blob: 0aff54d3603c7c07837ef5b103486c19cc46509b [file] [log] [blame]
/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/ganesh/ops/StrokeRectOp.h"
#include "include/core/SkStrokeRec.h"
#include "include/utils/SkRandom.h"
#include "src/core/SkMatrixPriv.h"
#include "src/gpu/BufferWriter.h"
#include "src/gpu/ResourceKey.h"
#include "src/gpu/ganesh/GrCaps.h"
#include "src/gpu/ganesh/GrColor.h"
#include "src/gpu/ganesh/GrDefaultGeoProcFactory.h"
#include "src/gpu/ganesh/GrDrawOpTest.h"
#include "src/gpu/ganesh/GrOpFlushState.h"
#include "src/gpu/ganesh/GrProgramInfo.h"
#include "src/gpu/ganesh/GrResourceProvider.h"
#include "src/gpu/ganesh/geometry/GrQuad.h"
#include "src/gpu/ganesh/ops/FillRectOp.h"
#include "src/gpu/ganesh/ops/GrMeshDrawOp.h"
#include "src/gpu/ganesh/ops/GrSimpleMeshDrawOpHelper.h"
namespace skgpu::v1::StrokeRectOp {
namespace {
// We support all hairlines, bevels, and miters, but not round joins. Also, check whether the miter
// limit makes a miter join effectively beveled. If the miter is effectively beveled, it is only
// supported when using an AA stroke.
inline bool allowed_stroke(const SkStrokeRec& stroke, GrAA aa, bool* isMiter) {
SkASSERT(stroke.getStyle() == SkStrokeRec::kStroke_Style ||
stroke.getStyle() == SkStrokeRec::kHairline_Style);
// For hairlines, make bevel and round joins appear the same as mitered ones.
if (!stroke.getWidth()) {
*isMiter = true;
return true;
}
if (stroke.getJoin() == SkPaint::kBevel_Join) {
*isMiter = false;
return aa == GrAA::kYes; // bevel only supported with AA
}
if (stroke.getJoin() == SkPaint::kMiter_Join) {
*isMiter = stroke.getMiter() >= SK_ScalarSqrt2;
// Supported under non-AA only if it remains mitered
return aa == GrAA::kYes || *isMiter;
}
return false;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
// Non-AA Stroking
///////////////////////////////////////////////////////////////////////////////////////////////////
/* create a triangle strip that strokes the specified rect. There are 8
unique vertices, but we repeat the last 2 to close up. Alternatively we
could use an indices array, and then only send 8 verts, but not sure that
would be faster.
*/
void init_nonaa_stroke_rect_strip(SkPoint verts[10], const SkRect& rect, SkScalar width) {
const SkScalar rad = SkScalarHalf(width);
verts[0].set(rect.fLeft + rad, rect.fTop + rad);
verts[1].set(rect.fLeft - rad, rect.fTop - rad);
verts[2].set(rect.fRight - rad, rect.fTop + rad);
verts[3].set(rect.fRight + rad, rect.fTop - rad);
verts[4].set(rect.fRight - rad, rect.fBottom - rad);
verts[5].set(rect.fRight + rad, rect.fBottom + rad);
verts[6].set(rect.fLeft + rad, rect.fBottom - rad);
verts[7].set(rect.fLeft - rad, rect.fBottom + rad);
verts[8] = verts[0];
verts[9] = verts[1];
// TODO: we should be catching this higher up the call stack and just draw a single
// non-AA rect
if (2*rad >= rect.width()) {
verts[0].fX = verts[2].fX = verts[4].fX = verts[6].fX = verts[8].fX = rect.centerX();
}
if (2*rad >= rect.height()) {
verts[0].fY = verts[2].fY = verts[4].fY = verts[6].fY = verts[8].fY = rect.centerY();
}
}
class NonAAStrokeRectOp final : public GrMeshDrawOp {
private:
using Helper = GrSimpleMeshDrawOpHelper;
public:
DEFINE_OP_CLASS_ID
const char* name() const override { return "NonAAStrokeRectOp"; }
void visitProxies(const GrVisitProxyFunc& func) const override {
if (fProgramInfo) {
fProgramInfo->visitFPProxies(func);
} else {
fHelper.visitProxies(func);
}
}
static GrOp::Owner Make(GrRecordingContext* context,
GrPaint&& paint,
const SkMatrix& viewMatrix,
const SkRect& rect,
const SkStrokeRec& stroke,
GrAAType aaType) {
bool isMiter;
if (!allowed_stroke(stroke, GrAA::kNo, &isMiter)) {
return nullptr;
}
Helper::InputFlags inputFlags = Helper::InputFlags::kNone;
// Depending on sub-pixel coordinates and the particular GPU, we may lose a corner of
// hairline rects. We jam all the vertices to pixel centers to avoid this, but not
// when MSAA is enabled because it can cause ugly artifacts.
