blob: 6bc6999a49d14850aa2c97ec20e05db10bb71741 [file] [log] [blame]
// Copyright 2019 Google LLC.
// Use of this source code is governed by a BSD-style license that can be found in the LICENSE file.
#include "src/pdf/SkPDFType1Font.h"
#include "include/core/SkData.h"
#include "include/core/SkRefCnt.h"
#include "include/core/SkScalar.h"
#include "include/core/SkStream.h"
#include "include/core/SkString.h"
#include "include/core/SkTypeface.h"
#include "include/core/SkTypes.h"
#include "include/private/base/SkMacros.h"
#include "include/private/base/SkSpan_impl.h"
#include "include/private/base/SkTemplates.h"
#include "include/private/base/SkTo.h"
#include "src/base/SkBitmaskEnum.h"
#include "src/core/SkAdvancedTypefaceMetrics.h"
#include "src/core/SkGlyph.h"
#include "src/core/SkStrikeSpec.h"
#include "src/core/SkTHash.h"
#include "src/pdf/SkPDFDocumentPriv.h"
#include "src/pdf/SkPDFFont.h"
#include "src/pdf/SkPDFTypes.h"
#include <ctype.h>
#include <cstdint>
#include <cstring>
#include <memory>
#include <utility>
#include <vector>
using namespace skia_private;
/*
"A standard Type 1 font program, as described in the Adobe Type 1
Font Format specification, consists of three parts: a clear-text
portion (written using PostScript syntax), an encrypted portion, and
a fixed-content portion. The fixed-content portion contains 512
ASCII zeros followed by a cleartomark operator, and perhaps followed
by additional data. Although the encrypted portion of a standard
Type 1 font may be in binary or ASCII hexadecimal format, PDF
supports only the binary format."
*/
static bool parsePFBSection(const uint8_t** src, size_t* len, int sectionType,
size_t* size) {
// PFB sections have a two or six bytes header. 0x80 and a one byte
// section type followed by a four byte section length. Type one is
// an ASCII section (includes a length), type two is a binary section
// (includes a length) and type three is an EOF marker with no length.
const uint8_t* buf = *src;
if (*len < 2 || buf[0] != 0x80 || buf[1] != sectionType) {
return false;
} else if (buf[1] == 3) {
return true;
} else if (*len < 6) {
return false;
}
*size = (size_t)buf[2] | ((size_t)buf[3] << 8) | ((size_t)buf[4] << 16) |
((size_t)buf[5] << 24);
size_t consumed = *size + 6;
if (consumed > *len) {
return false;
}
*src = *src + consumed;
*len = *len - consumed;
return true;
}
static bool parsePFB(const uint8_t* src, size_t size, size_t* headerLen,
size_t* dataLen, size_t* trailerLen) {
const uint8_t* srcPtr = src;
size_t remaining = size;
return parsePFBSection(&srcPtr, &remaining, 1, headerLen) &&
parsePFBSection(&srcPtr, &remaining, 2, dataLen) &&
parsePFBSection(&srcPtr, &remaining, 1, trailerLen) &&
parsePFBSection(&srcPtr, &remaining, 3, nullptr);
}
/* The sections of a PFA file are implicitly defined. The body starts
* after the line containing "eexec," and the trailer starts with 512
* literal 0's followed by "cleartomark" (plus arbitrary white space).
*
* This function assumes that src is NUL terminated, but the NUL
* termination is not included in size.
*
*/
static bool parsePFA(const char* src, size_t size, size_t* headerLen,
size_t* hexDataLen, size_t* dataLen, size_t* trailerLen) {
const char* end = src + size;
const char* dataPos = strstr(src, "eexec");
if (!dataPos) {
return false;
}
dataPos += strlen("eexec");
while ((*dataPos == '\n' || *dataPos == '\r' || *dataPos == ' ') &&
dataPos < end) {
dataPos++;
}
*headerLen = dataPos - src;
const char* trailerPos = strstr(dataPos, "cleartomark");
if (!trailerPos) {
return false;
}
int zeroCount = 0;
for (trailerPos--; trailerPos > dataPos && zeroCount < 512; trailerPos--) {
if (*trailerPos == '\n' || *trailerPos == '\r' || *trailerPos == ' ') {
continue;
} else if (*trailerPos == '0') {
zeroCount++;
} else {
return false;
}
}
if (zeroCount != 512) {
return false;
}
*hexDataLen = trailerPos - src - *headerLen;
*trailerLen = size - *headerLen - *hexDataLen;
// Verify that the data section is hex encoded and count the bytes.
