCountPairs[0] = {proxyView.detachProxy(), quadCount};
}
TextureOpImpl(GrTextureSetEntry set[],
int cnt,
int proxyRunCnt,
const GrSamplerState::Filter filter,
const GrSamplerState::MipmapMode mm,
const Saturate saturate,
const GrAAType aaType,
const SkCanvas::SrcRectConstraint constraint,
const SkMatrix& viewMatrix,
sk_sp<GrColorSpaceXform> textureColorSpaceXform)
: INHERITED(ClassID())
, fQuads(cnt, true /* includes locals */)
, fTextureColorSpaceXform(std::move(textureColorSpaceXform))
, fDesc(nullptr)
, fMetadata(set[0].fProxyView.swizzle(),
GrSamplerState::Filter::kNearest,
GrSamplerState::MipmapMode::kNone,
Subset::kNo,
saturate) {
// Update counts to reflect the batch op
fMetadata.fProxyCount = SkToUInt(proxyRunCnt);
fMetadata.fTotalQuadCount = SkToUInt(cnt);
SkRect bounds = SkRectPriv::MakeLargestInverted();
GrAAType netAAType = GrAAType::kNone; // aa type maximally compatible with all dst rects
Subset netSubset = Subset::kNo;
GrSamplerState::Filter netFilter = GrSamplerState::Filter::kNearest;
GrSamplerState::MipmapMode netMM = GrSamplerState::MipmapMode::kNone;
bool hasSubpixel = false;
const GrSurfaceProxy* curProxy = nullptr;
// 'q' is the index in 'set' and fQuadBuffer; 'p' is the index in fViewCountPairs and only
// increases when set[q]'s proxy changes.
int p = 0;
for (int q = 0; q < cnt; ++q) {
SkASSERT(mm == GrSamplerState::MipmapMode::kNone ||
(set[0].fProxyView.proxy()->asTextureProxy()->mipmapped() ==
GrMipmapped::kYes));
if (q == 0) {
// We do not placement new the first ViewCountPair since that one is allocated and
// initialized as part of the TextureOp creation.
fViewCountPairs[0].fProxy = set[0].fProxyView.detachProxy();
fViewCountPairs[0].fQuadCnt = 0;
curProxy = fViewCountPairs[0].fProxy.get();
} else if (set[q].fProxyView.proxy() != curProxy) {
// We must placement new the ViewCountPairs here so that the sk_sps in the
// GrSurfaceProxyView get initialized properly.
new(&fViewCountPairs[++p])ViewCountPair({set[q].fProxyView.detachProxy(), 0});
curProxy = fViewCountPairs[p].fProxy.get();
SkASSERT(GrTextureProxy::ProxiesAreCompatibleAsDynamicState(
curProxy, fViewCountPairs[0].fProxy.get()));
SkASSERT(fMetadata.fSwizzle == set[q].fProxyView.swizzle());
} // else another quad referencing the same proxy
SkMatrix ctm = viewMatrix;
if (set[q].fPreViewMatrix) {
ctm.preConcat(*set[q].fPreViewMatrix);
}
// Use dstRect/srcRect unless dstClip is provided, in which case derive new source
// coordinates by mapping dstClipQuad by the dstRect to srcRect transform.
DrawQuad quad;
if (set[q].fDstClipQuad) {
quad.fDevice = GrQuad::MakeFromSkQuad(set[q].fDstClipQuad, ctm);
SkPoint srcPts[4];
GrMapRectPoints(set[q].fDstRect, set[q].fSrcRect, set[q].fDstClipQuad, srcPts, 4);
quad.fLocal = GrQuad::MakeFromSkQuad(srcPts, SkMatrix::I());
} else {
quad.fDevice = GrQuad::MakeFromRect(set[q].fDstRect, ctm);
quad.fLocal = GrQuad(set[q].fSrcRect);
}
// This may be reduced per-quad from the requested aggregate filtering level, and used
// to determine if the subset is needed for the entry as well.
GrSamplerState::Filter filterForQuad = filter;
if (netFilter != filter || netMM != mm) {
// The only way netFilter != filter is if linear is requested and we haven't yet
// found a quad that requires linear (so net is still nearest). Similar for mip
// mapping.
SkASSERT(filter == netFilter ||
(netFilter == GrSamplerState::Filter::kNearest && filter > netFilter));
SkASSERT(mm == netMM ||
(netMM == GrSamplerState::MipmapMode::kNone && mm > netMM));
auto [mustFilter, mustMM] = filter_and_mm_have_effect(quad.fLocal, quad.fDevice);
if (filter != GrSamplerState::Filter::kNearest) {
if (mustFilter) {
netFilter = filter; // upgrade batch to higher filter level
} else {
filterForQuad = GrSamplerState::Filter::kNearest; // downgrade entry
}
}
if (mustMM && mm != GrSamplerState::MipmapMode::kNone) {
netMM = mm;
}
}
// Determine the AA type for the quad, then merge with net AA type
GrAAType aaForQuad;
GrQuadUtils::ResolveAAType(aaType, set[q].fAAFlags, quad.fDevice,
&aaForQuad, &quad.fEdgeFlags);
// Update overall bounds of the op as the union of all quads
bounds.joinPossiblyEmptyRect(quad.fDevice.bounds());
hasSubpixel |= GrQuadUtils::WillUseHairline(quad.fDevice, aaForQuad, quad.fEdgeFlags);
// Resolve sets aaForQuad to aaType or None, there is never a change between aa methods
SkASSERT(aaForQuad == GrAAType::kNone || aaForQuad == aaType);
if (netAAType == GrAAType::kNone && aaForQuad != GrAAType::kNone) {
netAAType = aaType;
}
// Calculate metadata for the entry
const SkRect* subsetForQuad = nullptr;
if (constraint == SkCanvas::kStrict_SrcRectConstraint) {
// Check (briefly) if the subset rect is actually needed for this set entry.