if (stroke.getStyle() == SkStrokeRec::kHairline_Style && aaType != GrAAType::kMSAA) {
inputFlags |= Helper::InputFlags::kSnapVerticesToPixelCenters;
}
return Helper::FactoryHelper<NonAAStrokeRectOp>(context, std::move(paint), inputFlags,
viewMatrix, rect,
stroke, aaType);
}
NonAAStrokeRectOp(GrProcessorSet* processorSet, const SkPMColor4f& color,
Helper::InputFlags inputFlags, const SkMatrix& viewMatrix, const SkRect& rect,
const SkStrokeRec& stroke, GrAAType aaType)
: INHERITED(ClassID())
, fHelper(processorSet, aaType, inputFlags) {
fColor = color;
fViewMatrix = viewMatrix;
fRect = rect;
// Sort the rect for hairlines
fRect.sort();
fStrokeWidth = stroke.getWidth();
SkScalar rad = SkScalarHalf(fStrokeWidth);
SkRect bounds = rect;
bounds.outset(rad, rad);
// If our caller snaps to pixel centers then we have to round out the bounds
if (inputFlags & Helper::InputFlags::kSnapVerticesToPixelCenters) {
SkASSERT(!fStrokeWidth || aaType == GrAAType::kNone);
viewMatrix.mapRect(&bounds);
// We want to be consistent with how we snap non-aa lines. To match what we do in
// GrGLSLVertexShaderBuilder, we first floor all the vertex values and then add half a
// pixel to force us to pixel centers.
bounds.setLTRB(SkScalarFloorToScalar(bounds.fLeft),
SkScalarFloorToScalar(bounds.fTop),
SkScalarFloorToScalar(bounds.fRight),
SkScalarFloorToScalar(bounds.fBottom));
bounds.offset(0.5f, 0.5f);
this->setBounds(bounds, HasAABloat::kNo, IsHairline::kNo);
} else {
HasAABloat aaBloat = (aaType == GrAAType::kNone) ? HasAABloat ::kNo : HasAABloat::kYes;
this->setTransformedBounds(bounds, fViewMatrix, aaBloat,
fStrokeWidth ? IsHairline::kNo : IsHairline::kYes);
}
}
FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); }
GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip,
GrClampType clampType) override {
// This Op uses uniform (not vertex) color, so doesn't need to track wide color.
return fHelper.finalizeProcessors(caps, clip, clampType, GrProcessorAnalysisCoverage::kNone,
&fColor, nullptr);
}
private:
GrProgramInfo* programInfo() override { return fProgramInfo; }
void onCreateProgramInfo(const GrCaps* caps,
SkArenaAlloc* arena,
const GrSurfaceProxyView& writeView,
bool usesMSAASurface,
GrAppliedClip&& clip,
const GrDstProxyView& dstProxyView,
GrXferBarrierFlags renderPassXferBarriers,
GrLoadOp colorLoadOp) override {
GrGeometryProcessor* gp;
{
using namespace GrDefaultGeoProcFactory;
Color color(fColor);
LocalCoords::Type localCoordsType = fHelper.usesLocalCoords()
? LocalCoords::kUsePosition_Type
: LocalCoords::kUnused_Type;
gp = GrDefaultGeoProcFactory::Make(arena, color, Coverage::kSolid_Type, localCoordsType,
fViewMatrix);
}
GrPrimitiveType primType = (fStrokeWidth > 0) ? GrPrimitiveType::kTriangleStrip
: GrPrimitiveType::kLineStrip;
fProgramInfo = fHelper.createProgramInfo(caps, arena, writeView, usesMSAASurface,
std::move(clip), dstProxyView, gp, primType,
renderPassXferBarriers, colorLoadOp);
}
void onPrepareDraws(GrMeshDrawTarget* target) override {
if (!fProgramInfo) {
this->createProgramInfo(target);
}
size_t kVertexStride = fProgramInfo->geomProc().vertexStride();
int vertexCount = kVertsPerHairlineRect;
if (fStrokeWidth > 0) {
vertexCount = kVertsPerStrokeRect;
}
sk_sp<const GrBuffer> vertexBuffer;
int firstVertex;
void* verts =
target->makeVertexSpace(kVertexStride, vertexCount, &vertexBuffer, &firstVertex);
if (!verts) {
SkDebugf("Could not allocate vertices\n");
return;
}
SkPoint* vertex = reinterpret_cast<SkPoint*>(verts);
if (fStrokeWidth > 0) {
init_nonaa_stroke_rect_strip(vertex, fRect, fStrokeWidth);
} else {
// hairline
vertex[0].set(fRect.fLeft, fRect.fTop);
vertex[1].set(fRect.fRight, fRect.fTop);
vertex[2].set(fRect.fRight, fRect.fBottom);
vertex[3].set(fRect.fLeft, fRect.fBottom);
vertex[4].set(fRect.fLeft, fRect.fTop);
}
fMesh = target->allocMesh();
fMesh->set(std::move(vertexBuffer), vertexCount, firstVertex);
}
void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override {
if (!fMesh) {
return;
}
flushState->bindPipelineAndScissorClip(*fProgramInfo, chainBounds);
flushState->bindTextures(fProgramInfo->geomProc(), nullptr, fProgramInfo->pipeline());
flushState->drawMesh(*fMesh);
}
#if GR_TEST_UTILS
SkString onDumpInfo() const override {
return SkStringPrintf("Color: 0x%08x, Rect [L: %.2f, T: %.2f, R: %.2f, B: %.2f], "
"StrokeWidth: %.2f\n%s",
fColor.toBytes_RGBA(), fRect.fLeft, fRect.fTop, fRect.fRight,
fRect.fBottom, fStrokeWidth, fHelper.dumpInfo().c_str());
}
#endif
// TODO: override onCombineIfPossible
Helper fHelper;
SkPMColor4f fColor;
SkMatrix fViewMatrix;
SkRect fRect;
SkScalar fStrokeWidth;
GrSimpleMesh* fMesh = nullptr;
GrProgramInfo* fProgramInfo = nullptr;
const static int kVertsPerHairlineRect = 5;
const static int kVertsPerStrokeRect = 10;
using INHERITED = GrMeshDrawOp;
};
///////////////////////////////////////////////////////////////////////////////////////////////////
// AA Stroking
///////////////////////////////////////////////////////////////////////////////////////////////////
SKGPU_DECLARE_STATIC_UNIQUE_KEY(gMiterIndexBufferKey);
SKGPU_DECLARE_STATIC_UNIQUE_KEY(gBevelIndexBufferKey);
bool stroke_dev_half_size_supported(SkVector devHalfStrokeSize) {
// Since the horizontal and vertical strokes share internal corners, the coverage value at that
// corner needs to be equal for the horizontal and vertical strokes both.
