blob: 5f4400413ff461599431ae5eeea3a21ef74ab541 [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/ganesh/ops/DashOp.h"
#include "include/gpu/GrRecordingContext.h"
#include "src/core/SkMatrixPriv.h"
#include "src/core/SkPointPriv.h"
#include "src/gpu/BufferWriter.h"
#include "src/gpu/KeyBuilder.h"
#include "src/gpu/ganesh/GrAppliedClip.h"
#include "src/gpu/ganesh/GrCaps.h"
#include "src/gpu/ganesh/GrDefaultGeoProcFactory.h"
#include "src/gpu/ganesh/GrGeometryProcessor.h"
#include "src/gpu/ganesh/GrMemoryPool.h"
#include "src/gpu/ganesh/GrOpFlushState.h"
#include "src/gpu/ganesh/GrProcessor.h"
#include "src/gpu/ganesh/GrProgramInfo.h"
#include "src/gpu/ganesh/GrRecordingContextPriv.h"
#include "src/gpu/ganesh/GrStyle.h"
#include "src/gpu/ganesh/SkGr.h"
#include "src/gpu/ganesh/geometry/GrQuad.h"
#include "src/gpu/ganesh/glsl/GrGLSLFragmentShaderBuilder.h"
#include "src/gpu/ganesh/glsl/GrGLSLProgramDataManager.h"
#include "src/gpu/ganesh/glsl/GrGLSLUniformHandler.h"
#include "src/gpu/ganesh/glsl/GrGLSLVarying.h"
#include "src/gpu/ganesh/glsl/GrGLSLVertexGeoBuilder.h"
#include "src/gpu/ganesh/ops/GrMeshDrawOp.h"
#include "src/gpu/ganesh/ops/GrSimpleMeshDrawOpHelper.h"
using AAMode = skgpu::v1::DashOp::AAMode;
#if GR_TEST_UTILS
static const int kAAModeCnt = static_cast<int>(skgpu::v1::DashOp::AAMode::kCoverageWithMSAA) + 1;
#endif
namespace skgpu::v1::DashOp {
namespace {
void calc_dash_scaling(SkScalar* parallelScale, SkScalar* perpScale,
const SkMatrix& viewMatrix, const SkPoint pts[2]) {
SkVector vecSrc = pts[1] - pts[0];
if (pts[1] == pts[0]) {
vecSrc.set(1.0, 0.0);
}
SkScalar magSrc = vecSrc.length();
SkScalar invSrc = magSrc ? SkScalarInvert(magSrc) : 0;
vecSrc.scale(invSrc);
SkVector vecSrcPerp;
SkPointPriv::RotateCW(vecSrc, &vecSrcPerp);
viewMatrix.mapVectors(&vecSrc, 1);
viewMatrix.mapVectors(&vecSrcPerp, 1);
// parallelScale tells how much to scale along the line parallel to the dash line
// perpScale tells how much to scale in the direction perpendicular to the dash line
*parallelScale = vecSrc.length();
*perpScale = vecSrcPerp.length();
}
// calculates the rotation needed to aligned pts to the x axis with pts[0] < pts[1]
// Stores the rotation matrix in rotMatrix, and the mapped points in ptsRot
void align_to_x_axis(const SkPoint pts[2], SkMatrix* rotMatrix, SkPoint ptsRot[2] = nullptr) {
SkVector vec = pts[1] - pts[0];
if (pts[1] == pts[0]) {
vec.set(1.0, 0.0);
}
SkScalar mag = vec.length();
SkScalar inv = mag ? SkScalarInvert(mag) : 0;
vec.scale(inv);
rotMatrix->setSinCos(-vec.fY, vec.fX, pts[0].fX, pts[0].fY);
if (ptsRot) {
rotMatrix->mapPoints(ptsRot, pts, 2);
// correction for numerical issues if map doesn't make ptsRot exactly horizontal
ptsRot[1].fY = pts[0].fY;
}
}
// Assumes phase < sum of all intervals
SkScalar calc_start_adjustment(const SkScalar intervals[2], SkScalar phase) {
SkASSERT(phase < intervals[0] + intervals[1]);
if (phase >= intervals[0] && phase != 0) {
SkScalar srcIntervalLen = intervals[0] + intervals[1];
return srcIntervalLen - phase;
}
return 0;
}
SkScalar calc_end_adjustment(const SkScalar intervals[2], const SkPoint pts[2],
SkScalar phase, SkScalar* endingInt) {
if (pts[1].fX <= pts[0].fX) {
return 0;
}
SkScalar srcIntervalLen = intervals[0] + intervals[1];
SkScalar totalLen = pts[1].fX - pts[0].fX;
SkScalar temp = totalLen / srcIntervalLen;
SkScalar numFullIntervals = SkScalarFloorToScalar(temp);
*endingInt = totalLen - numFullIntervals * srcIntervalLen + phase;
temp = *endingInt / srcIntervalLen;
*endingInt = *endingInt - SkScalarFloorToScalar(temp) * srcIntervalLen;
if (0 == *endingInt) {
*endingInt = srcIntervalLen;
}
if (*endingInt > intervals[0]) {
return *endingInt - intervals[0];
}
return 0;
}
enum DashCap {
kRound_DashCap,
kNonRound_DashCap,
};
void setup_dashed_rect(const SkRect& rect,
VertexWriter& vertices,
const SkMatrix& matrix,
SkScalar offset,
SkScalar bloatX,
SkScalar len,
SkScalar startInterval,
SkScalar endInterval,
SkScalar strokeWidth,
SkScalar perpScale,
DashCap cap) {
SkScalar intervalLength = startInterval + endInterval;
// 'dashRect' gets interpolated over the rendered 'rect'. For y we want the perpendicular signed
// distance from the stroke center line in device space. 'perpScale' is the scale factor applied
// to the y dimension of 'rect' isolated from 'matrix'.
SkScalar halfDevRectHeight = rect.height() * perpScale / 2.f;
SkRect dashRect = { offset - bloatX, -halfDevRectHeight,
offset + len + bloatX, halfDevRectHeight };
if (kRound_DashCap == cap) {
SkScalar radius = SkScalarHalf(strokeWidth) - 0.5f;
SkScalar centerX = SkScalarHalf(endInterval);
vertices.writeQuad(GrQuad::MakeFromRect(rect, matrix),
VertexWriter::TriStripFromRect(dashRect),
intervalLength,
radius,
centerX);
} else {
SkASSERT(kNonRound_DashCap == cap);
SkScalar halfOffLen = SkScalarHalf(endInterval);
SkScalar halfStroke = SkScalarHalf(strokeWidth);
SkRect rectParam;
rectParam.setLTRB(halfOffLen + 0.5f, -halfStroke + 0.5f,
halfOffLen + startInterval - 0.5f, halfStroke - 0.5f);
vertices.writeQuad(GrQuad::MakeFromRect(rect, matrix),
VertexWriter::TriStripFromRect(dashRect),
intervalLength,
rectParam);
}
}
/**
* An GrGeometryProcessor that renders a dashed line.