SkRect* subsetRect = &set[q].fSrcRect;
if (!subsetRect->contains(curProxy->backingStoreBoundsRect())) {
if (!safe_to_ignore_subset_rect(aaForQuad, filterForQuad, quad, *subsetRect)) {
netSubset = Subset::kYes;
subsetForQuad = subsetRect;
}
}
}
// Normalize the src quads and apply origin
NormalizationParams proxyParams = proxy_normalization_params(
curProxy, set[q].fProxyView.origin());
normalize_src_quad(proxyParams, &quad.fLocal);
// This subset may represent a no-op, otherwise it will have the origin and dimensions
// of the texture applied to it.
SkRect subset = normalize_and_inset_subset(filter, proxyParams, subsetForQuad);
// Always append a quad (or 2 if perspective clipped), it just may refer back to a prior
// ViewCountPair (this frequently happens when Chrome draws 9-patches).
fViewCountPairs[p].fQuadCnt += this->appendQuad(&quad, set[q].fColor, subset);
}
// The # of proxy switches should match what was provided (+1 because we incremented p
// when a new proxy was encountered).
SkASSERT((p + 1) == fMetadata.fProxyCount);
SkASSERT(fQuads.count() == fMetadata.fTotalQuadCount);
fMetadata.fAAType = static_cast<uint16_t>(netAAType);
fMetadata.fFilter = static_cast<uint16_t>(netFilter);
fMetadata.fSubset = static_cast<uint16_t>(netSubset);
this->setBounds(bounds, HasAABloat(netAAType == GrAAType::kCoverage),
hasSubpixel ? IsHairline::kYes : IsHairline::kNo);
}
int appendQuad(DrawQuad* quad, const SkPMColor4f& color, const SkRect& subset) {
DrawQuad extra;
// Always clip to W0 to stay consistent with GrQuad::bounds
int quadCount = GrQuadUtils::ClipToW0(quad, &extra);
if (quadCount == 0) {
// We can't discard the op at this point, but disable AA flags so it won't go through
// inset/outset processing
quad->fEdgeFlags = GrQuadAAFlags::kNone;
quadCount = 1;
}
fQuads.append(quad->fDevice, {color, subset, quad->fEdgeFlags}, &quad->fLocal);
if (quadCount > 1) {
fQuads.append(extra.fDevice, {color, subset, extra.fEdgeFlags}, &extra.fLocal);
fMetadata.fTotalQuadCount++;
}
return quadCount;
}
GrProgramInfo* programInfo() override {
// Although this Op implements its own onPrePrepareDraws it calls GrMeshDrawOps' version so
// this entry point will be called.
return (fDesc) ? fDesc->fProgramInfo : nullptr;
}
void onCreateProgramInfo(const GrCaps* caps,
SkArenaAlloc* arena,
const GrSurfaceProxyView& writeView,
bool usesMSAASurface,
GrAppliedClip&& appliedClip,
const GrDstProxyView& dstProxyView,
GrXferBarrierFlags renderPassXferBarriers,
GrLoadOp colorLoadOp) override {
SkASSERT(fDesc);
GrGeometryProcessor* gp;
{
const GrBackendFormat& backendFormat =
fViewCountPairs[0].fProxy->backendFormat();
GrSamplerState samplerState = GrSamplerState(GrSamplerState::WrapMode::kClamp,
fMetadata.filter());
gp = skgpu::v1::QuadPerEdgeAA::MakeTexturedProcessor(
arena, fDesc->fVertexSpec, *caps->shaderCaps(), backendFormat, samplerState,
fMetadata.fSwizzle, std::move(fTextureColorSpaceXform), fMetadata.saturate());
SkASSERT(fDesc->fVertexSpec.vertexSize() == gp->vertexStride());
}
fDesc->fProgramInfo = GrSimpleMeshDrawOpHelper::CreateProgramInfo(
caps, arena, writeView, usesMSAASurface, std::move(appliedClip), dstProxyView, gp,
GrProcessorSet::MakeEmptySet(), fDesc->fVertexSpec.primitiveType(),
renderPassXferBarriers, colorLoadOp, GrPipeline::InputFlags::kNone);
}
void onPrePrepareDraws(GrRecordingContext* context,
const GrSurfaceProxyView& writeView,
GrAppliedClip* clip,
const GrDstProxyView& dstProxyView,
GrXferBarrierFlags renderPassXferBarriers,
GrLoadOp colorLoadOp) override {
TRACE_EVENT0("skia.gpu", TRACE_FUNC);
SkDEBUGCODE(this->validate();)
SkASSERT(!fDesc);
SkArenaAlloc* arena = context->priv().recordTimeAllocator();
fDesc = arena->make<Desc>();
this->characterize(fDesc);
fDesc->allocatePrePreparedVertices(arena);
FillInVertices(*context->priv().caps(), this, fDesc, fDesc->fPrePreparedVertices);
// This will call onCreateProgramInfo and register the created program with the DDL.