//
// The inner coverage values will be equal if the horizontal and vertical stroke widths are
// equal (in which case innerCoverage is same for all sides of the rects) or if the horizontal
// and vertical stroke widths are both greater than 1 (in which case innerCoverage will always
// be 1). In actuality we allow them to be nearly-equal since differing by < 1/1000 will not be
// visually detectable when the shape is already less than 1px in thickness.
return SkScalarNearlyEqual(devHalfStrokeSize.fX, devHalfStrokeSize.fY) ||
std::min(devHalfStrokeSize.fX, devHalfStrokeSize.fY) >= .5f;
}
bool compute_aa_rects(const GrCaps& caps,
SkRect* devOutside,
SkRect* devOutsideAssist,
SkRect* devInside,
bool* isDegenerate,
const SkMatrix& viewMatrix,
const SkRect& rect,
SkScalar strokeWidth,
bool miterStroke,
SkVector* devHalfStrokeSize) {
SkVector devStrokeSize;
if (strokeWidth > 0) {
devStrokeSize.set(strokeWidth, strokeWidth);
viewMatrix.mapVectors(&devStrokeSize, 1);
devStrokeSize.setAbs(devStrokeSize);
} else {
devStrokeSize.set(SK_Scalar1, SK_Scalar1);
}
const SkScalar dx = devStrokeSize.fX;
const SkScalar dy = devStrokeSize.fY;
const SkScalar rx = SkScalarHalf(dx);
const SkScalar ry = SkScalarHalf(dy);
devHalfStrokeSize->fX = rx;
devHalfStrokeSize->fY = ry;
SkRect devRect;
viewMatrix.mapRect(&devRect, rect);
// Clip our draw rect 1 full stroke width plus bloat outside the viewport. This avoids
// interpolation precision issues with very large coordinates.
const float m = caps.maxRenderTargetSize();
const SkRect visibilityBounds = SkRect::MakeWH(m, m).makeOutset(dx + 1, dy + 1);
if (!devRect.intersect(visibilityBounds)) {
return false;
}
*devOutside = devRect;
*devOutsideAssist = devRect;
*devInside = devRect;
devOutside->outset(rx, ry);
devInside->inset(rx, ry);
// If we have a degenerate stroking rect(ie the stroke is larger than inner rect) then we
// make a degenerate inside rect to avoid double hitting. We will also jam all of the points
// together when we render these rects.
SkScalar spare;
{
SkScalar w = devRect.width() - dx;
SkScalar h = devRect.height() - dy;
spare = std::min(w, h);
}
*isDegenerate = spare <= 0;
if (*isDegenerate) {
devInside->fLeft = devInside->fRight = devRect.centerX();
devInside->fTop = devInside->fBottom = devRect.centerY();
}
// For bevel-stroke, use 2 SkRect instances(devOutside and devOutsideAssist)
// to draw the outside of the octagon. Because there are 8 vertices on the outer
// edge, while vertex number of inner edge is 4, the same as miter-stroke.
if (!miterStroke) {
devOutside->inset(0, ry);
devOutsideAssist->outset(0, ry);
}
return true;
}
GrGeometryProcessor* create_aa_stroke_rect_gp(SkArenaAlloc* arena,
bool usesMSAASurface,
bool tweakAlphaForCoverage,
const SkMatrix& viewMatrix,
bool usesLocalCoords,
bool wideColor) {
using namespace GrDefaultGeoProcFactory;
// When MSAA is enabled, we have to extend our AA bloats and interpolate coverage values outside
// 0..1. We tell the gp in this case that coverage is an unclamped attribute so it will call
// saturate(coverage) in the fragment shader.