int nibbles = 0;
for (; dataPos < trailerPos; dataPos++) {
if (isspace(*dataPos)) {
continue;
}
// isxdigit() is locale-sensitive https://bugs.skia.org/8285
if (nullptr == strchr("0123456789abcdefABCDEF", *dataPos)) {
return false;
}
nibbles++;
}
*dataLen = (nibbles + 1) / 2;
return true;
}
static int8_t hexToBin(uint8_t c) {
if (!isxdigit(c)) {
return -1;
} else if (c <= '9') {
return c - '0';
} else if (c <= 'F') {
return c - 'A' + 10;
} else if (c <= 'f') {
return c - 'a' + 10;
}
return -1;
}
static sk_sp<SkData> convert_type1_font_stream(std::unique_ptr<SkStreamAsset> srcStream,
size_t* headerLen,
size_t* dataLen,
size_t* trailerLen) {
size_t srcLen = srcStream ? srcStream->getLength() : 0;
SkASSERT(srcLen);
if (!srcLen) {
return nullptr;
}
// Flatten and Nul-terminate the source stream so that we can use
// strstr() to search it.
AutoTMalloc<uint8_t> sourceBuffer(SkToInt(srcLen + 1));
(void)srcStream->read(sourceBuffer.get(), srcLen);
sourceBuffer[SkToInt(srcLen)] = 0;
const uint8_t* src = sourceBuffer.get();
if (parsePFB(src, srcLen, headerLen, dataLen, trailerLen)) {
static const int kPFBSectionHeaderLength = 6;
const size_t length = *headerLen + *dataLen + *trailerLen;
SkASSERT(length > 0);
SkASSERT(length + (2 * kPFBSectionHeaderLength) <= srcLen);
sk_sp<SkData> data(SkData::MakeUninitialized(length));
const uint8_t* const srcHeader = src + kPFBSectionHeaderLength;
// There is a six-byte section header before header and data
// (but not trailer) that we're not going to copy.
const uint8_t* const srcData = srcHeader + *headerLen + kPFBSectionHeaderLength;
const uint8_t* const srcTrailer = srcData + *headerLen;
uint8_t* const resultHeader = (uint8_t*)data->writable_data();
uint8_t* const resultData = resultHeader + *headerLen;
uint8_t* const resultTrailer = resultData + *dataLen;
SkASSERT(resultTrailer + *trailerLen == resultHeader + length);
memcpy(resultHeader, srcHeader, *headerLen);
memcpy(resultData, srcData, *dataLen);
memcpy(resultTrailer, srcTrailer, *trailerLen);
return data;
}
// A PFA has to be converted for PDF.
size_t hexDataLen;
if (!parsePFA((const char*)src, srcLen, headerLen, &hexDataLen, dataLen,
trailerLen)) {
return nullptr;
}
const size_t length = *headerLen + *dataLen + *trailerLen;
SkASSERT(length > 0);
auto data = SkData::MakeUninitialized(length);
uint8_t* buffer = (uint8_t*)data->writable_data();
memcpy(buffer, src, *headerLen);
uint8_t* const resultData = &(buffer[*headerLen]);
const uint8_t* hexData = src + *headerLen;
const uint8_t* trailer = hexData + hexDataLen;
size_t outputOffset = 0;
uint8_t dataByte = 0; // To hush compiler.
bool highNibble = true;
for (; hexData < trailer; hexData++) {
int8_t curNibble = hexToBin(*hexData);
if (curNibble < 0) {
continue;
}
if (highNibble) {
dataByte = curNibble << 4;
highNibble = false;
} else {
dataByte |= curNibble;
highNibble = true;
resultData[outputOffset++] = dataByte;
}
}
if (!highNibble) {
resultData[outputOffset++] = dataByte;
}
SkASSERT(outputOffset == *dataLen);
uint8_t* const resultTrailer = &(buffer[SkToInt(*headerLen + outputOffset)]);
memcpy(resultTrailer, src + *headerLen + hexDataLen, *trailerLen);
return data;
}
inline static bool can_embed(const SkAdvancedTypefaceMetrics& metrics) {
return !SkToBool(metrics.fFlags & SkAdvancedTypefaceMetrics::kNotEmbeddable_FontFlag);
}
inline static SkScalar from_font_units(SkScalar scaled, uint16_t emSize) {
return emSize == 1000 ? scaled : scaled * 1000 / emSize;
}
static SkPDFIndirectReference make_type1_font_descriptor(SkPDFDocument* doc,
const SkTypeface* typeface,
const SkAdvancedTypefaceMetrics* info) {
SkPDFDict descriptor("FontDescriptor");
uint16_t emSize = SkToU16(typeface->getUnitsPerEm());
if (info) {