this->INHERITED::onPrePrepareDraws(context, writeView, clip, dstProxyView,
renderPassXferBarriers, colorLoadOp);
}
static void FillInVertices(const GrCaps& caps,
TextureOpImpl* texOp,
Desc* desc,
char* vertexData) {
SkASSERT(vertexData);
SkDEBUGCODE(int totQuadsSeen = 0;)
SkDEBUGCODE(int totVerticesSeen = 0;)
SkDEBUGCODE(const size_t vertexSize = desc->fVertexSpec.vertexSize();)
SkDEBUGCODE(auto startMark{vertexData};)
skgpu::v1::QuadPerEdgeAA::Tessellator tessellator(desc->fVertexSpec, vertexData);
for (const auto& op : ChainRange<TextureOpImpl>(texOp)) {
auto iter = op.fQuads.iterator();
for (unsigned p = 0; p < op.fMetadata.fProxyCount; ++p) {
const int quadCnt = op.fViewCountPairs[p].fQuadCnt;
SkDEBUGCODE(int meshVertexCnt = quadCnt * desc->fVertexSpec.verticesPerQuad());
for (int i = 0; i < quadCnt && iter.next(); ++i) {
SkASSERT(iter.isLocalValid());
const ColorSubsetAndAA& info = iter.metadata();
tessellator.append(iter.deviceQuad(), iter.localQuad(), info.fColor,
info.fSubsetRect, info.aaFlags());
}
SkASSERT((totVerticesSeen + meshVertexCnt) * vertexSize
== (size_t)(tessellator.vertexMark() - startMark));
SkDEBUGCODE(totQuadsSeen += quadCnt;)
SkDEBUGCODE(totVerticesSeen += meshVertexCnt);
SkASSERT(totQuadsSeen * desc->fVertexSpec.verticesPerQuad() == totVerticesSeen);
}
// If quad counts per proxy were calculated correctly, the entire iterator
// should have been consumed.
SkASSERT(!iter.next());
}
SkASSERT(desc->totalSizeInBytes() == (size_t)(tessellator.vertexMark() - startMark));
SkASSERT(totQuadsSeen == desc->fNumTotalQuads);
SkASSERT(totVerticesSeen == desc->totalNumVertices());
}
#ifdef SK_DEBUG
static int validate_op(GrTextureType textureType,
GrAAType aaType,
skgpu::Swizzle swizzle,
const TextureOpImpl* op) {
SkASSERT(op->fMetadata.fSwizzle == swizzle);
int quadCount = 0;
for (unsigned p = 0; p < op->fMetadata.fProxyCount; ++p) {
auto* proxy = op->fViewCountPairs[p].fProxy->asTextureProxy();
quadCount += op->fViewCountPairs[p].fQuadCnt;
SkASSERT(proxy);
SkASSERT(proxy->textureType() == textureType);
}
SkASSERT(aaType == op->fMetadata.aaType());
return quadCount;
}
void validate() const override {
// NOTE: Since this is debug-only code, we use the virtual asTextureProxy()
auto textureType = fViewCountPairs[0].fProxy->asTextureProxy()->textureType();
GrAAType aaType = fMetadata.aaType();
skgpu::Swizzle swizzle = fMetadata.fSwizzle;
int quadCount = validate_op(textureType, aaType, swizzle, this);
for (const GrOp* tmp = this->prevInChain(); tmp; tmp = tmp->prevInChain()) {
quadCount += validate_op(textureType, aaType, swizzle,
static_cast<const TextureOpImpl*>(tmp));
}
for (const GrOp* tmp = this->nextInChain(); tmp; tmp = tmp->nextInChain()) {
quadCount += validate_op(textureType, aaType, swizzle,
static_cast<const TextureOpImpl*>(tmp));
}
SkASSERT(quadCount == this->numChainedQuads());
}
#endif
#if GR_TEST_UTILS
int numQuads() const final { return this->totNumQuads(); }
#endif
void characterize(Desc* desc) const {
SkDEBUGCODE(this->validate();)
GrQuad::Type quadType = GrQuad::Type::kAxisAligned;
ColorType colorType = ColorType::kNone;
GrQuad::Type srcQuadType = GrQuad::Type::kAxisAligned;
Subset subset = Subset::kNo;
GrAAType overallAAType = fMetadata.aaType();
desc->fNumProxies = 0;
desc->fNumTotalQuads = 0;
int maxQuadsPerMesh = 0;
for (const auto& op : ChainRange<TextureOpImpl>(this)) {
if (op.fQuads.deviceQuadType() > quadType) {
quadType = op.fQuads.deviceQuadType();
}
if (op.fQuads.localQuadType() > srcQuadType) {
srcQuadType = op.fQuads.localQuadType();
}
if (op.fMetadata.subset() == Subset::kYes) {
subset = Subset::kYes;
}
colorType = std::max(colorType, op.fMetadata.colorType());
desc->fNumProxies += op.fMetadata.fProxyCount;
for (unsigned p = 0; p < op.fMetadata.fProxyCount; ++p) {
maxQuadsPerMesh = std::max(op.fViewCountPairs[p].fQuadCnt, maxQuadsPerMesh);
}
desc->fNumTotalQuads += op.totNumQuads();
if (op.fMetadata.aaType() == GrAAType::kCoverage) {
overallAAType = GrAAType::kCoverage;
}
}
SkASSERT(desc->fNumTotalQuads == this->numChainedQuads());
SkASSERT(!CombinedQuadCountWillOverflow(overallAAType, false, desc->fNumTotalQuads));
auto indexBufferOption = skgpu::v1::QuadPerEdgeAA::CalcIndexBufferOption(overallAAType,
maxQuadsPerMesh);
desc->fVertexSpec = VertexSpec(quadType, colorType, srcQuadType, /* hasLocal */ true,
subset, overallAAType, /* alpha as coverage */ true,