* This GrGeometryProcessor is meant for dashed lines that only have a single on/off interval pair.
* Bounding geometry is rendered and the effect computes coverage based on the fragment's
* position relative to the dashed line.
*/
GrGeometryProcessor* make_dash_gp(SkArenaAlloc* arena,
const SkPMColor4f&,
AAMode aaMode,
DashCap cap,
const SkMatrix& localMatrix,
bool usesLocalCoords);
class DashOpImpl final : public GrMeshDrawOp {
public:
DEFINE_OP_CLASS_ID
struct LineData {
SkMatrix fViewMatrix;
SkMatrix fSrcRotInv;
SkPoint fPtsRot[2];
SkScalar fSrcStrokeWidth;
SkScalar fPhase;
SkScalar fIntervals[2];
SkScalar fParallelScale;
SkScalar fPerpendicularScale;
};
static GrOp::Owner Make(GrRecordingContext* context,
GrPaint&& paint,
const LineData& geometry,
SkPaint::Cap cap,
AAMode aaMode, bool fullDash,
const GrUserStencilSettings* stencilSettings) {
return GrOp::Make<DashOpImpl>(context, std::move(paint), geometry, cap,
aaMode, fullDash, stencilSettings);
}
const char* name() const override { return "DashOp"; }
void visitProxies(const GrVisitProxyFunc& func) const override {
if (fProgramInfo) {
fProgramInfo->visitFPProxies(func);
} else {
fProcessorSet.visitProxies(func);
}
}
FixedFunctionFlags fixedFunctionFlags() const override {
FixedFunctionFlags flags = FixedFunctionFlags::kNone;
if (AAMode::kCoverageWithMSAA == fAAMode) {
flags |= FixedFunctionFlags::kUsesHWAA;
}
if (fStencilSettings != &GrUserStencilSettings::kUnused) {
flags |= FixedFunctionFlags::kUsesStencil;
}
return flags;
}
GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip,
GrClampType clampType) override {
GrProcessorAnalysisCoverage coverage = GrProcessorAnalysisCoverage::kSingleChannel;
auto analysis = fProcessorSet.finalize(fColor, coverage, clip, fStencilSettings, caps,
clampType, &fColor);
fUsesLocalCoords = analysis.usesLocalCoords();
return analysis;
}
private:
friend class GrOp; // for ctor
DashOpImpl(GrPaint&& paint, const LineData& geometry, SkPaint::Cap cap, AAMode aaMode,
bool fullDash, const GrUserStencilSettings* stencilSettings)
: INHERITED(ClassID())
, fColor(paint.getColor4f())
, fFullDash(fullDash)
, fCap(cap)
, fAAMode(aaMode)
, fProcessorSet(std::move(paint))
, fStencilSettings(stencilSettings) {
fLines.push_back(geometry);
// compute bounds
SkScalar halfStrokeWidth = 0.5f * geometry.fSrcStrokeWidth;
SkScalar xBloat = SkPaint::kButt_Cap == cap ? 0 : halfStrokeWidth;
SkRect bounds;
bounds.set(geometry.fPtsRot[0], geometry.fPtsRot[1]);
bounds.outset(xBloat, halfStrokeWidth);
// Note, we actually create the combined matrix here, and save the work
SkMatrix& combinedMatrix = fLines[0].fSrcRotInv;
combinedMatrix.postConcat(geometry.fViewMatrix);
IsHairline zeroArea = geometry.fSrcStrokeWidth ? IsHairline::kNo : IsHairline::kYes;
HasAABloat aaBloat = (aaMode == AAMode::kNone) ? HasAABloat::kNo : HasAABloat::kYes;
this->setTransformedBounds(bounds, combinedMatrix, aaBloat, zeroArea);
}
struct DashDraw {
DashDraw(const LineData& geo) {
memcpy(fPtsRot, geo.fPtsRot, sizeof(geo.fPtsRot));
memcpy(fIntervals, geo.fIntervals, sizeof(geo.fIntervals));
fPhase = geo.fPhase;
}
SkPoint fPtsRot[2];
SkScalar fIntervals[2];
SkScalar fPhase;
SkScalar fStartOffset;
SkScalar fStrokeWidth;
SkScalar fLineLength;
SkScalar fDevBloatX;
SkScalar fPerpendicularScale;
bool fLineDone;
bool fHasStartRect;
bool fHasEndRect;
};
GrProgramInfo* programInfo() override { return fProgramInfo; }
void onCreateProgramInfo(const GrCaps* caps,
SkArenaAlloc* arena,
const GrSurfaceProxyView& writeView,
bool usesMSAASurface,
GrAppliedClip&& appliedClip,
const GrDstProxyView& dstProxyView,
GrXferBarrierFlags renderPassXferBarriers,
GrLoadOp colorLoadOp) override {
DashCap capType = (this->cap() == SkPaint::kRound_Cap) ? kRound_DashCap : kNonRound_DashCap;
GrGeometryProcessor* gp;
if (this->fullDash()) {
gp = make_dash_gp(arena, this->color(), this->aaMode(), capType,
this->viewMatrix(), fUsesLocalCoords);
} else {
// Set up the vertex data for the line and start/end dashes
using namespace GrDefaultGeoProcFactory;
Color color(this->color());
LocalCoords::Type localCoordsType =
fUsesLocalCoords ? LocalCoords::kUsePosition_Type : LocalCoords::kUnused_Type;
gp = MakeForDeviceSpace(arena,
color,
Coverage::kSolid_Type,
localCoordsType,
this->viewMatrix());
}
if (!gp) {
SkDebugf("Could not create GrGeometryProcessor\n");
return;
}
fProgramInfo = GrSimpleMeshDrawOpHelper::CreateProgramInfo(caps,
arena,
writeView,
usesMSAASurface,
std::move(appliedClip),
dstProxyView,
gp,
std::move(fProcessorSet),
GrPrimitiveType::kTriangles,
renderPassXferBarriers,
colorLoadOp,
GrPipeline::InputFlags::kNone,
fStencilSettings);
}
void onPrepareDraws(GrMeshDrawTarget* target) override {
int instanceCount = fLines.count();
SkPaint::Cap cap = this->cap();
DashCap capType = (SkPaint::kRound_Cap == cap) ? kRound_DashCap : kNonRound_DashCap;
if (!fProgramInfo) {
this->createProgramInfo(target);
if (!fProgramInfo) {
return;
}
}
// useAA here means Edge AA or MSAA
bool useAA = this->aaMode() != AAMode::kNone;
bool fullDash = this->fullDash();
// We do two passes over all of the dashes. First we setup the start, end, and bounds,
// rectangles. We preserve all of this work in the rects / draws arrays below. Then we
// iterate again over these decomposed dashes to generate vertices
static const int kNumStackDashes = 128;
SkSTArray<kNumStackDashes, SkRect, true> rects;
SkSTArray<kNumStackDashes, DashDraw, true> draws;
int totalRectCount = 0;
int rectOffset = 0;
rects.push_back_n(3 * instanceCount);
for (int i = 0; i < instanceCount; i++) {
const LineData& args = fLines[i];
DashDraw& draw = draws.push_back(args);
bool hasCap = SkPaint::kButt_Cap != cap;
SkScalar halfSrcStroke = args.fSrcStrokeWidth * 0.5f;
if (halfSrcStroke == 0.0f || this->aaMode() != AAMode::kCoverageWithMSAA) {
// In the non-MSAA case, we always want to at least stroke out half a pixel on each
// side in device space. 0.5f / fPerpendicularScale gives us this min in src space.