Coverage::Type coverageType = usesMSAASurface ? Coverage::kAttributeUnclamped_Type
: (!tweakAlphaForCoverage ? Coverage::kAttribute_Type
: Coverage::kSolid_Type);
LocalCoords::Type localCoordsType =
usesLocalCoords ? LocalCoords::kUsePosition_Type : LocalCoords::kUnused_Type;
Color::Type colorType =
wideColor ? Color::kPremulWideColorAttribute_Type: Color::kPremulGrColorAttribute_Type;
return MakeForDeviceSpace(arena, colorType, coverageType, localCoordsType, viewMatrix);
}
class AAStrokeRectOp final : public GrMeshDrawOp {
private:
using Helper = GrSimpleMeshDrawOpHelper;
public:
DEFINE_OP_CLASS_ID
// TODO support AA rotated stroke rects by copying around view matrices
struct RectInfo {
SkPMColor4f fColor;
SkRect fDevOutside;
SkRect fDevOutsideAssist;
SkRect fDevInside;
SkVector fDevHalfStrokeSize;
bool fDegenerate;
};
static GrOp::Owner Make(GrRecordingContext* context,
GrPaint&& paint,
const SkMatrix& viewMatrix,
const SkRect& devOutside,
const SkRect& devInside,
const SkVector& devHalfStrokeSize) {
if (!viewMatrix.rectStaysRect()) {
// The AA op only supports axis-aligned rectangles
return nullptr;
}
if (!stroke_dev_half_size_supported(devHalfStrokeSize)) {
return nullptr;
}
return Helper::FactoryHelper<AAStrokeRectOp>(context, std::move(paint), viewMatrix,
devOutside, devInside, devHalfStrokeSize);
}
AAStrokeRectOp(GrProcessorSet* processorSet, const SkPMColor4f& color,
const SkMatrix& viewMatrix, const SkRect& devOutside, const SkRect& devInside,
const SkVector& devHalfStrokeSize)
: INHERITED(ClassID())
, fHelper(processorSet, GrAAType::kCoverage)
, fViewMatrix(viewMatrix) {
SkASSERT(!devOutside.isEmpty());
SkASSERT(!devInside.isEmpty());
fRects.emplace_back(RectInfo{color, devOutside, devOutside, devInside, devHalfStrokeSize, false});
this->setBounds(devOutside, HasAABloat::kYes, IsHairline::kNo);
fMiterStroke = true;
}
static GrOp::Owner Make(GrRecordingContext* context,
GrPaint&& paint,
const SkMatrix& viewMatrix,
const SkRect& rect,
const SkStrokeRec& stroke) {
if (!viewMatrix.rectStaysRect()) {
// The AA op only supports axis-aligned rectangles
return nullptr;
}
bool isMiter;
if (!allowed_stroke(stroke, GrAA::kYes, &isMiter)) {
return nullptr;
}
RectInfo info;
if (!compute_aa_rects(*context->priv().caps(),
&info.fDevOutside,
&info.fDevOutsideAssist,
&info.fDevInside,
&info.fDegenerate,
viewMatrix,
rect,
stroke.getWidth(),
isMiter,
&info.fDevHalfStrokeSize)) {
return nullptr;
}
if (!stroke_dev_half_size_supported(info.fDevHalfStrokeSize)) {
return nullptr;
}
return Helper::FactoryHelper<AAStrokeRectOp>(context, std::move(paint), viewMatrix, info,
isMiter);
}
AAStrokeRectOp(GrProcessorSet* processorSet, const SkPMColor4f& color,
const SkMatrix& viewMatrix, const RectInfo& infoExceptColor, bool isMiter)
: INHERITED(ClassID())
, fHelper(processorSet, GrAAType::kCoverage)
, fViewMatrix(viewMatrix) {
fMiterStroke = isMiter;
RectInfo& info = fRects.push_back(infoExceptColor);
info.fColor = color;
if (isMiter) {
this->setBounds(info.fDevOutside, HasAABloat::kYes, IsHairline::kNo);
} else {
// The outer polygon of the bevel stroke is an octagon specified by the points of a
// pair of overlapping rectangles where one is wide and the other is narrow.
SkRect bounds = info.fDevOutside;
bounds.joinPossiblyEmptyRect(info.fDevOutsideAssist);
this->setBounds(bounds, HasAABloat::kYes, IsHairline::kNo);
}
}
const char* name() const override { return "AAStrokeRect"; }
void visitProxies(const GrVisitProxyFunc& func) const override {
if (fProgramInfo) {
fProgramInfo->visitFPProxies(func);
} else {
fHelper.visitProxies(func);
}
}
FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); }
GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip,
GrClampType clampType) override {
return fHelper.finalizeProcessors(caps, clip, clampType,
GrProcessorAnalysisCoverage::kSingleChannel,
&fRects.back().fColor, &fWideColor);
}
private:
GrProgramInfo* programInfo() override { return fProgramInfo; }
bool compatibleWithCoverageAsAlpha(bool usesMSAASurface) const {
// When MSAA is enabled, we have to extend our AA bloats and interpolate coverage values
// outside 0..1. This makes us incompatible with coverage as alpha.