indexBufferOption);
SkASSERT(desc->fNumTotalQuads <= skgpu::v1::QuadPerEdgeAA::QuadLimit(indexBufferOption));
}
int totNumQuads() const {
#ifdef SK_DEBUG
int tmp = 0;
for (unsigned p = 0; p < fMetadata.fProxyCount; ++p) {
tmp += fViewCountPairs[p].fQuadCnt;
}
SkASSERT(tmp == fMetadata.fTotalQuadCount);
#endif
return fMetadata.fTotalQuadCount;
}
int numChainedQuads() const {
int numChainedQuads = this->totNumQuads();
for (const GrOp* tmp = this->prevInChain(); tmp; tmp = tmp->prevInChain()) {
numChainedQuads += ((const TextureOpImpl*)tmp)->totNumQuads();
}
for (const GrOp* tmp = this->nextInChain(); tmp; tmp = tmp->nextInChain()) {
numChainedQuads += ((const TextureOpImpl*)tmp)->totNumQuads();
}
return numChainedQuads;
}
// onPrePrepareDraws may or may not have been called at this point
void onPrepareDraws(GrMeshDrawTarget* target) override {
TRACE_EVENT0("skia.gpu", TRACE_FUNC);
SkDEBUGCODE(this->validate();)
SkASSERT(!fDesc || fDesc->fPrePreparedVertices);
if (!fDesc) {
SkArenaAlloc* arena = target->allocator();
fDesc = arena->make<Desc>();
this->characterize(fDesc);
SkASSERT(!fDesc->fPrePreparedVertices);
}
size_t vertexSize = fDesc->fVertexSpec.vertexSize();
void* vdata = target->makeVertexSpace(vertexSize, fDesc->totalNumVertices(),
&fDesc->fVertexBuffer, &fDesc->fBaseVertex);
if (!vdata) {
SkDebugf("Could not allocate vertices\n");
return;
}
if (fDesc->fVertexSpec.needsIndexBuffer()) {
fDesc->fIndexBuffer = skgpu::v1::QuadPerEdgeAA::GetIndexBuffer(
target, fDesc->fVertexSpec.indexBufferOption());
if (!fDesc->fIndexBuffer) {
SkDebugf("Could not allocate indices\n");
return;
}
}
if (fDesc->fPrePreparedVertices) {
memcpy(vdata, fDesc->fPrePreparedVertices, fDesc->totalSizeInBytes());
} else {
FillInVertices(target->caps(), this, fDesc, (char*) vdata);
}
}
void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override {
if (!fDesc->fVertexBuffer) {
return;
}
if (fDesc->fVertexSpec.needsIndexBuffer() && !fDesc->fIndexBuffer) {
return;
}
if (!fDesc->fProgramInfo) {
this->createProgramInfo(flushState);
SkASSERT(fDesc->fProgramInfo);
}
flushState->bindPipelineAndScissorClip(*fDesc->fProgramInfo, chainBounds);
flushState->bindBuffers(std::move(fDesc->fIndexBuffer), nullptr,
std::move(fDesc->fVertexBuffer));
int totQuadsSeen = 0;
SkDEBUGCODE(int numDraws = 0;)
for (const auto& op : ChainRange<TextureOpImpl>(this)) {
for (unsigned p = 0; p < op.fMetadata.fProxyCount; ++p) {
const int quadCnt = op.fViewCountPairs[p].fQuadCnt;
SkASSERT(numDraws < fDesc->fNumProxies);
flushState->bindTextures(fDesc->fProgramInfo->geomProc(),
*op.fViewCountPairs[p].fProxy,
fDesc->fProgramInfo->pipeline());
skgpu::v1::QuadPerEdgeAA::IssueDraw(flushState->caps(), flushState->opsRenderPass(),
fDesc->fVertexSpec, totQuadsSeen, quadCnt,
fDesc->totalNumVertices(), fDesc->fBaseVertex);
totQuadsSeen += quadCnt;
SkDEBUGCODE(++numDraws;)
}
}
SkASSERT(totQuadsSeen == fDesc->fNumTotalQuads);
SkASSERT(numDraws == fDesc->fNumProxies);
}
void propagateCoverageAAThroughoutChain() {
fMetadata.fAAType = static_cast<uint16_t>(GrAAType::kCoverage);
for (GrOp* tmp = this->prevInChain(); tmp; tmp = tmp->prevInChain()) {
auto tex = static_cast<TextureOpImpl*>(tmp);
SkASSERT(tex->fMetadata.aaType() == GrAAType::kCoverage ||
tex->fMetadata.aaType() == GrAAType::kNone);
tex->fMetadata.fAAType = static_cast<uint16_t>(GrAAType::kCoverage);
}
for (GrOp* tmp = this->nextInChain(); tmp; tmp = tmp->nextInChain()) {
auto tex = static_cast<TextureOpImpl*>(tmp);
SkASSERT(tex->fMetadata.aaType() == GrAAType::kCoverage ||
tex->fMetadata.aaType() == GrAAType::kNone);
tex->fMetadata.fAAType = static_cast<uint16_t>(GrAAType::kCoverage);
}
}
CombineResult onCombineIfPossible(GrOp* t, SkArenaAlloc*, const GrCaps& caps) override {
TRACE_EVENT0("skia.gpu", TRACE_FUNC);
auto that = t->cast<TextureOpImpl>();
SkDEBUGCODE(this->validate();)
SkDEBUGCODE(that->validate();)
if (fDesc || that->fDesc) {
// This should never happen (since only DDL recorded ops should be prePrepared)
// but, in any case, we should never combine ops that that been prePrepared
return CombineResult::kCannotCombine;
}
if (fMetadata.subset() != that->fMetadata.subset()) {
// It is technically possible to combine operations across subset modes, but performance
// testing suggests it's better to make more draw calls where some take advantage of
// the more optimal shader path without coordinate clamping.