// This is also necessary when the stroke width is zero, to allow hairlines to draw.
halfSrcStroke = std::max(halfSrcStroke, 0.5f / args.fPerpendicularScale);
}
SkScalar strokeAdj = hasCap ? halfSrcStroke : 0.0f;
SkScalar startAdj = 0;
bool lineDone = false;
// Too simplify the algorithm, we always push back rects for start and end rect.
// Otherwise we'd have to track start / end rects for each individual geometry
SkRect& bounds = rects[rectOffset++];
SkRect& startRect = rects[rectOffset++];
SkRect& endRect = rects[rectOffset++];
bool hasStartRect = false;
// If we are using AA, check to see if we are drawing a partial dash at the start. If so
// draw it separately here and adjust our start point accordingly
if (useAA) {
if (draw.fPhase > 0 && draw.fPhase < draw.fIntervals[0]) {
SkPoint startPts[2];
startPts[0] = draw.fPtsRot[0];
startPts[1].fY = startPts[0].fY;
startPts[1].fX = std::min(startPts[0].fX + draw.fIntervals[0] - draw.fPhase,
draw.fPtsRot[1].fX);
startRect.setBounds(startPts, 2);
startRect.outset(strokeAdj, halfSrcStroke);
hasStartRect = true;
startAdj = draw.fIntervals[0] + draw.fIntervals[1] - draw.fPhase;
}
}
// adjustments for start and end of bounding rect so we only draw dash intervals
// contained in the original line segment.
startAdj += calc_start_adjustment(draw.fIntervals, draw.fPhase);
if (startAdj != 0) {
draw.fPtsRot[0].fX += startAdj;
draw.fPhase = 0;
}
SkScalar endingInterval = 0;
SkScalar endAdj = calc_end_adjustment(draw.fIntervals, draw.fPtsRot, draw.fPhase,
&endingInterval);
draw.fPtsRot[1].fX -= endAdj;
if (draw.fPtsRot[0].fX >= draw.fPtsRot[1].fX) {
lineDone = true;
}
bool hasEndRect = false;
// If we are using AA, check to see if we are drawing a partial dash at then end. If so
// draw it separately here and adjust our end point accordingly
if (useAA && !lineDone) {
// If we adjusted the end then we will not be drawing a partial dash at the end.
// If we didn't adjust the end point then we just need to make sure the ending
// dash isn't a full dash
if (0 == endAdj && endingInterval != draw.fIntervals[0]) {
SkPoint endPts[2];
endPts[1] = draw.fPtsRot[1];
endPts[0].fY = endPts[1].fY;
endPts[0].fX = endPts[1].fX - endingInterval;
endRect.setBounds(endPts, 2);
endRect.outset(strokeAdj, halfSrcStroke);
hasEndRect = true;
endAdj = endingInterval + draw.fIntervals[1];
draw.fPtsRot[1].fX -= endAdj;
if (draw.fPtsRot[0].fX >= draw.fPtsRot[1].fX) {
lineDone = true;
}
}
}
if (draw.fPtsRot[0].fX == draw.fPtsRot[1].fX &&
(0 != endAdj || 0 == startAdj) &&
hasCap) {
// At this point the fPtsRot[0]/[1] represent the start and end of the inner rect of
// dashes that we want to draw. The only way they can be equal is if the on interval
// is zero (or an edge case if the end of line ends at a full off interval, but this
// is handled as well). Thus if the on interval is zero then we need to draw a cap
// at this position if the stroke has caps. The spec says we only draw this point if
// point lies between [start of line, end of line). Thus we check if we are at the
// end (but not the start), and if so we don't draw the cap.
lineDone = false;
}
if (startAdj != 0) {
draw.fPhase = 0;
}
// Change the dashing info from src space into device space
SkScalar* devIntervals = draw.fIntervals;
devIntervals[0] = draw.fIntervals[0] * args.fParallelScale;
devIntervals[1] = draw.fIntervals[1] * args.fParallelScale;
SkScalar devPhase = draw.fPhase * args.fParallelScale;
SkScalar strokeWidth = args.fSrcStrokeWidth * args.fPerpendicularScale;
if ((strokeWidth < 1.f && !useAA) || 0.f == strokeWidth) {
strokeWidth = 1.f;
}
SkScalar halfDevStroke = strokeWidth * 0.5f;
if (SkPaint::kSquare_Cap == cap) {
// add cap to on interval and remove from off interval
devIntervals[0] += strokeWidth;
devIntervals[1] -= strokeWidth;
}
SkScalar startOffset = devIntervals[1] * 0.5f + devPhase;
SkScalar devBloatX = 0.0f;
SkScalar devBloatY = 0.0f;
switch (this->aaMode()) {
case AAMode::kNone:
break;
case AAMode::kCoverage:
// For EdgeAA, we bloat in X & Y for both square and round caps.