return !usesMSAASurface && fHelper.compatibleWithCoverageAsAlpha();
}
void onCreateProgramInfo(const GrCaps*,
SkArenaAlloc*,
const GrSurfaceProxyView& writeView,
bool usesMSAASurface,
GrAppliedClip&&,
const GrDstProxyView&,
GrXferBarrierFlags renderPassXferBarriers,
GrLoadOp colorLoadOp) override;
void onPrepareDraws(GrMeshDrawTarget*) override;
void onExecute(GrOpFlushState*, const SkRect& chainBounds) override;
#if GR_TEST_UTILS
SkString onDumpInfo() const override {
SkString string;
for (const auto& info : fRects) {
string.appendf(
"Color: 0x%08x, ORect [L: %.2f, T: %.2f, R: %.2f, B: %.2f], "
"AssistORect [L: %.2f, T: %.2f, R: %.2f, B: %.2f], "
"IRect [L: %.2f, T: %.2f, R: %.2f, B: %.2f], Degen: %d",
info.fColor.toBytes_RGBA(), info.fDevOutside.fLeft, info.fDevOutside.fTop,
info.fDevOutside.fRight, info.fDevOutside.fBottom, info.fDevOutsideAssist.fLeft,
info.fDevOutsideAssist.fTop, info.fDevOutsideAssist.fRight,
info.fDevOutsideAssist.fBottom, info.fDevInside.fLeft, info.fDevInside.fTop,
info.fDevInside.fRight, info.fDevInside.fBottom, info.fDegenerate);
}
string += fHelper.dumpInfo();
return string;
}
#endif
static const int kMiterIndexCnt = 3 * 24;
static const int kMiterVertexCnt = 16;
static const int kNumMiterRectsInIndexBuffer = 256;
static const int kBevelIndexCnt = 48 + 36 + 24;
static const int kBevelVertexCnt = 24;
static const int kNumBevelRectsInIndexBuffer = 256;
static sk_sp<const GrGpuBuffer> GetIndexBuffer(GrResourceProvider*, bool miterStroke);
const SkMatrix& viewMatrix() const { return fViewMatrix; }
bool miterStroke() const { return fMiterStroke; }
CombineResult onCombineIfPossible(GrOp* t, SkArenaAlloc*, const GrCaps&) override;
void generateAAStrokeRectGeometry(VertexWriter& vertices,
const SkPMColor4f& color,
bool wideColor,
const SkRect& devOutside,
const SkRect& devOutsideAssist,
const SkRect& devInside,
bool miterStroke,
bool degenerate,
const SkVector& devHalfStrokeSize,
bool usesMSAASurface) const;
Helper fHelper;
SkSTArray<1, RectInfo, true> fRects;
SkMatrix fViewMatrix;
GrSimpleMesh* fMesh = nullptr;
GrProgramInfo* fProgramInfo = nullptr;
bool fMiterStroke;
bool fWideColor;
using INHERITED = GrMeshDrawOp;
};
void AAStrokeRectOp::onCreateProgramInfo(const GrCaps* caps,
SkArenaAlloc* arena,
const GrSurfaceProxyView& writeView,
bool usesMSAASurface,
GrAppliedClip&& appliedClip,
const GrDstProxyView& dstProxyView,
GrXferBarrierFlags renderPassXferBarriers,
GrLoadOp colorLoadOp) {
GrGeometryProcessor* gp = create_aa_stroke_rect_gp(
arena,
usesMSAASurface,
this->compatibleWithCoverageAsAlpha(usesMSAASurface),
this->viewMatrix(),
fHelper.usesLocalCoords(),
fWideColor);
if (!gp) {
SkDebugf("Couldn't create GrGeometryProcessor\n");
return;
}
fProgramInfo = fHelper.createProgramInfo(caps,
arena,
writeView,
usesMSAASurface,
std::move(appliedClip),
dstProxyView,
gp,
GrPrimitiveType::kTriangles,
renderPassXferBarriers,
colorLoadOp);
}
void AAStrokeRectOp::onPrepareDraws(GrMeshDrawTarget* target) {
if (!fProgramInfo) {
this->createProgramInfo(target);
if (!fProgramInfo) {
return;
}
}
int innerVertexNum = 4;
int outerVertexNum = this->miterStroke() ? 4 : 8;
int verticesPerInstance = (outerVertexNum + innerVertexNum) * 2;
int indicesPerInstance = this->miterStroke() ? kMiterIndexCnt : kBevelIndexCnt;
int instanceCount = fRects.count();
int maxQuads = this->miterStroke() ? kNumMiterRectsInIndexBuffer : kNumBevelRectsInIndexBuffer;
sk_sp<const GrGpuBuffer> indexBuffer =
GetIndexBuffer(target->resourceProvider(), this->miterStroke());
if (!indexBuffer) {
SkDebugf("Could not allocate indices\n");
return;
}
PatternHelper helper(target, GrPrimitiveType::kTriangles,
fProgramInfo->geomProc().vertexStride(), std::move(indexBuffer),
verticesPerInstance, indicesPerInstance, instanceCount, maxQuads);
VertexWriter vertices{ helper.vertices() };
if (!vertices) {
SkDebugf("Could not allocate vertices\n");
return;
}
for (int i = 0; i < instanceCount; i++) {
const RectInfo& info = fRects[i];
this->generateAAStrokeRectGeometry(vertices,
info.fColor,
fWideColor,
info.fDevOutside,
info.fDevOutsideAssist,