return CombineResult::kCannotCombine;
}
if (!GrColorSpaceXform::Equals(fTextureColorSpaceXform.get(),
that->fTextureColorSpaceXform.get())) {
return CombineResult::kCannotCombine;
}
bool upgradeToCoverageAAOnMerge = false;
if (fMetadata.aaType() != that->fMetadata.aaType()) {
if (!CanUpgradeAAOnMerge(fMetadata.aaType(), that->fMetadata.aaType())) {
return CombineResult::kCannotCombine;
}
upgradeToCoverageAAOnMerge = true;
}
if (CombinedQuadCountWillOverflow(fMetadata.aaType(), upgradeToCoverageAAOnMerge,
this->numChainedQuads() + that->numChainedQuads())) {
return CombineResult::kCannotCombine;
}
if (fMetadata.saturate() != that->fMetadata.saturate()) {
return CombineResult::kCannotCombine;
}
if (fMetadata.filter() != that->fMetadata.filter()) {
return CombineResult::kCannotCombine;
}
if (fMetadata.mipmapMode() != that->fMetadata.mipmapMode()) {
return CombineResult::kCannotCombine;
}
if (fMetadata.fSwizzle != that->fMetadata.fSwizzle) {
return CombineResult::kCannotCombine;
}
const auto* thisProxy = fViewCountPairs[0].fProxy.get();
const auto* thatProxy = that->fViewCountPairs[0].fProxy.get();
if (fMetadata.fProxyCount > 1 || that->fMetadata.fProxyCount > 1 ||
thisProxy != thatProxy) {
// We can't merge across different proxies. Check if 'this' can be chained with 'that'.
if (GrTextureProxy::ProxiesAreCompatibleAsDynamicState(thisProxy, thatProxy) &&
caps.dynamicStateArrayGeometryProcessorTextureSupport() &&
fMetadata.aaType() == that->fMetadata.aaType()) {
// We only allow chaining when the aaTypes match bc otherwise the AA type
// reported by the chain can be inconsistent. That is, since chaining doesn't
// propagate revised AA information throughout the chain, the head of the chain
// could have an AA setting of kNone while the chain as a whole could have a
// setting of kCoverage. This inconsistency would then interfere with the validity
// of the CombinedQuadCountWillOverflow calls.
// This problem doesn't occur w/ merging bc we do propagate the AA information
// (in propagateCoverageAAThroughoutChain) below.
return CombineResult::kMayChain;
}
return CombineResult::kCannotCombine;
}
fMetadata.fSubset |= that->fMetadata.fSubset;
fMetadata.fColorType = std::max(fMetadata.fColorType, that->fMetadata.fColorType);
// Concatenate quad lists together
fQuads.concat(that->fQuads);
fViewCountPairs[0].fQuadCnt += that->fQuads.count();
fMetadata.fTotalQuadCount += that->fQuads.count();
if (upgradeToCoverageAAOnMerge) {
// This merger may be the start of a concatenation of two chains. When one
// of the chains mutates its AA the other must follow suit or else the above AA
// check may prevent later ops from chaining together. A specific example of this is
// when chain2 is prepended onto chain1:
// chain1 (that): opA (non-AA/mergeable) opB (non-AA/non-mergeable)
// chain2 (this): opC (cov-AA/non-mergeable) opD (cov-AA/mergeable)
// W/o this propagation, after opD & opA merge, opB and opC would say they couldn't
// chain - which would stop the concatenation process.
this->propagateCoverageAAThroughoutChain();
that->propagateCoverageAAThroughoutChain();
}
SkDEBUGCODE(this->validate();)
return CombineResult::kMerged;
}
#if GR_TEST_UTILS
SkString onDumpInfo() const override {
SkString str = SkStringPrintf("# draws: %d\n", fQuads.count());
auto iter = fQuads.iterator();
for (unsigned p = 0; p < fMetadata.fProxyCount; ++p) {
SkString proxyStr = fViewCountPairs[p].fProxy->dump();
str.append(proxyStr);
str.appendf(", Filter: %d, MM: %d\n",
static_cast<int>(fMetadata.fFilter),
static_cast<int>(fMetadata.fMipmapMode));
for (int i = 0; i < fViewCountPairs[p].fQuadCnt && iter.next(); ++i) {
const GrQuad* quad = iter.deviceQuad();
GrQuad uv = iter.isLocalValid() ? *(iter.localQuad()) : GrQuad();
const ColorSubsetAndAA& info = iter.metadata();
str.appendf(
"%d: Color: 0x%08x, Subset(%d): [L: %.2f, T: %.2f, R: %.2f, B: %.2f]\n"
" UVs [(%.2f, %.2f), (%.2f, %.2f), (%.2f, %.2f), (%.2f, %.2f)]\n"
" Quad [(%.2f, %.2f), (%.2f, %.2f), (%.2f, %.2f), (%.2f, %.2f)]\n",
i, info.fColor.toBytes_RGBA(), fMetadata.fSubset, info.fSubsetRect.fLeft,
info.fSubsetRect.fTop, info.fSubsetRect.fRight, info.fSubsetRect.fBottom,
quad->point(0).fX, quad->point(0).fY, quad->point(1).fX, quad->point(1).fY,
quad->point(2).fX, quad->point(2).fY, quad->point(3).fX, quad->point(3).fY,
uv.point(0).fX, uv.point(0).fY, uv.point(1).fX, uv.point(1).fY,
uv.point(2).fX, uv.point(2).fY, uv.point(3).fX, uv.point(3).fY);
}
}
return str;
}
#endif
GrQuadBuffer<ColorSubsetAndAA> fQuads;
sk_sp<GrColorSpaceXform> fTextureColorSpaceXform;
// Most state of TextureOp is packed into these two field to minimize the op's size.