devBloatX = 0.5f;
devBloatY = 0.5f;
break;
case AAMode::kCoverageWithMSAA:
// For MSAA, we only bloat in Y for round caps.
devBloatY = (cap == SkPaint::kRound_Cap) ? 0.5f : 0.0f;
break;
}
SkScalar bloatX = devBloatX / args.fParallelScale;
SkScalar bloatY = devBloatY / args.fPerpendicularScale;
if (devIntervals[1] <= 0.f && useAA) {
// Case when we end up drawing a solid AA rect
// Reset the start rect to draw this single solid rect
// but it requires to upload a new intervals uniform so we can mimic
// one giant dash
draw.fPtsRot[0].fX -= hasStartRect ? startAdj : 0;
draw.fPtsRot[1].fX += hasEndRect ? endAdj : 0;
startRect.setBounds(draw.fPtsRot, 2);
startRect.outset(strokeAdj, halfSrcStroke);
hasStartRect = true;
hasEndRect = false;
lineDone = true;
SkPoint devicePts[2];
args.fSrcRotInv.mapPoints(devicePts, draw.fPtsRot, 2);
SkScalar lineLength = SkPoint::Distance(devicePts[0], devicePts[1]);
if (hasCap) {
lineLength += 2.f * halfDevStroke;
}
devIntervals[0] = lineLength;
}
totalRectCount += !lineDone ? 1 : 0;
totalRectCount += hasStartRect ? 1 : 0;
totalRectCount += hasEndRect ? 1 : 0;
if (SkPaint::kRound_Cap == cap && 0 != args.fSrcStrokeWidth) {
// need to adjust this for round caps to correctly set the dashPos attrib on
// vertices
startOffset -= halfDevStroke;
}
if (!lineDone) {
SkPoint devicePts[2];
args.fSrcRotInv.mapPoints(devicePts, draw.fPtsRot, 2);
draw.fLineLength = SkPoint::Distance(devicePts[0], devicePts[1]);
if (hasCap) {
draw.fLineLength += 2.f * halfDevStroke;
}
bounds.setLTRB(draw.fPtsRot[0].fX, draw.fPtsRot[0].fY,
draw.fPtsRot[1].fX, draw.fPtsRot[1].fY);
bounds.outset(bloatX + strokeAdj, bloatY + halfSrcStroke);
}
if (hasStartRect) {
SkASSERT(useAA); // so that we know bloatX and bloatY have been set
startRect.outset(bloatX, bloatY);
}
if (hasEndRect) {
SkASSERT(useAA); // so that we know bloatX and bloatY have been set
endRect.outset(bloatX, bloatY);
}
draw.fStartOffset = startOffset;
draw.fDevBloatX = devBloatX;
draw.fPerpendicularScale = args.fPerpendicularScale;
draw.fStrokeWidth = strokeWidth;
draw.fHasStartRect = hasStartRect;
draw.fLineDone = lineDone;
draw.fHasEndRect = hasEndRect;
}
if (!totalRectCount) {
return;
}
QuadHelper helper(target, fProgramInfo->geomProc().vertexStride(), totalRectCount);
VertexWriter vertices{ helper.vertices() };
if (!vertices) {
return;
}
int rectIndex = 0;
for (int i = 0; i < instanceCount; i++) {
const LineData& geom = fLines[i];
if (!draws[i].fLineDone) {
if (fullDash) {
setup_dashed_rect(rects[rectIndex], vertices, geom.fSrcRotInv,
draws[i].fStartOffset, draws[i].fDevBloatX,
draws[i].fLineLength, draws[i].fIntervals[0],
draws[i].fIntervals[1], draws[i].fStrokeWidth,
draws[i].fPerpendicularScale,
capType);
} else {
vertices.writeQuad(GrQuad::MakeFromRect(rects[rectIndex], geom.fSrcRotInv));
}
}
rectIndex++;
if (draws[i].fHasStartRect) {
if (fullDash) {
setup_dashed_rect(rects[rectIndex], vertices, geom.fSrcRotInv,
draws[i].fStartOffset, draws[i].fDevBloatX,
draws[i].fIntervals[0], draws[i].fIntervals[0],
draws[i].fIntervals[1], draws[i].fStrokeWidth,
draws[i].fPerpendicularScale, capType);
} else {
vertices.writeQuad(GrQuad::MakeFromRect(rects[rectIndex], geom.fSrcRotInv));
}
}
rectIndex++;
if (draws[i].fHasEndRect) {
if (fullDash) {
setup_dashed_rect(rects[rectIndex], vertices, geom.fSrcRotInv,
draws[i].fStartOffset, draws[i].fDevBloatX,
draws[i].fIntervals[0], draws[i].fIntervals[0],
draws[i].fIntervals[1], draws[i].fStrokeWidth,
draws[i].fPerpendicularScale, capType);
} else {
vertices.writeQuad(GrQuad::MakeFromRect(rects[rectIndex], geom.fSrcRotInv));
}
}
rectIndex++;
}
fMesh = helper.mesh();
}
void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override {
if (!fProgramInfo || !fMesh) {
return;
}
flushState->bindPipelineAndScissorClip(*fProgramInfo, chainBounds);
flushState->bindTextures(fProgramInfo->geomProc(), nullptr, fProgramInfo->pipeline());
flushState->drawMesh(*fMesh);
}
CombineResult onCombineIfPossible(GrOp* t, SkArenaAlloc*, const GrCaps& caps) override {
auto that = t->cast<DashOpImpl>();
if (fProcessorSet != that->fProcessorSet) {
return CombineResult::kCannotCombine;
}
if (this->aaMode() != that->aaMode()) {
return CombineResult::kCannotCombine;
}
if (this->fullDash() != that->fullDash()) {
return CombineResult::kCannotCombine;
}
if (this->cap() != that->cap()) {
return CombineResult::kCannotCombine;
}
// TODO vertex color
if (this->color() != that->color()) {
return CombineResult::kCannotCombine;
}
if (fUsesLocalCoords && !SkMatrixPriv::CheapEqual(this->viewMatrix(), that->viewMatrix())) {
return CombineResult::kCannotCombine;
}
fLines.push_back_n(that->fLines.count(), that->fLines.begin());
return CombineResult::kMerged;
}
#if GR_TEST_UTILS
SkString onDumpInfo() const override {
SkString string;
for (const auto& geo : fLines) {
string.appendf("Pt0: [%.2f, %.2f], Pt1: [%.2f, %.2f], Width: %.2f, Ival0: %.2f, "
"Ival1 : %.2f, Phase: %.2f\n",
geo.fPtsRot[0].fX, geo.fPtsRot[0].fY,
geo.fPtsRot[1].fX, geo.fPtsRot[1].fY,
geo.fSrcStrokeWidth,
geo.fIntervals[0],
geo.fIntervals[1],
geo.fPhase);
}
string += fProcessorSet.dumpProcessors();
return string;
}
#endif
const SkPMColor4f& color() const { return fColor; }
const SkMatrix& viewMatrix() const { return fLines[0].fViewMatrix; }
AAMode aaMode() const { return fAAMode; }
bool fullDash() const { return fFullDash; }
SkPaint::Cap cap() const { return fCap; }
SkSTArray<1, LineData, true> fLines;
SkPMColor4f fColor;
bool fUsesLocalCoords : 1;
bool fFullDash : 1;
// We use 3 bits for this 3-value enum because MSVS makes the underlying types signed.