info.fDevInside,
fMiterStroke,
info.fDegenerate,
info.fDevHalfStrokeSize,
target->usesMSAASurface());
}
fMesh = helper.mesh();
}
void AAStrokeRectOp::onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) {
if (!fProgramInfo || !fMesh) {
return;
}
flushState->bindPipelineAndScissorClip(*fProgramInfo, chainBounds);
flushState->bindTextures(fProgramInfo->geomProc(), nullptr, fProgramInfo->pipeline());
flushState->drawMesh(*fMesh);
}
sk_sp<const GrGpuBuffer> AAStrokeRectOp::GetIndexBuffer(GrResourceProvider* resourceProvider,
bool miterStroke) {
if (miterStroke) {
// clang-format off
static const uint16_t gMiterIndices[] = {
0 + 0, 1 + 0, 5 + 0, 5 + 0, 4 + 0, 0 + 0,
1 + 0, 2 + 0, 6 + 0, 6 + 0, 5 + 0, 1 + 0,
2 + 0, 3 + 0, 7 + 0, 7 + 0, 6 + 0, 2 + 0,
3 + 0, 0 + 0, 4 + 0, 4 + 0, 7 + 0, 3 + 0,
0 + 4, 1 + 4, 5 + 4, 5 + 4, 4 + 4, 0 + 4,
1 + 4, 2 + 4, 6 + 4, 6 + 4, 5 + 4, 1 + 4,
2 + 4, 3 + 4, 7 + 4, 7 + 4, 6 + 4, 2 + 4,
3 + 4, 0 + 4, 4 + 4, 4 + 4, 7 + 4, 3 + 4,
0 + 8, 1 + 8, 5 + 8, 5 + 8, 4 + 8, 0 + 8,
1 + 8, 2 + 8, 6 + 8, 6 + 8, 5 + 8, 1 + 8,
2 + 8, 3 + 8, 7 + 8, 7 + 8, 6 + 8, 2 + 8,
3 + 8, 0 + 8, 4 + 8, 4 + 8, 7 + 8, 3 + 8,
};
// clang-format on
static_assert(std::size(gMiterIndices) == kMiterIndexCnt);
SKGPU_DEFINE_STATIC_UNIQUE_KEY(gMiterIndexBufferKey);
return resourceProvider->findOrCreatePatternedIndexBuffer(
gMiterIndices, kMiterIndexCnt, kNumMiterRectsInIndexBuffer, kMiterVertexCnt,
gMiterIndexBufferKey);
} else {
/**
* As in miter-stroke, index = a + b, and a is the current index, b is the shift
* from the first index. The index layout:
* outer AA line: 0~3, 4~7
* outer edge: 8~11, 12~15
* inner edge: 16~19
* inner AA line: 20~23
* Following comes a bevel-stroke rect and its indices:
*
* 4 7
* *********************************
* * ______________________________ *
* * / 12 15 \ *
* * / \ *
* 0 * |8 16_____________________19 11 | * 3
* * | | | | *
* * | | **************** | | *
* * | | * 20 23 * | | *
* * | | * * | | *
* * | | * 21 22 * | | *
* * | | **************** | | *
* * | |____________________| | *
* 1 * |9 17 18 10| * 2
* * \ / *
* * \13 __________________________14/ *
* * *
* **********************************
* 5 6
*/
// clang-format off
static const uint16_t gBevelIndices[] = {
// Draw outer AA, from outer AA line to outer edge, shift is 0.
0 + 0, 1 + 0, 9 + 0, 9 + 0, 8 + 0, 0 + 0,
1 + 0, 5 + 0, 13 + 0, 13 + 0, 9 + 0, 1 + 0,
5 + 0, 6 + 0, 14 + 0, 14 + 0, 13 + 0, 5 + 0,
6 + 0, 2 + 0, 10 + 0, 10 + 0, 14 + 0, 6 + 0,
2 + 0, 3 + 0, 11 + 0, 11 + 0, 10 + 0, 2 + 0,
3 + 0, 7 + 0, 15 + 0, 15 + 0, 11 + 0, 3 + 0,
7 + 0, 4 + 0, 12 + 0, 12 + 0, 15 + 0, 7 + 0,
4 + 0, 0 + 0, 8 + 0, 8 + 0, 12 + 0, 4 + 0,
// Draw the stroke, from outer edge to inner edge, shift is 8.
0 + 8, 1 + 8, 9 + 8, 9 + 8, 8 + 8, 0 + 8,
1 + 8, 5 + 8, 9 + 8,
5 + 8, 6 + 8, 10 + 8, 10 + 8, 9 + 8, 5 + 8,
6 + 8, 2 + 8, 10 + 8,
2 + 8, 3 + 8, 11 + 8, 11 + 8, 10 + 8, 2 + 8,
3 + 8, 7 + 8, 11 + 8,
7 + 8, 4 + 8, 8 + 8, 8 + 8, 11 + 8, 7 + 8,
4 + 8, 0 + 8, 8 + 8,
// Draw the inner AA, from inner edge to inner AA line, shift is 16.
0 + 16, 1 + 16, 5 + 16, 5 + 16, 4 + 16, 0 + 16,
1 + 16, 2 + 16, 6 + 16, 6 + 16, 5 + 16, 1 + 16,
2 + 16, 3 + 16, 7 + 16, 7 + 16, 6 + 16, 2 + 16,
3 + 16, 0 + 16, 4 + 16, 4 + 16, 7 + 16, 3 + 16,
};
// clang-format on
static_assert(std::size(gBevelIndices) == kBevelIndexCnt);
SKGPU_DEFINE_STATIC_UNIQUE_KEY(gBevelIndexBufferKey);
return resourceProvider->findOrCreatePatternedIndexBuffer(
gBevelIndices, kBevelIndexCnt, kNumBevelRectsInIndexBuffer, kBevelVertexCnt,
gBevelIndexBufferKey);
}
}
GrOp::CombineResult AAStrokeRectOp::onCombineIfPossible(GrOp* t, SkArenaAlloc*, const GrCaps& caps)
{
AAStrokeRectOp* that = t->cast<AAStrokeRectOp>();
if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) {
return CombineResult::kCannotCombine;
}
// TODO combine across miterstroke changes
if (this->miterStroke() != that->miterStroke()) {
return CombineResult::kCannotCombine;
}
// We apply the viewmatrix to the rect points on the cpu. However, if the pipeline uses
// local coords then we won't be able to combine. TODO: Upload local coords as an attribute.