// Historically, increasing the size of TextureOp has caused surprising perf regressions, so
// consider/measure changes with care.
Desc* fDesc;
Metadata fMetadata;
// This field must go last. When allocating this op, we will allocate extra space to hold
// additional ViewCountPairs immediately after the op's allocation so we can treat this
// as an fProxyCnt-length array.
ViewCountPair fViewCountPairs[1];
using INHERITED = GrMeshDrawOp;
};
} // anonymous namespace
namespace skgpu::v1 {
#if GR_TEST_UTILS
uint32_t TextureOp::ClassID() {
return TextureOpImpl::ClassID();
}
#endif
GrOp::Owner TextureOp::Make(GrRecordingContext* context,
GrSurfaceProxyView proxyView,
SkAlphaType alphaType,
sk_sp<GrColorSpaceXform> textureXform,
GrSamplerState::Filter filter,
GrSamplerState::MipmapMode mm,
const SkPMColor4f& color,
Saturate saturate,
SkBlendMode blendMode,
GrAAType aaType,
DrawQuad* quad,
const SkRect* subset) {
// Apply optimizations that are valid whether or not using TextureOp or FillRectOp
if (subset && subset->contains(proxyView.proxy()->backingStoreBoundsRect())) {
// No need for a shader-based subset if hardware clamping achieves the same effect
subset = nullptr;
}
if (filter != GrSamplerState::Filter::kNearest || mm != GrSamplerState::MipmapMode::kNone) {
auto [mustFilter, mustMM] = filter_and_mm_have_effect(quad->fLocal, quad->fDevice);
if (!mustFilter) {
filter = GrSamplerState::Filter::kNearest;
}
if (!mustMM) {
mm = GrSamplerState::MipmapMode::kNone;
}
}
if (blendMode == SkBlendMode::kSrcOver) {
return TextureOpImpl::Make(context, std::move(proxyView), std::move(textureXform), filter,
mm, color, saturate, aaType, std::move(quad), subset);
} else {
// Emulate complex blending using FillRectOp
GrSamplerState samplerState(GrSamplerState::WrapMode::kClamp, filter, mm);
GrPaint paint;
paint.setColor4f(color);
paint.setXPFactory(SkBlendMode_AsXPFactory(blendMode));
std::unique_ptr<GrFragmentProcessor> fp;
const auto& caps = *context->priv().caps();
if (subset) {
SkRect localRect;
if (quad->fLocal.asRect(&localRect)) {
fp = GrTextureEffect::MakeSubset(std::move(proxyView), alphaType, SkMatrix::I(),
samplerState, *subset, localRect, caps);
} else {
fp = GrTextureEffect::MakeSubset(std::move(proxyView), alphaType, SkMatrix::I(),
samplerState, *subset, caps);
}
} else {
fp = GrTextureEffect::Make(std::move(proxyView), alphaType, SkMatrix::I(), samplerState,
caps);
}
fp = GrColorSpaceXformEffect::Make(std::move(fp), std::move(textureXform));
fp = GrBlendFragmentProcessor::Make<SkBlendMode::kModulate>(std::move(fp), nullptr);
if (saturate == Saturate::kYes) {
fp = GrFragmentProcessor::ClampOutput(std::move(fp));
}
paint.setColorFragmentProcessor(std::move(fp));
return FillRectOp::Make(context, std::move(paint), aaType, quad);
}
}
// A helper class that assists in breaking up bulk API quad draws into manageable chunks.