SkPaint::Cap fCap : 3;
AAMode fAAMode;
GrProcessorSet fProcessorSet;
const GrUserStencilSettings* fStencilSettings;
GrSimpleMesh* fMesh = nullptr;
GrProgramInfo* fProgramInfo = nullptr;
using INHERITED = GrMeshDrawOp;
};
/*
* This effect will draw a dotted line (defined as a dashed lined with round caps and no on
* interval). The radius of the dots is given by the strokeWidth and the spacing by the DashInfo.
* Both of the previous two parameters are in device space. This effect also requires the setting of
* a float2 vertex attribute for the the four corners of the bounding rect. This attribute is the
* "dash position" of each vertex. In other words it is the vertex coords (in device space) if we
* transform the line to be horizontal, with the start of line at the origin then shifted to the
* right by half the off interval. The line then goes in the positive x direction.
*/
class DashingCircleEffect : public GrGeometryProcessor {
public:
typedef SkPathEffect::DashInfo DashInfo;
static GrGeometryProcessor* Make(SkArenaAlloc* arena,
const SkPMColor4f&,
AAMode aaMode,
const SkMatrix& localMatrix,
bool usesLocalCoords);
const char* name() const override { return "DashingCircleEffect"; }
void addToKey(const GrShaderCaps&, KeyBuilder*) const override;
std::unique_ptr<ProgramImpl> makeProgramImpl(const GrShaderCaps&) const override;
private:
class Impl;
DashingCircleEffect(const SkPMColor4f&, AAMode aaMode, const SkMatrix& localMatrix,
bool usesLocalCoords);
SkPMColor4f fColor;
SkMatrix fLocalMatrix;
bool fUsesLocalCoords;
AAMode fAAMode;
Attribute fInPosition;
Attribute fInDashParams;
Attribute fInCircleParams;
GR_DECLARE_GEOMETRY_PROCESSOR_TEST
using INHERITED = GrGeometryProcessor;
};
//////////////////////////////////////////////////////////////////////////////
class DashingCircleEffect::Impl : public ProgramImpl {
public:
void setData(const GrGLSLProgramDataManager&,
const GrShaderCaps&,
const GrGeometryProcessor&) override;
private:
void onEmitCode(EmitArgs&, GrGPArgs*) override;
SkMatrix fLocalMatrix = SkMatrix::InvalidMatrix();
SkPMColor4f fColor = SK_PMColor4fILLEGAL;
float fPrevRadius = SK_FloatNaN;
float fPrevCenterX = SK_FloatNaN;
float fPrevIntervalLength = SK_FloatNaN;
UniformHandle fParamUniform;
UniformHandle fColorUniform;
UniformHandle fLocalMatrixUniform;
};
void DashingCircleEffect::Impl::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
const DashingCircleEffect& dce = args.fGeomProc.cast<DashingCircleEffect>();
GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
// emit attributes
varyingHandler->emitAttributes(dce);
// XY are dashPos, Z is dashInterval
GrGLSLVarying dashParams(SkSLType::kHalf3);
varyingHandler->addVarying("DashParam", &dashParams);
vertBuilder->codeAppendf("%s = %s;", dashParams.vsOut(), dce.fInDashParams.name());
// x refers to circle radius - 0.5, y refers to cicle's center x coord
GrGLSLVarying circleParams(SkSLType::kHalf2);
varyingHandler->addVarying("CircleParams", &circleParams);
vertBuilder->codeAppendf("%s = %s;", circleParams.vsOut(), dce.fInCircleParams.name());
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
// Setup pass through color
fragBuilder->codeAppendf("half4 %s;", args.fOutputColor);
this->setupUniformColor(fragBuilder, uniformHandler, args.fOutputColor, &fColorUniform);
// Setup position
WriteOutputPosition(vertBuilder, gpArgs, dce.fInPosition.name());
if (dce.fUsesLocalCoords) {
WriteLocalCoord(vertBuilder,
uniformHandler,
*args.fShaderCaps,
gpArgs,
dce.fInPosition.asShaderVar(),
dce.fLocalMatrix,
&fLocalMatrixUniform);
}
// transforms all points so that we can compare them to our test circle
fragBuilder->codeAppendf("half xShifted = half(%s.x - floor(%s.x / %s.z) * %s.z);",
dashParams.fsIn(), dashParams.fsIn(), dashParams.fsIn(),
dashParams.fsIn());
fragBuilder->codeAppendf("half2 fragPosShifted = half2(xShifted, half(%s.y));",
dashParams.fsIn());
fragBuilder->codeAppendf("half2 center = half2(%s.y, 0.0);", circleParams.fsIn());
fragBuilder->codeAppend("half dist = length(center - fragPosShifted);");
if (dce.fAAMode != AAMode::kNone) {
fragBuilder->codeAppendf("half diff = dist - %s.x;", circleParams.fsIn());
fragBuilder->codeAppend("diff = 1.0 - diff;");
fragBuilder->codeAppend("half alpha = saturate(diff);");
} else {
fragBuilder->codeAppendf("half alpha = 1.0;");
fragBuilder->codeAppendf("alpha *= dist < %s.x + 0.5 ? 1.0 : 0.0;", circleParams.fsIn());
}
fragBuilder->codeAppendf("half4 %s = half4(alpha);", args.fOutputCoverage);
}
void DashingCircleEffect::Impl::setData(const GrGLSLProgramDataManager& pdman,
const GrShaderCaps& shaderCaps,
const GrGeometryProcessor& geomProc) {
const DashingCircleEffect& dce = geomProc.cast<DashingCircleEffect>();
if (dce.fColor != fColor) {
pdman.set4fv(fColorUniform, 1, dce.fColor.vec());
fColor = dce.fColor;
}
SetTransform(pdman, shaderCaps, fLocalMatrixUniform, dce.fLocalMatrix, &fLocalMatrix);
}
//////////////////////////////////////////////////////////////////////////////
GrGeometryProcessor* DashingCircleEffect::Make(SkArenaAlloc* arena,
const SkPMColor4f& color,
AAMode aaMode,
const SkMatrix& localMatrix,
bool usesLocalCoords) {
return arena->make([&](void* ptr) {
return new (ptr) DashingCircleEffect(color, aaMode, localMatrix, usesLocalCoords);
});
}