if (fHelper.usesLocalCoords() &&
!SkMatrixPriv::CheapEqual(this->viewMatrix(), that->viewMatrix()))
{
return CombineResult::kCannotCombine;
}
fRects.push_back_n(that->fRects.count(), that->fRects.begin());
fWideColor |= that->fWideColor;
return CombineResult::kMerged;
}
void AAStrokeRectOp::generateAAStrokeRectGeometry(VertexWriter& vertices,
const SkPMColor4f& color,
bool wideColor,
const SkRect& devOutside,
const SkRect& devOutsideAssist,
const SkRect& devInside,
bool miterStroke,
bool degenerate,
const SkVector& devHalfStrokeSize,
bool usesMSAASurface) const {
// We create vertices for four nested rectangles. There are two ramps from 0 to full
// coverage, one on the exterior of the stroke and the other on the interior.
// The following code only works if either devStrokeSize's fX and fY are
// equal (in which case innerCoverage is same for all sides of the rects) or
// if devStrokeSize's fX and fY are both greater than 1.0 (in which case
// innerCoverage will always be 1).
SkASSERT(stroke_dev_half_size_supported(devHalfStrokeSize));
auto inset_fan = [](const SkRect& r, SkScalar dx, SkScalar dy) {
return VertexWriter::TriFanFromRect(r.makeInset(dx, dy));
};
bool tweakAlphaForCoverage = this->compatibleWithCoverageAsAlpha(usesMSAASurface);
auto maybe_coverage = [tweakAlphaForCoverage](float coverage) {
return VertexWriter::If(!tweakAlphaForCoverage, coverage);
};
// How much do we inset toward the inside of the strokes?
float inset = std::min(0.5f, std::min(devHalfStrokeSize.fX, devHalfStrokeSize.fY));
float innerCoverage = 1;
if (inset < 0.5f) {
// Stroke is subpixel, so reduce the coverage to simulate the narrower strokes.
innerCoverage = 2 * inset / (inset + .5f);
}
// How much do we outset away from the outside of the strokes?
// We always want to keep the AA picture frame one pixel wide.
float outset = 1 - inset;
float outerCoverage = 0;
// How much do we outset away from the interior side of the stroke (toward the center)?
float interiorOutset = outset;
float interiorCoverage = outerCoverage;
if (usesMSAASurface) {
// Since we're using MSAA, extend our outsets to ensure any pixel with partial coverage has
// a full sample mask.
constexpr float msaaExtraBloat = SK_ScalarSqrt2 - .5f;
outset += msaaExtraBloat;
outerCoverage -= msaaExtraBloat;
float insetExtraBloat =
std::min(inset + msaaExtraBloat,
std::min(devHalfStrokeSize.fX, devHalfStrokeSize.fY)) - inset;
inset += insetExtraBloat;
innerCoverage += insetExtraBloat;
float interiorExtraBloat =
std::min(interiorOutset + msaaExtraBloat,
std::min(devInside.width(), devInside.height()) / 2) - interiorOutset;
interiorOutset += interiorExtraBloat;
interiorCoverage -= interiorExtraBloat;
}
VertexColor innerColor(tweakAlphaForCoverage ? color * innerCoverage : color, wideColor);
VertexColor outerColor(tweakAlphaForCoverage ? SK_PMColor4fTRANSPARENT : color, wideColor);
// Exterior outset rect (away from stroke).
vertices.writeQuad(inset_fan(devOutside, -outset, -outset),
outerColor,
maybe_coverage(outerCoverage));
if (!miterStroke) {
// Second exterior outset.
vertices.writeQuad(inset_fan(devOutsideAssist, -outset, -outset),
outerColor,
maybe_coverage(outerCoverage));
}
// Exterior inset rect (toward stroke).
vertices.writeQuad(inset_fan(devOutside, inset, inset),
innerColor,
maybe_coverage(innerCoverage));
if (!miterStroke) {
// Second exterior inset.
vertices.writeQuad(inset_fan(devOutsideAssist, inset, inset),
innerColor,
maybe_coverage(innerCoverage));
}
if (!degenerate) {
// Interior inset rect (toward stroke).
vertices.writeQuad(inset_fan(devInside, -inset, -inset),
innerColor,
maybe_coverage(innerCoverage));
// Interior outset rect (away from stroke, toward center of rect).