class TextureOp::BatchSizeLimiter {
public:
BatchSizeLimiter(SurfaceDrawContext* sdc,
const GrClip* clip,
GrRecordingContext* rContext,
int numEntries,
GrSamplerState::Filter filter,
GrSamplerState::MipmapMode mm,
Saturate saturate,
SkCanvas::SrcRectConstraint constraint,
const SkMatrix& viewMatrix,
sk_sp<GrColorSpaceXform> textureColorSpaceXform)
: fSDC(sdc)
, fClip(clip)
, fContext(rContext)
, fFilter(filter)
, fMipmapMode(mm)
, fSaturate(saturate)
, fConstraint(constraint)
, fViewMatrix(viewMatrix)
, fTextureColorSpaceXform(textureColorSpaceXform)
, fNumLeft(numEntries) {}
void createOp(GrTextureSetEntry set[], int clumpSize, GrAAType aaType) {
int clumpProxyCount = proxy_run_count(&set[fNumClumped], clumpSize);
GrOp::Owner op = TextureOpImpl::Make(fContext,
&set[fNumClumped],
clumpSize,
clumpProxyCount,
fFilter,
fMipmapMode,
fSaturate,
aaType,
fConstraint,
fViewMatrix,
fTextureColorSpaceXform);
fSDC->addDrawOp(fClip, std::move(op));
fNumLeft -= clumpSize;
fNumClumped += clumpSize;
}
int numLeft() const { return fNumLeft; }
int baseIndex() const { return fNumClumped; }
private:
SurfaceDrawContext* fSDC;
const GrClip* fClip;
GrRecordingContext* fContext;
GrSamplerState::Filter fFilter;
GrSamplerState::MipmapMode fMipmapMode;
Saturate fSaturate;
SkCanvas::SrcRectConstraint fConstraint;
const SkMatrix& fViewMatrix;
sk_sp<GrColorSpaceXform> fTextureColorSpaceXform;
int fNumLeft;
int fNumClumped = 0; // also the offset for the start of the next clump
};
// Greedily clump quad draws together until the index buffer limit is exceeded.
void TextureOp::AddTextureSetOps(SurfaceDrawContext* sdc,
const GrClip* clip,
GrRecordingContext* context,
GrTextureSetEntry set[],
int cnt,
int proxyRunCnt,
GrSamplerState::Filter filter,
GrSamplerState::MipmapMode mm,
Saturate saturate,
SkBlendMode blendMode,
GrAAType aaType,
SkCanvas::SrcRectConstraint constraint,
const SkMatrix& viewMatrix,
sk_sp<GrColorSpaceXform> textureColorSpaceXform) {
// Ensure that the index buffer limits are lower than the proxy and quad count limits of
// the op's metadata so we don't need to worry about overflow.
SkDEBUGCODE(TextureOpImpl::ValidateResourceLimits();)
SkASSERT(proxy_run_count(set, cnt) == proxyRunCnt);
// First check if we can support batches as a single op
if (blendMode != SkBlendMode::kSrcOver ||
!context->priv().caps()->dynamicStateArrayGeometryProcessorTextureSupport()) {
// Append each entry as its own op; these may still be GrTextureOps if the blend mode is
// src-over but the backend doesn't support dynamic state changes. Otherwise Make()
// automatically creates the appropriate FillRectOp to emulate TextureOp.
SkMatrix ctm;
for (int i = 0; i < cnt; ++i) {
ctm = viewMatrix;
if (set[i].fPreViewMatrix) {
ctm.preConcat(*set[i].fPreViewMatrix);
}
DrawQuad quad;
quad.fEdgeFlags = set[i].fAAFlags;
if (set[i].fDstClipQuad) {
quad.fDevice = GrQuad::MakeFromSkQuad(set[i].fDstClipQuad, ctm);
SkPoint srcPts[4];
GrMapRectPoints(set[i].fDstRect, set[i].fSrcRect, set[i].fDstClipQuad, srcPts, 4);
quad.fLocal = GrQuad::MakeFromSkQuad(srcPts, SkMatrix::I());
} else {
quad.fDevice = GrQuad::MakeFromRect(set[i].fDstRect, ctm);
quad.fLocal = GrQuad(set[i].fSrcRect);
}
const SkRect* subset = constraint == SkCanvas::kStrict_SrcRectConstraint
? &set[i].fSrcRect : nullptr;
auto op = Make(context, set[i].fProxyView, set[i].fSrcAlphaType, textureColorSpaceXform,
filter, mm, set[i].fColor, saturate, blendMode, aaType, &quad, subset);
sdc->addDrawOp(clip, std::move(op));
}
return;
}
// Second check if we can always just make a single op and avoid the extra iteration
// needed to clump things together.
if (cnt <= std::min(GrResourceProvider::MaxNumNonAAQuads(),
GrResourceProvider::MaxNumAAQuads())) {
auto op = TextureOpImpl::Make(context, set, cnt, proxyRunCnt, filter, mm, saturate, aaType,
constraint, viewMatrix, std::move(textureColorSpaceXform));
sdc->addDrawOp(clip, std::move(op));
return;
}
BatchSizeLimiter state(sdc, clip, context, cnt, filter, mm, saturate, constraint, viewMatrix,
std::move(textureColorSpaceXform));
// kNone and kMSAA never get altered
if (aaType == GrAAType::kNone || aaType == GrAAType::kMSAA) {
// Clump these into series of MaxNumNonAAQuads-sized GrTextureOps
while (state.numLeft() > 0) {
int clumpSize = std::min(state.numLeft(), GrResourceProvider::MaxNumNonAAQuads());
state.createOp(set, clumpSize, aaType);
}
} else {
// kCoverage can be downgraded to kNone. Note that the following is conservative. kCoverage
// can also get downgraded to kNone if all the quads are on integer coordinates and
// axis-aligned.