SkPDFFont::PopulateCommonFontDescriptor(&descriptor, *info, emSize, 0);
if (can_embed(*info)) {
int ttcIndex;
size_t header SK_INIT_TO_AVOID_WARNING;
size_t data SK_INIT_TO_AVOID_WARNING;
size_t trailer SK_INIT_TO_AVOID_WARNING;
std::unique_ptr<SkStreamAsset> rawFontData = typeface->openStream(&ttcIndex);
sk_sp<SkData> fontData = convert_type1_font_stream(std::move(rawFontData),
&header, &data, &trailer);
if (fontData) {
std::unique_ptr<SkPDFDict> dict = SkPDFMakeDict();
dict->insertInt("Length1", header);
dict->insertInt("Length2", data);
dict->insertInt("Length3", trailer);
auto fontStream = SkMemoryStream::Make(std::move(fontData));
descriptor.insertRef("FontFile",
SkPDFStreamOut(std::move(dict), std::move(fontStream),
doc, SkPDFSteamCompressionEnabled::Yes));
}
}
}
return doc->emit(descriptor);
}
static const std::vector<SkString>& type_1_glyphnames(SkPDFDocument* canon,
const SkTypeface* typeface) {
SkTypefaceID typefaceID = typeface->uniqueID();
const std::vector<SkString>* glyphNames = canon->fType1GlyphNames.find(typefaceID);
if (!glyphNames) {
std::vector<SkString> names(typeface->countGlyphs());
SkPDFFont::GetType1GlyphNames(*typeface, names.data());
glyphNames = canon->fType1GlyphNames.set(typefaceID, std::move(names));
}
SkASSERT(glyphNames);
return *glyphNames;
}
static SkPDFIndirectReference type1_font_descriptor(SkPDFDocument* doc,
const SkTypeface* typeface) {
SkTypefaceID typefaceID = typeface->uniqueID();
if (SkPDFIndirectReference* ptr = doc->fFontDescriptors.find(typefaceID)) {
return *ptr;
}
const SkAdvancedTypefaceMetrics* info = SkPDFFont::GetMetrics(typeface, doc);
auto fontDescriptor = make_type1_font_descriptor(doc, typeface, info);
doc->fFontDescriptors.set(typefaceID, fontDescriptor);
return fontDescriptor;
}
void SkPDFEmitType1Font(const SkPDFFont& pdfFont, SkPDFDocument* doc) {
SkTypeface* typeface = pdfFont.typeface();
const std::vector<SkString>& glyphNames = type_1_glyphnames(doc, typeface);
SkGlyphID firstGlyphID = pdfFont.firstGlyphID();
SkGlyphID lastGlyphID = pdfFont.lastGlyphID();
SkPDFDict font("Font");
font.insertRef("FontDescriptor", type1_font_descriptor(doc, typeface));
font.insertName("Subtype", "Type1");
if (const SkAdvancedTypefaceMetrics* info = SkPDFFont::GetMetrics(typeface, doc)) {
font.insertName("BaseFont", info->fPostScriptName);
}
// glyphCount not including glyph 0
unsigned glyphCount = 1 + lastGlyphID - firstGlyphID;
SkASSERT(glyphCount > 0 && glyphCount <= 255);
font.insertInt("FirstChar", (size_t)0);
font.insertInt("LastChar", (size_t)glyphCount);
{
int emSize;
auto widths = SkPDFMakeArray();
int glyphRangeSize = lastGlyphID - firstGlyphID + 2;
AutoTArray<SkGlyphID> glyphIDs{glyphRangeSize};
glyphIDs[0] = 0;
for (unsigned gId = firstGlyphID; gId <= lastGlyphID; gId++) {
glyphIDs[gId - firstGlyphID + 1] = gId;
}
SkStrikeSpec strikeSpec = SkStrikeSpec::MakePDFVector(*typeface, &emSize);
SkBulkGlyphMetrics metrics{strikeSpec};
auto glyphs = metrics.glyphs(SkSpan(glyphIDs.get(), glyphRangeSize));
for (int i = 0; i < glyphRangeSize; ++i) {
widths->appendScalar(from_font_units(glyphs[i]->advanceX(), SkToU16(emSize)));
}
font.insertObject("Widths", std::move(widths));
}
auto encDiffs = SkPDFMakeArray();
encDiffs->reserve(lastGlyphID - firstGlyphID + 3);
encDiffs->appendInt(0);
SkASSERT(glyphNames.size() > lastGlyphID);
const SkString unknown("UNKNOWN");
encDiffs->appendName(glyphNames[0].isEmpty() ? unknown : glyphNames[0]);
for (int gID = firstGlyphID; gID <= lastGlyphID; gID++) {
encDiffs->appendName(glyphNames[gID].isEmpty() ? unknown : glyphNames[gID]);
}
auto encoding = SkPDFMakeDict("Encoding");
encoding->insertObject("Differences", std::move(encDiffs));
font.insertObject("Encoding", std::move(encoding));
doc->emit(font, pdfFont.indirectReference());
}