void DashingCircleEffect::addToKey(const GrShaderCaps& caps, KeyBuilder* b) const {
uint32_t key = 0;
key |= fUsesLocalCoords ? 0x1 : 0x0;
key |= static_cast<uint32_t>(fAAMode) << 1;
key |= ProgramImpl::ComputeMatrixKey(caps, fLocalMatrix) << 3;
b->add32(key);
}
std::unique_ptr<GrGeometryProcessor::ProgramImpl> DashingCircleEffect::makeProgramImpl(
const GrShaderCaps&) const {
return std::make_unique<Impl>();
}
DashingCircleEffect::DashingCircleEffect(const SkPMColor4f& color,
AAMode aaMode,
const SkMatrix& localMatrix,
bool usesLocalCoords)
: INHERITED(kDashingCircleEffect_ClassID)
, fColor(color)
, fLocalMatrix(localMatrix)
, fUsesLocalCoords(usesLocalCoords)
, fAAMode(aaMode) {
fInPosition = {"inPosition", kFloat2_GrVertexAttribType, SkSLType::kFloat2};
fInDashParams = {"inDashParams", kFloat3_GrVertexAttribType, SkSLType::kHalf3};
fInCircleParams = {"inCircleParams", kFloat2_GrVertexAttribType, SkSLType::kHalf2};
this->setVertexAttributesWithImplicitOffsets(&fInPosition, 3);
}
GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DashingCircleEffect);
#if GR_TEST_UTILS
GrGeometryProcessor* DashingCircleEffect::TestCreate(GrProcessorTestData* d) {
AAMode aaMode = static_cast<AAMode>(d->fRandom->nextULessThan(kAAModeCnt));
GrColor color = GrTest::RandomColor(d->fRandom);
SkMatrix matrix = GrTest::TestMatrix(d->fRandom);
return DashingCircleEffect::Make(d->allocator(),
SkPMColor4f::FromBytes_RGBA(color),
aaMode,
matrix,
d->fRandom->nextBool());
}
#endif
//////////////////////////////////////////////////////////////////////////////
/*
* This effect will draw a dashed line. The width of the dash is given by the strokeWidth and the
* length and spacing by the DashInfo. Both of the previous two parameters are in device space.
* This effect also requires the setting of a float2 vertex attribute for the the four corners of the
* bounding rect. This attribute is the "dash position" of each vertex. In other words it is the
* vertex coords (in device space) if we transform the line to be horizontal, with the start of
* line at the origin then shifted to the right by half the off interval. The line then goes in the
* positive x direction.
*/
class DashingLineEffect : public GrGeometryProcessor {
public:
typedef SkPathEffect::DashInfo DashInfo;
static GrGeometryProcessor* Make(SkArenaAlloc* arena,
const SkPMColor4f&,
AAMode aaMode,
const SkMatrix& localMatrix,
bool usesLocalCoords);
const char* name() const override { return "DashingEffect"; }
bool usesLocalCoords() const { return fUsesLocalCoords; }
void addToKey(const GrShaderCaps&, KeyBuilder*) const override;
std::unique_ptr<ProgramImpl> makeProgramImpl(const GrShaderCaps&) const override;
private:
class Impl;
DashingLineEffect(const SkPMColor4f&, AAMode aaMode, const SkMatrix& localMatrix,
bool usesLocalCoords);
SkPMColor4f fColor;
SkMatrix fLocalMatrix;
bool fUsesLocalCoords;
AAMode fAAMode;
Attribute fInPosition;
Attribute fInDashParams;
Attribute fInRect;
GR_DECLARE_GEOMETRY_PROCESSOR_TEST
using INHERITED = GrGeometryProcessor;
};
//////////////////////////////////////////////////////////////////////////////
class DashingLineEffect::Impl : public ProgramImpl {
public:
void setData(const GrGLSLProgramDataManager&,
const GrShaderCaps&,
const GrGeometryProcessor&) override;
private:
void onEmitCode(EmitArgs&, GrGPArgs*) override;
SkPMColor4f fColor = SK_PMColor4fILLEGAL;
SkMatrix fLocalMatrix = SkMatrix::InvalidMatrix();
UniformHandle fLocalMatrixUniform;
UniformHandle fColorUniform;
};
void DashingLineEffect::Impl::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
const DashingLineEffect& de = args.fGeomProc.cast<DashingLineEffect>();
GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
// emit attributes
varyingHandler->emitAttributes(de);
// XY refers to dashPos, Z is the dash interval length
GrGLSLVarying inDashParams(SkSLType::kFloat3);
varyingHandler->addVarying("DashParams", &inDashParams);
vertBuilder->codeAppendf("%s = %s;", inDashParams.vsOut(), de.fInDashParams.name());
// The rect uniform's xyzw refer to (left + 0.5, top + 0.5, right - 0.5, bottom - 0.5),
// respectively.
GrGLSLVarying inRectParams(SkSLType::kFloat4);
varyingHandler->addVarying("RectParams", &inRectParams);
vertBuilder->codeAppendf("%s = %s;", inRectParams.vsOut(), de.fInRect.name());
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
// Setup pass through color
fragBuilder->codeAppendf("half4 %s;", args.fOutputColor);
this->setupUniformColor(fragBuilder, uniformHandler, args.fOutputColor, &fColorUniform);
// Setup position
WriteOutputPosition(vertBuilder, gpArgs, de.fInPosition.name());
if (de.usesLocalCoords()) {
WriteLocalCoord(vertBuilder,
uniformHandler,
*args.fShaderCaps,
gpArgs,
de.fInPosition.asShaderVar(),
de.fLocalMatrix,
&fLocalMatrixUniform);
}
// transforms all points so that we can compare them to our test rect
fragBuilder->codeAppendf("half xShifted = half(%s.x - floor(%s.x / %s.z) * %s.z);",
inDashParams.fsIn(), inDashParams.fsIn(), inDashParams.fsIn(),
inDashParams.fsIn());
fragBuilder->codeAppendf("half2 fragPosShifted = half2(xShifted, half(%s.y));",
inDashParams.fsIn());
if (de.fAAMode == AAMode::kCoverage) {
// The amount of coverage removed in x and y by the edges is computed as a pair of negative
// numbers, xSub and ySub.