SkASSERT(aaType == GrAAType::kCoverage);
while (state.numLeft() > 0) {
GrAAType runningAA = GrAAType::kNone;
bool clumped = false;
for (int i = 0; i < state.numLeft(); ++i) {
int absIndex = state.baseIndex() + i;
if (set[absIndex].fAAFlags != GrQuadAAFlags::kNone ||
runningAA == GrAAType::kCoverage) {
if (i >= GrResourceProvider::MaxNumAAQuads()) {
// Here we either need to boost the AA type to kCoverage, but doing so with
// all the accumulated quads would overflow, or we have a set of AA quads
// that has just gotten too large. In either case, calve off the existing
// quads as their own TextureOp.
state.createOp(
set,
runningAA == GrAAType::kNone ? i : GrResourceProvider::MaxNumAAQuads(),
runningAA); // maybe downgrading AA here
clumped = true;
break;
}
runningAA = GrAAType::kCoverage;
} else if (runningAA == GrAAType::kNone) {
if (i >= GrResourceProvider::MaxNumNonAAQuads()) {
// Here we've found a consistent batch of non-AA quads that has gotten too
// large. Calve it off as its own TextureOp.
state.createOp(set, GrResourceProvider::MaxNumNonAAQuads(),
GrAAType::kNone); // definitely downgrading AA here
clumped = true;
break;
}
}
}
if (!clumped) {
// We ran through the above loop w/o hitting a limit. Spit out this last clump of
// quads and call it a day.
state.createOp(set, state.numLeft(), runningAA); // maybe downgrading AA here
}
}
}
}
} // namespace skgpu::v1
#if GR_TEST_UTILS
#include "include/gpu/GrRecordingContext.h"
#include "src/gpu/ganesh/GrProxyProvider.h"
#include "src/gpu/ganesh/GrRecordingContextPriv.h"
GR_DRAW_OP_TEST_DEFINE(TextureOpImpl) {
SkISize dims;
dims.fHeight = random->nextULessThan(90) + 10;
dims.fWidth = random->nextULessThan(90) + 10;
auto origin = random->nextBool() ? kTopLeft_GrSurfaceOrigin : kBottomLeft_GrSurfaceOrigin;
GrMipmapped mipmapped = random->nextBool() ? GrMipmapped::kYes : GrMipmapped::kNo;
SkBackingFit fit = SkBackingFit::kExact;
if (mipmapped == GrMipmapped::kNo) {
fit = random->nextBool() ? SkBackingFit::kApprox : SkBackingFit::kExact;
}
const GrBackendFormat format =
context->priv().caps()->getDefaultBackendFormat(GrColorType::kRGBA_8888,
GrRenderable::kNo);
GrProxyProvider* proxyProvider = context->priv().proxyProvider();
sk_sp<GrTextureProxy> proxy = proxyProvider->createProxy(format,
dims,
GrRenderable::kNo,
1,
mipmapped,
fit,
SkBudgeted::kNo,
GrProtected::kNo,
/*label=*/"TextureOp",
GrInternalSurfaceFlags::kNone);
SkRect rect = GrTest::TestRect(random);
SkRect srcRect;
srcRect.fLeft = random->nextRangeScalar(0.f, proxy->width() / 2.f);
srcRect.fRight = random->nextRangeScalar(0.f, proxy->width()) + proxy->width() / 2.f;
srcRect.fTop = random->nextRangeScalar(0.f, proxy->height() / 2.f);
srcRect.fBottom = random->nextRangeScalar(0.f, proxy->height()) + proxy->height() / 2.f;
SkMatrix viewMatrix = GrTest::TestMatrixPreservesRightAngles(random);
SkPMColor4f color = SkPMColor4f::FromBytes_RGBA(SkColorToPremulGrColor(random->nextU()));
GrSamplerState::Filter filter = (GrSamplerState::Filter)random->nextULessThan(
static_cast<uint32_t>(GrSamplerState::Filter::kLast) + 1);
GrSamplerState::MipmapMode mm = GrSamplerState::MipmapMode::kNone;
if (mipmapped == GrMipmapped::kYes) {
mm = (GrSamplerState::MipmapMode)random->nextULessThan(
static_cast<uint32_t>(GrSamplerState::MipmapMode::kLast) + 1);
}
auto texXform = GrTest::TestColorXform(random);
GrAAType aaType = GrAAType::kNone;
if (random->nextBool()) {
aaType = (numSamples > 1) ? GrAAType::kMSAA : GrAAType::kCoverage;
}
GrQuadAAFlags aaFlags = GrQuadAAFlags::kNone;
aaFlags |= random->nextBool() ? GrQuadAAFlags::kLeft : GrQuadAAFlags::kNone;
aaFlags |= random->nextBool() ? GrQuadAAFlags::kTop : GrQuadAAFlags::kNone;
aaFlags |= random->nextBool() ? GrQuadAAFlags::kRight : GrQuadAAFlags::kNone;
aaFlags |= random->nextBool() ? GrQuadAAFlags::kBottom : GrQuadAAFlags::kNone;
bool useSubset = random->nextBool();
auto saturate = random->nextBool() ? skgpu::v1::TextureOp::Saturate::kYes
: skgpu::v1::TextureOp::Saturate::kNo;
GrSurfaceProxyView proxyView(
std::move(proxy), origin,
context->priv().caps()->getReadSwizzle(format, GrColorType::kRGBA_8888));
auto alphaType = static_cast<SkAlphaType>(
random->nextRangeU(kUnknown_SkAlphaType + 1, kLastEnum_SkAlphaType));
DrawQuad quad = {GrQuad::MakeFromRect(rect, viewMatrix), GrQuad(srcRect), aaFlags};
return skgpu::v1::TextureOp::Make(context, std::move(proxyView), alphaType,
std::move(texXform), filter, mm, color, saturate,
SkBlendMode::kSrcOver, aaType, &quad,
useSubset ? &srcRect : nullptr);
}
#endif // GR_TEST_UTILS