SkRect interiorAABoundary = devInside.makeInset(interiorOutset, interiorOutset);
float coverageBackset = 0; // Adds back coverage when the interior AA edges cross.
if (interiorAABoundary.fLeft > interiorAABoundary.fRight) {
coverageBackset =
(interiorAABoundary.fLeft - interiorAABoundary.fRight) / (interiorOutset * 2);
interiorAABoundary.fLeft = interiorAABoundary.fRight = interiorAABoundary.centerX();
}
if (interiorAABoundary.fTop > interiorAABoundary.fBottom) {
coverageBackset = std::max(
(interiorAABoundary.fTop - interiorAABoundary.fBottom) / (interiorOutset * 2),
coverageBackset);
interiorAABoundary.fTop = interiorAABoundary.fBottom = interiorAABoundary.centerY();
}
if (coverageBackset > 0) {
// The interior edges crossed. Lerp back toward innerCoverage, which is what this op
// will draw in the degenerate case. This gives a smooth transition into the degenerate
// case.
interiorCoverage += interiorCoverage * (1 - coverageBackset) +
innerCoverage * coverageBackset;
}
VertexColor interiorColor(tweakAlphaForCoverage ? color * interiorCoverage : color,
wideColor);
vertices.writeQuad(VertexWriter::TriFanFromRect(interiorAABoundary),
interiorColor,
maybe_coverage(interiorCoverage));
} else {
// When the interior rect has become degenerate we smoosh to a single point
SkASSERT(devInside.fLeft == devInside.fRight && devInside.fTop == devInside.fBottom);
vertices.writeQuad(VertexWriter::TriFanFromRect(devInside),
innerColor,
maybe_coverage(innerCoverage));
// ... unless we are degenerate, in which case we must apply the scaled coverage
vertices.writeQuad(VertexWriter::TriFanFromRect(devInside),
innerColor,
maybe_coverage(innerCoverage));
}
}
} // anonymous namespace
GrOp::Owner Make(GrRecordingContext* context,
GrPaint&& paint,
GrAAType aaType,
const SkMatrix& viewMatrix,
const SkRect& rect,
const SkStrokeRec& stroke) {
SkASSERT(!context->priv().caps()->reducedShaderMode());
if (aaType == GrAAType::kCoverage) {
return AAStrokeRectOp::Make(context, std::move(paint), viewMatrix, rect, stroke);
} else {
return NonAAStrokeRectOp::Make(context, std::move(paint), viewMatrix, rect, stroke, aaType);
}
}
GrOp::Owner MakeNested(GrRecordingContext* context,
GrPaint&& paint,
const SkMatrix& viewMatrix,
const SkRect rects[2]) {
SkASSERT(viewMatrix.rectStaysRect());
SkASSERT(!rects[0].isEmpty() && !rects[1].isEmpty());
SkRect devOutside = viewMatrix.mapRect(rects[0]);
SkRect devInside = viewMatrix.mapRect(rects[1]);
float dx = devOutside.fRight - devInside.fRight;
float dy = devOutside.fBottom - devInside.fBottom;
// Clips our draw rects 1 full pixel outside the viewport. This avoids interpolation precision
// issues with very large coordinates.
const float m = context->priv().caps()->maxRenderTargetSize();
const SkRect visibilityBounds = SkRect::MakeWH(m, m).makeOutset(1, 1);
if (!devOutside.intersect(visibilityBounds.makeOutset(dx, dy))) {
return nullptr;
}
if (devInside.isEmpty() || !devInside.intersect(visibilityBounds)) {
if (devOutside.isEmpty()) {
return nullptr;
}
DrawQuad quad{GrQuad::MakeFromRect(rects[0], viewMatrix), GrQuad(rects[0]),
GrQuadAAFlags::kAll};
return FillRectOp::Make(context, std::move(paint), GrAAType::kCoverage, &quad);
}
return AAStrokeRectOp::Make(context, std::move(paint), viewMatrix, devOutside,
devInside, SkVector{dx, dy} * .5f);
}
} // namespace skgpu::v1::StrokeRectOp
#if GR_TEST_UTILS
#include "src/gpu/ganesh/GrDrawOpTest.h"
GR_DRAW_OP_TEST_DEFINE(NonAAStrokeRectOp) {
SkMatrix viewMatrix = GrTest::TestMatrix(random);
SkRect rect = GrTest::TestRect(random);
SkScalar strokeWidth = random->nextBool() ? 0.0f : 2.0f;
SkPaint strokePaint;
strokePaint.setStrokeWidth(strokeWidth);
strokePaint.setStyle(SkPaint::kStroke_Style);
strokePaint.setStrokeJoin(SkPaint::kMiter_Join);
SkStrokeRec strokeRec(strokePaint);
GrAAType aaType = GrAAType::kNone;
if (numSamples > 1) {
aaType = random->nextBool() ? GrAAType::kMSAA : GrAAType::kNone;
}
return skgpu::v1::StrokeRectOp::NonAAStrokeRectOp::Make(context, std::move(paint), viewMatrix,
rect, strokeRec, aaType);
}
GR_DRAW_OP_TEST_DEFINE(AAStrokeRectOp) {
bool miterStroke = random->nextBool();
// Create either a empty rect or a non-empty rect.
SkRect rect =
random->nextBool() ? SkRect::MakeXYWH(10, 10, 50, 40) : SkRect::MakeXYWH(6, 7, 0, 0);
SkScalar minDim = std::min(rect.width(), rect.height());
SkScalar strokeWidth = random->nextUScalar1() * minDim;
SkStrokeRec rec(SkStrokeRec::kFill_InitStyle);
rec.setStrokeStyle(strokeWidth);
rec.setStrokeParams(SkPaint::kButt_Cap,
miterStroke ? SkPaint::kMiter_Join : SkPaint::kBevel_Join, 1.f);
SkMatrix matrix = GrTest::TestMatrixRectStaysRect(random);
return skgpu::v1::StrokeRectOp::AAStrokeRectOp::Make(context, std::move(paint), matrix, rect,
rec);
}
#endif