fragBuilder->codeAppend("half xSub, ySub;");
fragBuilder->codeAppendf("xSub = half(min(fragPosShifted.x - %s.x, 0.0));",
inRectParams.fsIn());
fragBuilder->codeAppendf("xSub += half(min(%s.z - fragPosShifted.x, 0.0));",
inRectParams.fsIn());
fragBuilder->codeAppendf("ySub = half(min(fragPosShifted.y - %s.y, 0.0));",
inRectParams.fsIn());
fragBuilder->codeAppendf("ySub += half(min(%s.w - fragPosShifted.y, 0.0));",
inRectParams.fsIn());
// Now compute coverage in x and y and multiply them to get the fraction of the pixel
// covered.
fragBuilder->codeAppendf(
"half alpha = (1.0 + max(xSub, -1.0)) * (1.0 + max(ySub, -1.0));");
} else if (de.fAAMode == AAMode::kCoverageWithMSAA) {
// For MSAA, we don't modulate the alpha by the Y distance, since MSAA coverage will handle
// AA on the the top and bottom edges. The shader is only responsible for intra-dash alpha.
fragBuilder->codeAppend("half xSub;");
fragBuilder->codeAppendf("xSub = half(min(fragPosShifted.x - %s.x, 0.0));",
inRectParams.fsIn());
fragBuilder->codeAppendf("xSub += half(min(%s.z - fragPosShifted.x, 0.0));",
inRectParams.fsIn());
// Now compute coverage in x to get the fraction of the pixel covered.
fragBuilder->codeAppendf("half alpha = (1.0 + max(xSub, -1.0));");
} else {
// Assuming the bounding geometry is tight so no need to check y values
fragBuilder->codeAppendf("half alpha = 1.0;");
fragBuilder->codeAppendf("alpha *= (fragPosShifted.x - %s.x) > -0.5 ? 1.0 : 0.0;",
inRectParams.fsIn());
fragBuilder->codeAppendf("alpha *= (%s.z - fragPosShifted.x) >= -0.5 ? 1.0 : 0.0;",
inRectParams.fsIn());
}
fragBuilder->codeAppendf("half4 %s = half4(alpha);", args.fOutputCoverage);
}
void DashingLineEffect::Impl::setData(const GrGLSLProgramDataManager& pdman,
const GrShaderCaps& shaderCaps,
const GrGeometryProcessor& geomProc) {
const DashingLineEffect& de = geomProc.cast<DashingLineEffect>();
if (de.fColor != fColor) {
pdman.set4fv(fColorUniform, 1, de.fColor.vec());
fColor = de.fColor;
}
SetTransform(pdman, shaderCaps, fLocalMatrixUniform, de.fLocalMatrix, &fLocalMatrix);
}
//////////////////////////////////////////////////////////////////////////////
GrGeometryProcessor* DashingLineEffect::Make(SkArenaAlloc* arena,
const SkPMColor4f& color,
AAMode aaMode,
const SkMatrix& localMatrix,
bool usesLocalCoords) {
return arena->make([&](void* ptr) {
return new (ptr) DashingLineEffect(color, aaMode, localMatrix, usesLocalCoords);
});
}
void DashingLineEffect::addToKey(const GrShaderCaps& caps, KeyBuilder* b) const {
uint32_t key = 0;
key |= fUsesLocalCoords ? 0x1 : 0x0;
key |= static_cast<int>(fAAMode) << 1;
key |= ProgramImpl::ComputeMatrixKey(caps, fLocalMatrix) << 3;
b->add32(key);
}
std::unique_ptr<GrGeometryProcessor::ProgramImpl> DashingLineEffect::makeProgramImpl(
const GrShaderCaps&) const {
return std::make_unique<Impl>();
}
DashingLineEffect::DashingLineEffect(const SkPMColor4f& color,
AAMode aaMode,
const SkMatrix& localMatrix,
bool usesLocalCoords)
: INHERITED(kDashingLineEffect_ClassID)
, fColor(color)
, fLocalMatrix(localMatrix)
, fUsesLocalCoords(usesLocalCoords)
, fAAMode(aaMode) {
fInPosition = {"inPosition", kFloat2_GrVertexAttribType, SkSLType::kFloat2};
fInDashParams = {"inDashParams", kFloat3_GrVertexAttribType, SkSLType::kHalf3};
fInRect = {"inRect", kFloat4_GrVertexAttribType, SkSLType::kHalf4};
this->setVertexAttributesWithImplicitOffsets(&fInPosition, 3);
}
GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DashingLineEffect);
#if GR_TEST_UTILS
GrGeometryProcessor* DashingLineEffect::TestCreate(GrProcessorTestData* d) {
AAMode aaMode = static_cast<AAMode>(d->fRandom->nextULessThan(kAAModeCnt));
GrColor color = GrTest::RandomColor(d->fRandom);
SkMatrix matrix = GrTest::TestMatrix(d->fRandom);
return DashingLineEffect::Make(d->allocator(),
SkPMColor4f::FromBytes_RGBA(color),
aaMode,
matrix,
d->fRandom->nextBool());
}
#endif
//////////////////////////////////////////////////////////////////////////////
GrGeometryProcessor* make_dash_gp(SkArenaAlloc* arena,
const SkPMColor4f& color,
AAMode aaMode,
DashCap cap,
const SkMatrix& viewMatrix,
bool usesLocalCoords) {
SkMatrix invert;
if (usesLocalCoords && !viewMatrix.invert(&invert)) {
SkDebugf("Failed to invert\n");
return nullptr;
}
switch (cap) {
case kRound_DashCap:
return DashingCircleEffect::Make(arena, color, aaMode, invert, usesLocalCoords);
case kNonRound_DashCap:
return DashingLineEffect::Make(arena, color, aaMode, invert, usesLocalCoords);
}
return nullptr;
}
} // anonymous namespace
/////////////////////////////////////////////////////////////////////////////////////////////////
GrOp::Owner MakeDashLineOp(GrRecordingContext* context,
GrPaint&& paint,
const SkMatrix& viewMatrix,
const SkPoint pts[2],
AAMode aaMode,
const GrStyle& style,
const GrUserStencilSettings* stencilSettings) {
SkASSERT(CanDrawDashLine(pts, style, viewMatrix));
const SkScalar* intervals = style.dashIntervals();
SkScalar phase = style.dashPhase();
SkPaint::Cap cap = style.strokeRec().getCap();
DashOpImpl::LineData lineData;
lineData.fSrcStrokeWidth = style.strokeRec().getWidth();
// the phase should be normalized to be [0, sum of all intervals)
SkASSERT(phase >= 0 && phase < intervals[0] + intervals[1]);
// Rotate the src pts so they are aligned horizontally with pts[0].fX < pts[1].fX
if (pts[0].fY != pts[1].fY || pts[0].fX > pts[1].fX) {
SkMatrix rotMatrix;
align_to_x_axis(pts, &rotMatrix, lineData.fPtsRot);
if (!rotMatrix.invert(&lineData.fSrcRotInv)) {
SkDebugf("Failed to create invertible rotation matrix!\n");
return nullptr;
}
} else {
lineData.fSrcRotInv.reset();
memcpy(lineData.fPtsRot, pts, 2 * sizeof(SkPoint));
}
// Scale corrections of intervals and stroke from view matrix
calc_dash_scaling(&lineData.fParallelScale, &lineData.fPerpendicularScale, viewMatrix, pts);
if (SkScalarNearlyZero(lineData.fParallelScale) ||
SkScalarNearlyZero(lineData.fPerpendicularScale)) {
return nullptr;
}
SkScalar offInterval = intervals[1] * lineData.fParallelScale;
SkScalar strokeWidth = lineData.fSrcStrokeWidth * lineData.fPerpendicularScale;
if (SkPaint::kSquare_Cap == cap && 0 != lineData.fSrcStrokeWidth) {
// add cap to on interval and remove from off interval
offInterval -= strokeWidth;
}
// TODO we can do a real rect call if not using fulldash(ie no off interval, not using AA)
bool fullDash = offInterval > 0.f || aaMode != AAMode::kNone;
lineData.fViewMatrix = viewMatrix;
lineData.fPhase = phase;
lineData.fIntervals[0] = intervals[0];
lineData.fIntervals[1] = intervals[1];
return DashOpImpl::Make(context, std::move(paint), lineData, cap, aaMode, fullDash,
stencilSettings);
}
// Returns whether or not the gpu can fast path the dash line effect.
bool CanDrawDashLine(const SkPoint pts[2], const GrStyle& style, const SkMatrix& viewMatrix) {
// Pts must be either horizontal or vertical in src space
if (pts[0].fX != pts[1].fX && pts[0].fY != pts[1].fY) {
return false;
}
// May be able to relax this to include skew. As of now cannot do perspective
// because of the non uniform scaling of bloating a rect
if (!viewMatrix.preservesRightAngles()) {
return false;
}
if (!style.isDashed() || 2 != style.dashIntervalCnt()) {
return false;
}
const SkScalar* intervals = style.dashIntervals();
if (0 == intervals[0] && 0 == intervals[1]) {
return false;
}
SkPaint::Cap cap = style.strokeRec().getCap();
if (SkPaint::kRound_Cap == cap) {
// Current we don't support round caps unless the on interval is zero
if (intervals[0] != 0.f) {
return false;
}
// If the width of the circle caps in greater than the off interval we will pick up unwanted
// segments of circles at the start and end of the dash line.
if (style.strokeRec().getWidth() > intervals[1]) {
return false;
}
}
return true;
}
} // namespace skgpu::v1::DashOp
#if GR_TEST_UTILS
#include "src/gpu/ganesh/GrDrawOpTest.h"
GR_DRAW_OP_TEST_DEFINE(DashOpImpl) {
SkMatrix viewMatrix = GrTest::TestMatrixPreservesRightAngles(random);
AAMode aaMode;
do {
aaMode = static_cast<AAMode>(random->nextULessThan(kAAModeCnt));
} while (AAMode::kCoverageWithMSAA == aaMode && numSamples <= 1);
// We can only dash either horizontal or vertical lines
SkPoint pts[2];
if (random->nextBool()) {
// vertical
pts[0].fX = 1.f;
pts[0].fY = random->nextF() * 10.f;
pts[1].fX = 1.f;
pts[1].fY = random->nextF() * 10.f;
} else {
// horizontal
pts[0].fX = random->nextF() * 10.f;
pts[0].fY = 1.f;
pts[1].fX = random->nextF() * 10.f;
pts[1].fY = 1.f;
}
// pick random cap
SkPaint::Cap cap = SkPaint::Cap(random->nextULessThan(SkPaint::kCapCount));
SkScalar intervals[2];
// We can only dash with the following intervals
enum Intervals {
kOpenOpen_Intervals ,
kOpenClose_Intervals,
kCloseOpen_Intervals,
};
Intervals intervalType = SkPaint::kRound_Cap == cap ?
kOpenClose_Intervals :
Intervals(random->nextULessThan(kCloseOpen_Intervals + 1));
static const SkScalar kIntervalMin = 0.1f;
static const SkScalar kIntervalMinCircles = 1.f; // Must be >= to stroke width
static const SkScalar kIntervalMax = 10.f;
switch (intervalType) {
case kOpenOpen_Intervals:
intervals[0] = random->nextRangeScalar(kIntervalMin, kIntervalMax);
intervals[1] = random->nextRangeScalar(kIntervalMin, kIntervalMax);
break;
case kOpenClose_Intervals: {
intervals[0] = 0.f;
SkScalar min = SkPaint::kRound_Cap == cap ? kIntervalMinCircles : kIntervalMin;
intervals[1] = random->nextRangeScalar(min, kIntervalMax);
break;
}
case kCloseOpen_Intervals:
intervals[0] = random->nextRangeScalar(kIntervalMin, kIntervalMax);
intervals[1] = 0.f;
break;
}
// phase is 0 < sum (i0, i1)
SkScalar phase = random->nextRangeScalar(0, intervals[0] + intervals[1]);
SkPaint p;
p.setStyle(SkPaint::kStroke_Style);
p.setStrokeWidth(SkIntToScalar(1));
p.setStrokeCap(cap);
p.setPathEffect(GrTest::TestDashPathEffect::Make(intervals, 2, phase));
GrStyle style(p);
return skgpu::v1::DashOp::MakeDashLineOp(context, std::move(paint), viewMatrix, pts, aaMode,
style, GrGetRandomStencil(random, context));
}
#endif // GR_TEST_UTILS